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krawiec@cs.put.poznan.pl

Timo Vihma
Finnish Meteorological Institute

00560 Helsinki, Finland
timo.vihma@fmi.fi

ABSTRACT
The Earth surface and atmosphere exchange heat via tur-
bulent fluxes. An accurate description of the heat exchange
is essential in modelling the weather and climate. In these
models the heat fluxes are described applying the Monin-
Obukhov similarity theory, where the flux depends on the
air-surface temperature difference and wind speed. The the-
ory makes idealized assumptions and the resulting estimates
often have large errors. This is the case particularly in con-
ditions when the air is warmer than the Earth surface, i.e.,
the atmospheric boundary layer is stably stratified, and tur-
bulence is therefore weak. This is a common situation over
snow and ice in the Arctic and Antarctic. In this paper, we
present alternative models for heat flux estimation evolved
by means of genetic programming (GP). To this aim, we
utilize the best heat flux data collected in the Arctic and
Antarctic sea ice zones. We obtain GP models that are more
accurate, robust, and conceptually novel from the viewpoint
of meteorology. Contrary to the Monin-Obukhov theory, the
GP equations are not solely based on the air-surface temper-
ature difference and wind speed, but include also radiative
fluxes that improve the performance of the method. These
results open the door to a new class of approaches to heat
flux prediction with potential applications in weather and
climate models.
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[Simulation and Modeling]: Applications
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1. INTRODUCTION
The net heat flux (NF) at the Earth surface is of criti-

cal importance for the energetic balance of our planet and
consist of the following components:

NF = (1− α)SWR↓ + LWR+H + LE + C, (1)

where SWR↓ is the downward solar shortwave radiation,
and α is the fraction of it that is reflected from the surface
(called as the surface albedo). LWR is the difference of the
downward thermal longwave radiation from the atmosphere
(LWR↓) and the upward longwave radiation emitted by the
Earth surface (LWR↑). H and LE are the turbulent fluxes
of sensible heat and latent heat, respectively. The latent
heat flux is the flux of water vapour, due to evaporation or
condensation, multiplied by the latent heat of evaporation.
The last term, C, is the heat flux to/from the layers below
the Earth surface. All fluxes are defined positive towards
the surface. SWR↓ depends above all on the solar zenith
angle and clouds, and α mostly depends on the physical
properties of the surface. The downward longwave radia-
tion depends on the temperature and emissivity profiles of
the atmosphere, clouds being the most important factor af-
fecting the latter, and the longwave radiation emitted by
the Earth surface depends on the surface temperature and
emissivity. On solid surface types, C is due to heat con-
duction. The turbulent fluxes H and LE are driven by the
surface-air differences in temperature and specific humidity,
respectively.
As a global annual average, the heat budget of the Earth

surface is closed so that the the main heat input is SWR↓,
balanced by heat loss via LWR, H, and LE. C is typically
a small term being positive during night/winter and nega-
tive during day/summer. During night or winter in polar
regions, however, there is no solar radiation, and the main
heat input to the Earth surface is via H and C, balanced by
heat loss via LWR. The heat fluxes control the evolution
of the Earth surface temperature: a positive NF results in
warming and a negative one in cooling. The surface temper-
ature is, however, not affected if the positive NF is entirely
used to melt ice or snow, or a negative NF causes freezing
of water surfaces. One of the most striking signals of the
recent climate warming has been the extensive reduction of
the Arctic sea ice [3] and Arctic and mid-latitude terrestrial
snow cover [5]. The larger heat input from the atmosphere
to snow and ice have had a dominating role in the snow and
ice melt [6].
To successfully model the evolution of weather and cli-

mate, the terms in (1) need to be accurately described.
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The problem is that the heat fluxes are generated by small-
scale physical processes (radiation, turbulence, molecular
heat conduction) but weather and climate models have to
cover large geographical areas, and therefore have a coarse
resolution. A typical horizontal grid spacing in numerical
weather prediction (NWP) models, which form the basis of
short-term weather forecasts, is of the order of 10 km and
for climate models of the order of 100 km. The vertical grid
spacing is smallest in the lowest layers of the atmosphere,
so that the lowest atmospheric model level is typically 10-
50 m above the Earth surface, which itself forms another
level of the model. Hence, the heat fluxes need to be de-
scribed as functions of the variables that are resolved by the
model grid, i.e., via so-called subgrid-scale parameterization.
The resolved variables include wind speed and direction, air
temperature and humidity, as well as cloud water/ice con-
tent. Likewise, at the Earth surface, the model calculates
the temperature and humidity.
Particularly in polar regions, the parameterization of all

terms in (1) includes challenges [17]. In the case of radia-
tive fluxes these are mostly related to cloud physics, and
in the case of the conductive heat flux to the snow and ice
properties. Handling the turbulent fluxes, H and LE, is
most challenging when the air is warmer than the snow/ice
surface, i.e. the lowermost atmosphere is statically stably
stratified. Then the turbulent fluxes are small and liable
to parameterization errors. As there are not many accurate
observations available on the latent heat flux, in this paper
we focus on the parameterization of sensible heat flux over
Arctic and Antarctic sea ice. We review the main problems
in conventionally applied parameterization methods (Sec-
tion 2), discuss the factors that affect H and argue about
the suitability of using genetic programing for flux model-
ing (Section 3), and describe two high-quality data sets that
capture the dynamics of the sensible heat flux in the polar
regions (Section 4). The original contributions of this study
start with Section 5, where we present a novel approach to
heat flux modeling based on genetic programming. Section
6 presents and discusses the evolved models, which we then
compare to the conventional parameterization in Section 7,
to conclude the paper with Section 8.

2. LIMITATIONS OF CONVENTIONAL
MODELS OF FLUX PREDICTION

In climate and NWP models, the parameterization of the
turbulent flux of sensible heat H is based on the classical
Monin-Obukhov theory [11]. According to the theory, H
depends on the vertical profile of potential temperature, the
momentum flux, and a parameter describing the static sta-
bility. This yields a practical equation for H, the so-called
bulk formula:

H = ρcpCH(θs − θa)V, (2)
where ρ is the air density, cp is the specific heat, CH is the
turbulent heat exchange coefficient, θs is the surface poten-
tial temperature, θa is the air potential temperature, and V
is the wind speed. The CH is calculated on the basis of the
stability parameter and two parameters characterizing the
surface roughness from the point of view of turbulent mixing.
The Monin-Obukhov theory includes, however, idealized as-
sumptions: horizontal homogeneity, semi-stationarity, and
that the turbulent flux is constant in the vertical from the
Earth surface up to the lowest atmospheric model level. In

conditions of stable stratification, when turbulence only ex-
ists in a shallow layer close to the Earth surface, the last
assumption is highly idealized. Further, the effect of the
static stability of CH can only be determined experimen-
tally, and in conditions of stable stratification there is a lot
of scatter between various experimental formulae for CH .
Observations indicate that when the stratification is very
stable, the magnitude of H may decrease although the air-
surface potential temperature difference, θs − θa, increases
[10]. This is due to the dominating effect of decreasing CH ,
but the sensitive interaction is very difficult to reproduce in
models.
We note that the results for H based on (2) depend on

how the surface roughness effects and stability dependence
of CH are parameterized. In this study, we calculate H
according to (2) using the roughness and stability parame-
terization as in the operational NWP model of the European
Centre for Medium-Range Weather Forecasts (ECMWF)1.
Hereafter, the ECMWF method of calculating H is referred
as conventional model.
Hence, NWP and climate models typically have their largest

errors in surface and near-surface air temperature under sta-
ble stratification in high latitudes. Even in short-term fore-
casts by NWP models the errors of estimation of 2-m air
temperature may reach 10K [2]. In experiments involving
six regional climate models for the Arctic sea ice zone, the
observed and modelled H did not correlate [16]. In gen-
eral, in conditions of stable stratification, models tend to
overestimate H [15]. These problems urgently call for new
approaches for parameterization of H.

3. GENETIC PROGRAMMING
FOR DETERMINING HEAT FLUX

Given the difficult nature of the turbulent flux of the sen-
sible heat and the unsatisfactory performance of the conven-
tional models, in this paper we resort to genetic program-
ming (GP) as a means for synthesizing a heat flux model
from experimental data. In doing so, we anticipate obtain-
ing models that (i) at least tie with the conventional mod-
els with respect to error on experimental data, (ii) are to
some extent transparent/interpretable, and by this token
(iii) possibly cast new light on the nature of the complex
phenomenon of heat flux.
Genetic programming is a heuristic, stochastic approach

to program synthesis. GP synthesizes a program in a given
domain-specific language by maintaining a working popu-
lation of programs (candidate solutions) and manipulating
them by means of search operators. This iterative search
process is driven by a domain-specific fitness function, which
evaluates the quality of candidate solutions and so imposes
certain selection pressure; this in turn causes some pro-
grams to be appointed as parents and so give rise to the
subsequent generation of models. Given an appropriately
designed domain-specific language, GP can be also used to
induce functional models of dependencies between multiple
observables, i.e., independent input variables that form pro-
gram input and a dependent output variable that is to be
predicted by a program. Applying GP in this mode is also
known as symbolic regression.
1Details of the ECMWF scheme can be found at
http://old.ecmwf.int/research/ifsdocs/CY40r1/IFSPart4.pdf
(Section 3.2).
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In our search for alternative parameterizations of the tur-
bulent flux of sensible heat H, we not only rely on the
non-orthodox method of model synthesis (GP), but con-
sider also all potentially relevant variables, including those
absent in the traditional parameterization (2). One ap-
proach is to regard SWR↓ and LWR↓ as external drivers
for the atmosphere-surface heat exchange and H, LE, C,
and LWR↑ as fluxes that respond to the external drivers,
all depending on the surface temperature. This approach
could yield parameterization schemes based on SWR↓ and
LWR↓ (or on the factors controlling these radiative fluxes,
such as the solar zenith angle and cloud cover). Another
approach would be to keep the potential temperature differ-
ence (θs − θa), as in (2), but abandon the highly idealized
Monin-Obukhov similarity theory. The dependence of H on
(θs − θa) and various other meteorological variables could
be tested experimentally. It is also possible to combine the
above-mentioned approaches, and parameterize H on the
basis of both radiative fluxes and the variables used in (2).
In this paper, we delegate the choice of relevant variables

almost entirely to GP, providing only three compound in-
puts for the models (differences of temperature and radia-
tion). The choice of the variables is to an extent dependent
also on the availability and quality of experimental data,
which we cover in the next section.

4. EXPERIMENTAL DATA ON HEAT FLUX
To drive the GP evolution we use the best and temporally

most extensive meteorological datasets ever collected from
the Arctic and Antarctic sea ice zones. These originate from
projects Ice Station Weddell (ISW) in 1992 and the Surface
Heat Budget of the Arctic Ocean (SHEBA) in 1997-1998.
Since then the data from these field campaigns have been
widely used by polar scientists, as there have not been other
as comprehensive long-term measurement campaigns over
polar sea ice since ISW and SHEBA.
ISW was a joint US-Russian project to investigate the at-

mosphere, sea ice, and ocean in the Weddell Sea, Antarctic
[1]. The station was located on a sea-ice flow drifting north-
wards from 72°S up to 66°S from February to June 1992.
The station location deep in the Antarctic sea ice zone and
its operation period in austral autumn and early winter gave
an excellent opportunity to make observations on the stable
boundary layer. In total, over 2,000 hours of nearly con-
tinuous data on radiation, temperature, sensible and latent
heat, wind speed and other variables were collected.
SHEBA was a year-round campaign to take comprehen-

sive measurements that would help understanding processes
that drive the surface energy budget in the Arctic [12]. The
experiments spanned from October 1997 to September 1998
and were performed on an ice floe drifting in the Beaufort
and Chukchi Seas in the Arctic, between 74°N and 81°N.
The SHEBA and ISW datasets contain respectively 6,004

and 1,024 hourly resolved observations with valid measure-
ments of all variables. To monitor the extent of overfitting
in our GP experiments, we split these datasets into training
and test parts: approximately 50 percent of randomly se-
lected observations form the former, and the remaining ones
the latter. By relying on random partitioning rather than
splitting the timeline into two continuous time intervals, we
hope to avoid the risk of biasing the training process towards
a particular time interval. This preprocessing resulted in the
SHEBA dataset being partitioned into 3,004 training obser-

Table 1: The terminal nodes (leaves of expression trees) used
in the evolved models.

Original inputs (the variables present in the datasets)
ShortIn incoming (downward) shortwave radiation
ShortOut outgoing (upward) shortwave radiation
LongIn incoming (downward) longwave radiation
LongOut outgoing (upward) longwave radiation
SurfTemp surface temperature
AirTemp air temperature
WindSpeed wind speed
SpecHum specific humidity
Derived inputs (compounds of original variables)
NetShort incoming minus outgoing shortwave radiat.
NetLong incoming minus outgoing longwave radiat.
TempDiff air minus surface temperature
Constants
CKarman von Karman constant = 0.405
CSpecHeat specific heat of air = 1004
ERC constant drawn uniformly from [-100,100]

vations and 3,000 testing observations, and ISW partitioned
into, respectively, 515 and 509 observations. The dataset
variables are listed in the top part of Table 1.
Note that although heat flux is naturally a temporal phe-

nomenon, and each observation is associated with a specific
timestamp, it is widely agreed in meteorology that H should
be parameterized diagnostically, i.e., using the simultaneous
values of other variables (rather than prognostically, i.e., to
predict the future values of H). We adhere to that conven-
tion in this study. The models we discuss in the subsequent
sections are thus time-free in the sense that they express the
momentary dependency of the output variable on the input
variables. In other words, we pose the problem as a conven-
tional regression problem in terms of statistics and machine
learning.

5. EXPERIMENTAL SETUP
We rely on the tree-based GP [7], the genre of GP that

is arguably the most natural for handling functional (side
effect-free) expressions. A single model is an expression tree
that fetches the values of input variables (independent vari-
ables) and returns the predicted value of the dependent vari-
able. The terminals (tree leaves), presented in Table 1, in-
clude the input variables provided in the SHEBA and ISW
datasets (Section 4), simple compounds of them (radiation
and temperature differences), and constants (random and
domain-specific). The set of instructions (inner nodes of ex-
pression trees) comprises arithmetic operators (+, -, *, /),
inversion, negation, and selected transcendental functions
(sqr, sqrt, log, xy). Where needed, the functions are pro-
tected against invalid arguments. We anticipate that inclu-
sion of the transcendental functions may be essential, given
the prevalence of various forms of nonlinearity in physical
phenomena governing the turbulent heat flux.
All GP configurations considered in this paper implement

generational evolutionary workflow with fairly conventional
settings. Parent models are appointed via tournament of
size 7. A new model is built from them via subtree-swapping
crossover (with probability 0.5), subtree-replacing mutation
(0.1), ERC constant mutation (0.3) or cloning (0.1). The
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Table 2: Mean absolute error (MAE) of the best-of-run models obtained with particular approaches (for GP, averaged over
30 evolutionary runs and accompanied by 0.95 confidence intervals). All results in W/m2.

SHEBA dataset (Arctic) ISW dataset (Antarctic)
Configuration Training MAE Test MAE Training MAE Test MAE
Conventional model 3.7568 3.7186 12.6011 11.9325
LR 4.6465 4.5882 6.0205 6.5886
GP-MAE 3.3690 [3.286, 3.452] 3.3213 [3.239, 3.404] 5.4819 [5.341, 5.623] 6.0480 [5.837, 6.259]
GP-COR 3.0764 [3.037, 3.115] 3.0213 [2.980, 3.063] 5.2207 [5.179, 5.262] 5.9091 [5.796, 6.022]
GP-MAE+COR 3.1712 [3.130, 3.212] 3.1032 [3.062, 3.145] 5.0804 [5.033, 5.127] 5.7368 [5.640, 5.834]
GP-MAE+COR+LR 3.1377 [3.094, 3.181] 3.0702 [3.027, 3.114] 5.0950 [5.054, 5.136] 5.7474 [5.679, 5.816]

remaining parameters are set to the defaults of ECJ package
that our software implementation is built upon [9].
Our goal is to synthesize a model with possibly low Mean

Absolute Error (MAE), i.e.,

fMAE = 1
|I|

∑
i∈I

|ŷi − yi|,

where yi is the actual (observed) value of the heat flux, ŷi

is the output of a model, and I is the set of indices of sam-
ples (observations) of interest. fMAE is thus our objective
performance measure, and we use it for reporting through-
out this paper. However, as we argued elsewhere [8], in
general there is no rationale to claim that an objective per-
formance is necessarily the best search driver, i.e., the best
means to navigate the search process. The experimental ev-
idence we gathered in the cited work actually suggests the
opposite: in many cases, an alternative search driver may
prove more effective at guiding an evolutionary search pro-
cess (program/model synthesis in particular) towards the
well-performing solutions.
There is a multitude of alternative search drivers that

might be used for the heat flux problem. In our earlier
studies, we compared a range of them when modeling the
global temperature anomaly [14]. The overall conclusion was
the superior efficiency of the Pearson correlation coefficient
φ(ŷ, y). Following that past work, we define the (minimized)
fitness as

fCOR = 1− |φ(ŷ, y)|.

fCOR, when applied as a fitness function in GP runs, was
in most cases able to find models that were better (in terms
of MAE) than the models evolved by GP driven by fMAE .
We attribute this interesting result to the fact that fCOR

‘seeks’ any linear dependency between the variables in ques-
tion, and will for instance reward a model that captures the
temporal dynamics of the dependent variable but diverges
in amplitude (or in offset) from the desired values. A lin-
ear transformation of the output of such a model may form
a very good predictor. φ(ŷ, y) implicitly performs such a
transformation by standardizing the variables in question,
i.e., subtracting the average and dividing by standard devia-
tion. By this token, for any ŷ and y and any α, β ∈ R, α 6= 0
it holds φ(ŷ, y) = φ(αŷ+ β, y). fMAE , to the contrary, puts
an emphasis on the absolute differences between the actual
and predicted values, and may overlook such linearly-related
models.
Given a symbolic regression problem, GP can usually quickly

find a model that coarsely captures the dependencies be-
tween the variables. However, further progress may be dif-
ficult, because significant improvement may require funda-

mental overhaul of a model, which may be hard to achieve,
especially with a single application of a search operator.
This in turn may lead to premature convergence, symp-
tomized by a population becoming dominated by very simi-
lar or even identical models. To mitigate this problem, sev-
eral population diversification methods have been proposed
in the past. Here, we turn the original model synthesis pro-
cess from a single-objective into a multi-objective one. Tech-
nically, we evaluate each model with respect to fMAE and
fCOR, and treat these two measures as search objectives to
be used in parallel. To exploit the multi-aspect characteris-
tic captured in these objectives without naively aggregating
them into one scalar value, we employ the Non-domination
Sorting Genetic Algorithm (NSGA-II [4]), a state-of-the art
technique of multiobjective selection. To select the most
promising candidate solutions (here: models), NSGA-II builds
a Pareto-ranking of the combined current population and an
archive, and uses tournament selection on Pareto ranks to
select the parents solutions that give rise to the next gen-
eration of candidate solutions. Ties on Pareto ranks are
resolved using a sparsity measure, which promotes the solu-
tions that feature unique characteristics in terms of criteria.
See [4] for the detailed coverage of NSGA-II.

6. THE EVOLVED MODELS
In this section, we report the aggregated statistics on par-

ticular approaches. Following the arguments made in the
previous section, we designed four GP configurations:

1. GP-MAE: single-objective GP driven by fMAE ,

2. GP-COR: single-objective GP driven by fCOR,

3. GP-MAE+COR: two-objective GP driven by fMAE

and fCOR,

4. GP-MAE+COR+LR: two-objective GP driven by fMAE

and fCOR, with modified selection of the best-of-run
model.

Each GP variant works with a population of 5000 models
(individuals, candidate solutions) and lasts for 50 genera-
tions. When a GP run terminates, we select from its fi-
nal population the best-of-run model. For GP-MAE and
GP-MAE+COR it is the model with the smallest fMAE .
For GP-COR, it is the model with the smallest fCOR. GP-
MAE+COR+LR runs proceed exactly as GP-MAE+COR
and diverge from it only in the way the best-of-run model
is appointed. For each model in the Pareto front of the fi-
nal population, we perform linear regression of the output
of that model ŷ onto the output variable y for the training
data. Then we calculate fMAE of the resulting compound
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model, i.e., of αŷ+β, with α and β, also on the training set.
The model with the smallest fMAE calculated in this way is
the best-of-run individual.
For each configuration, 30 independent evolutionary runs

were performed. Table 2 presents the MAE of the best-of-
run models averaged over the runs, accompanied with 0.95-
confidence intervals. In the same table, we report also two
baselines: the performance of the conventional model (2)
and of multiple linear regression (LR).
The outcomes for particular datasets are substantially dif-

ferent, so in the following we discuss them separately. The
interesting feature of all SHEBA-trained models is that they
do not seem to overfit: the performance on the training and
test part is very similar. In terms of averages, the test error
is actually smaller than the training one for all methods.
As this relationship holds also for the conventional model,
which does not involve any training, we hypothesize that this
is more due to the particular random division of the SHEBA
dataset into the training and test part, rather than due to
the merits of particular methods (note that overfitting does
take place for the ISW dataset).
In terms of average error, LR fares the worst, indicating

that the underlying phenomenon cannot be captured us-
ing linear dependencies. The nonlinear conventional model
achieves a notably better performance. Nevertheless, the
models synthesized by all variants of GP improve upon this
result even further. As their upper confidence intervals are
far from the performance of the conventional model, we may
deem this difference statistically significant. The GP-COR
method seems to perform the best on this dataset, reduc-
ing the prediction error by almost 20 percent on average,
when compared to the conventional model. Nevertheless,
the proximity of its confidence intervals to those of the other
methods does not allow us find the differences between the
GP variants statistically significant.
All GP-based methods offer a remarkably low variance of

MAE. The leader in this respect is again GP-COR: its 0.083-
wide confidence interval is less than 3 percent of the average.
This suggest that GP can, despite inherent stochasticity,
serve as a robust technique for modeling heat flux.
The results for the Antarctic ISW dataset present a less

coherent picture. All models perform here much worse than
on SHEBA, which is in part due to much larger variance
of the observed heat flux for the ISW dataset (σH = 11.83,
compared to 8.68 for SHEBA). Another factor is the smaller
size of the ISW dataset (515 training observations vs. 3,004
for SHEBA). The conventional model commits the greatest
error overall (we discuss this surprising underperformance in
Section 7). LR fares better, but still worse than on SHEBA,
which suggests that the ISW dataset is inherently more dif-
ficult to model. Despite this, GP is still capable to make
better predictions.
For both datasets, using fCOR as a search driver is bene-

ficial when compared to GP-MAE. This is confirmed also in
terms of the overall-best models: the SHEBAmodel with the
lowest training MAE (of all 30 evolutionary runs) of 2.843
has been found by GP-COR; for ISW, the overall-best model
with fMAE= 4.914 evolved in GP-MAE+COR. The use of
linear regression in GP-MAE+COR+LR also reduces the
error in comparison to GP-MAE+COR, albeit only slightly.
The disparity of MAE between the SHEBA and ISW

datasets is also reflected in the sizes of the evolved models,
which we report in Table 3. The models evolved for ISW are
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Figure 1: Best SHEBA model vs. measurements.

systematically more complex than those evolved for SHEBA.
Apparently, in order to attain evolutionary advantage, the
consecutive generations of good models in ISW runs needed
to get more and more complex, and do so at a greater rate
than for SHEBA (the GP runs for both datasets start from
identical initial populations). This might have to some ex-
tent contributed to the overfitting on MAE (cf. Table 2).
More importantly however, the models evolved using the bi-
objective approach (GP-MAE+COR, GP-MAE+COR+LR)
tend to produce, for both datasets, smaller models than
those evolved by the single-objective GP-COR. The mod-
els in question are not smaller than those produced by GP-
MAE, but GP-MAE is the least attractive configuration in
terms of error. The GP-MAE+COR configuration offers a
compromise between accuracy and complexity.
The models may seem large in absolute terms, but can

be usually simplified. In Fig. 4, we present the simplified
version of the overall smallest model, which happened to be
evolved by GP-COR for the SHEBA dataset. The MAE of
this model on the training and test set amounts to, respec-
tively, 3.168 and 3.104.

7. COMPARISON WITH OBSERVATIONS
AND CONVENTIONAL MODEL

In this section, we take a closer look at the characteris-
tics of the evolved models and discuss them also from the
meteorological perspective.
We first consider the model with the lowest MAE on the

training set for the SHEBA dataset. This model comprises
188 nodes and commits MAE of 2.844 and 2.813 on the
training and test set, respectively. In Fig. 1, we confront
the observed heat flux (horizontal axis) with the predicted
one (vertical axis), for both the training and the test part of
this dataset. The plot reveals strong correlation of model’s
predictions with the observed data. The outliers are few and
far between, so the model may be considered robust.
In Fig. 2, we present an analogous graph for the smallest

SHEBA model, comprising 47 nodes and committing MAE
of 3.168 and 3.104 on the training and test set, respectively.
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Table 3: Complexity of the evolved best-of-run models, expressed as the number of nodes in expression trees, averaged over
30 evolutionary runs (with 0.95 confidence intervals).

SHEBA dataset (Arctic) ISW dataset (Antarctic)
GP-MAE 97.27 [81.52, 113.02] 103.03 [89.35, 116.72]
GP-COR 137.77 [121.8, 153.74] 183.47 [160.59, 206.34]
GP-MAE+COR 101.37 [86.75, 115.98] 140.27 [122.55, 157.99]
GP-MAE+COR+LR 107.07 [94.56, 119.57] 144.83 [129.56, 160.11]
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Figure 2: Smallest SHEBA model vs. measurements.

The datapoints are more dispersed than in Fig. 1, but overall
this model’s behavior is also predictable.
For reference, Fig. 3 shows the same type of graph of the

conventional model. Expectedly, the datapoints are even
more dispersed than in Fig. 2, which reflects the overall
worse MAE of this model.
A closer inspection of these graphs reveals an interest-

ing difference between the GP models and the conventional
model: the former tend to better at predicting negative flux,
while the latter does not seem to show a significant prefer-
ence in this respect.
Figures 6-8 present the analogous graphs for the ISW

dataset: the lowest-MAE model (Fig. 6, MAE of 4.914 on
training and of 5.840 on testing set), the smallest model
(Fig. 7, MAE of 5.477 on training and of 6.016 on testing
set), and the conventional model (Fig. 8). As expected, the
points are more dispersed due to larger overall MAE. In-
terestingly, the tendency of producing better predictions for
negative fluxes observed for SHEBA seems to occur here
as well for the evolved models. The conventional model
in Fig. 8 strongly underestimates the flux and occasionally
exhibits tendency for predicting zero flux (notice the promi-
nent horizontal agglomeration of observations). Both these
phenomena can be explained by the context in which the
ISW dataset was collected, which is however beyond the
scope of this paper.
We attempt now to interpret the causality revealed by

the smallest models evolved for both datasets. The smallest
model for the SHEBA dataset, shown in Fig. 4, comprises
36 nodes after simplification. The dominant effect of the
air-surface temperature difference (TempDiff ) seems to be
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Figure 3: Conventional model vs. measurements (SHEBA).

that surface warmer than the air favors an upward heat flux,
in accordance with the conventional model in (2). How-
ever, the temperature difference appears in several places
of the model, suggesting that the relationship between the
heat flux and temperature difference is fairly complex. Both
in (2) and this model, a strong wind (WindSpeed) favors a
large heat flux, which is relevant as the wind shear is the
primary source of turbulence in conditions when the surface
is not strongly heated (which is always the case over sea
ice). Net shortwave radiation (NetShort) tends to reduce
the heat flux. The direct causal effect should be opposite, as
net shortwave radiation heats the snow/ice surface favoring
a heat flux from snow/ice to air. However, in SHEBA clouds
warmed the snow/ice surface all the year except July and
August, and their effect in increasing downward longwave ra-
diation dominated over their effect in decreasing downward
shortwave radiation [13]. Hence, under clear skies, with a lot
of net shortwave radiation, the snow/ice surface was typi-
cally colder than under cloudy skies with less net shortwave
radiation. Finally, a large specific humidity (SpecHum) is
associated with a large heat flux. This is related to the
above-mentioned cloud effects, as cloudy skies are associ-
ated with a large specific humidity and a warm snow/ice
surface, favoring an upward heat flux.
The smallest model evolved for the ISW dataset is shown

in Fig. 5 and comprises 44 nodes (60 nodes before simplifica-
tion). In this model, the air-surface temperature difference
and wind speed are both major factors, as in the conven-
tional model in (2), but the complexity of their combined
effect may suggest that (2) is too simplistic (we note that the
temperature difference and wind speed also affect the static
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stability that affects CH in (2)). The role of net shortwave
radiation is opposite to that in SHEBA. This is probably
related to the fact that ISW drifted at lower latitudes, and
therefore the surface temperature under clear skies, with a
lot of solar radiation, is not necessarily lower than under
cloudy skies.
It is noteworthy that, contrary to the conventional model,

the discussed SHEBA and ISW models were not solely based
on the air-surface temperature difference and wind speed,
but also on the radiative fluxes, which might have helped
reducing their errors.

8. DISCUSSION AND CONCLUSIONS
In this study, we demonstrated the feasibility of using

GP to synthesize viable models of turbulent heat flux of
sensible heat from experimental data. Many evolved mod-
els we produced here outperformed the method applied in
the ECMWF operational weather forecasting model, which
is considered the world’s best numerical weather prediction
model (see e.g. the forecast score statistics calculated by the
World Meteorological Organization2). The best model com-
mits MAE of 2.813 on the test part of the SHEBA dataset,
i.e., 24 percent smaller than the error of the conventional
model. The best model evolved for the ISW dataset has
test-set MAE of 5.840, 51 percent smaller than the conven-
tional model.
When it comes to GP-related aspects of this study, we

brought substantial evidence that using an alternative ‘search
driver’ (here: fCOR) as a fitness function in place of the ob-
jective that is normally employed to assess the models in a
domain (fMAE) can have essential positive impact on the
outcome. This observation holds also for the multiobjective
evolutionary approaches, which, though not necessarily out-
perform the single-objective methods on error, may improve
the models with respect to other, ‘non-functional’ properties
like complexity.
There are several directions in which this research can

be taken further. This study abstracts from the temporal
nature of the heat flux phenomenon; as a consequence, the
models we evolved here are inherently incapable of capturing
the cumulative characteristics of the underlying physics. A
natural next step could be thus to extend the repertoire of
input variables (which now reflect the state of the system at
a given time instant) with extra variables that capture the
history of the process.
Employing a model evolved by GP in a numerical weather

prediction or climate model would open the door to many in-
teresting possibilities. A more accurate parameterization for
the surface heat flux should directly improve the accuracy
of the simulated surface heat budget (1), surface tempera-
ture, and near-surface air temperature. Further, it should
also indirectly improve the simulations of near-surface wind
speed, air humidity, occurrence of fog, melt of snow and ice,
and growth of sea and lake ice. These are essential issues
in both numerical weather prediction and climate research,
and particularly actual now when a dramatic loss of sea ice
and terrestrial snow is going on in the Arctic.
Acknowledgments. The work of KS and TV was sup-
ported by the Academy of Finland through the CACSI project
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2http://apps.ecmwf.int/wmolcdnv/scores/mean/850_t
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Figure 6: Best ISW model vs. measurements.
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Figure 5: The smallest best-of-run heat flux model evolved for the ISW dataset (originally composed of 60 nodes, manually
simplified to 44 nodes). This model attains MAE of 5.476 on the training set and 6.016 on the test set.
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