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ABSTRACT
Many robotic systems experience fluctuating dynamics dur-
ing their lifetime. Variations can be attributed in part to ma-
terial degradation and decay of mechanical hardware. One
approach to mitigating these problems is to utilize an adap-
tive controller. For example, in model-free adaptive control
(MFAC) a controller learns how to drive a system by con-
tinually updating link weights of an artificial neural network
(ANN). However, determining the optimal control parame-
ters for MFAC, including the structure of the underlying
ANN, is a challenging process. In this paper we investi-
gate how to enhance the online adaptability of MFAC-based
systems through computational evolution. We apply the
proposed methods to a simulated robotic fish propelled by
a flexible caudal fin. Results demonstrate that the robot
is able to effectively respond to changing fin characteristics
and varying control signals when using an evolved MFAC
controller. Notably, the system is able to adapt to character-
istics not encountered during evolution. The proposed tech-
nique is general and can be applied to improve the adapt-
ability of other cyber-physical systems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Control theory

Keywords
adaptive control; model-free control; robotic fish; flexible
materials; differential evolution

1. INTRODUCTION
Increasingly, robots are being deployed in complex and

uncertain environments, where reaction and physical agility
are essential to the completion of tasks. The adaptability
and robustness exhibited by natural organisms has led to
many bio-inspired approaches to robot design. For example,
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integration of soft and/or flexible materials into the mor-
phology of a robot can partially compensate for actuation
capabilities that are primitive relative to those of biological
organisms [10]. Examples include the “whipping” action of a
flexible fin on a robotic fish [3], shock absorption by flexible
joints on a legged robot [19], and thrust generation by flexi-
ble wings on a robotic flying insect [23]. However, integrat-
ing flexible materials into a robot poses numerous challenges
to controlling the system, since the flexibility of a structure
affects the resulting forces and torques experienced during
interactions with the environment [8]. Moreover, the proper-
ties of such components are likely to change over time due to
degradation of materials and changing environmental condi-
tions such as temperature. To produce effective locomotion,
on-board controllers must account for these uncertainties.

One promising approach is model-free adaptive control
(MFAC) [2, 20], intended for “gray box” situations where
only partial, and possibly inaccurate, information is known.
Like traditional adaptive control [6], this method attempts
to minimize the error between desired and actual outcomes.
However, instead of requiring a precise model of the sys-
tem, an MFAC controller learns how to control a device by
continually updating the link weights of an artificial neu-
ral network (ANN). Moreover, by saving recent error signals
and using them as additional inputs to the ANN, MFAC
controllers take advantage of state information, or so-called
neural network memory. Although this is a general purpose
control paradigm, the values of several parameters, as well as
the structure of the ANN, need to be specified a priori, po-
tentially limiting adaptability of the system. This raises the
following questions. Is it possible to optimize an MFAC con-
troller in order to enhance adaptability after deployment?
And how can this be done such that the controller can ac-
count for changes in the robot morphology?

In this study we investigate the coupling of evolutionary
computation with model-free adaptive control. Specifically,
the differential evolution (DE) algorithm [14] is used to find
good MFAC controller parameters that enable a robot to
adapt during its lifetime to changes such as mechanical wear
and material degradation. We apply this method to a sim-
ulated robotic fish that swims by means of a flexible caudal
fin; an example of a target robot is shown in Figure 1. Equip-
ping a robotic fish with a flexible caudal fin has been shown
to improve efficiency with respect to thrust and power [3,
12]. However, the increase in performance introduces dif-
ficulty in controlling the system, particularly in a complex
and highly nonlinear aquatic environment. Here, the ob-
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Figure 1: A prototype 3D-printed robotic fish with
a flexible caudal fin.

jective for DE is to find MFAC parameters that enable the
system to closely follow a desired reference signal (e.g., a de-
sired swimming speed) while adapting to physical changes
to the robotic fish caudal fin (e.g., changing fin flexibility).

The results of this initial study are promising. Compared
to an MFAC controller with typical parameters, evolved so-
lutions are better able to match desired reference speeds
while also adapting to changes in fin characteristics. In ad-
dition, we view the pairing of adaptive control with evolu-
tionary computation (EC) as mutually beneficial. First, EC
techniques aid in finding effective control parameters, and
second, the use of on-board adaptive control will help to ad-
dress the reality gap [7]. Specifically, an adaptive controller
should allow a robotic system to better handle disparities be-
tween simulation and reality, namely, unmodeled or poorly
modeled dynamics. In this work, evolutionary optimization
takes place in simulation during development in order to en-
hance the adaptability of the system after deployment. Our
ongoing work applies this method to physical robots.

2. BACKGROUND AND RELATED WORK

Robotic Fish.
As an emerging class of embedded computing systems,

robotic fish are anticipated to play an important role in en-
vironmental monitoring [15], inspection of underwater struc-
tures [5], and tracking of hazardous wastes and oil spills [22].
Similar to live fish, robotic fish accomplish swimming by de-
forming their bodies or fin-like appendages. This form of
locomotion offers certain key advantages relative to tradi-
tional propeller-driven underwater vehicles. First, robotic
fish are potentially more maneuverable, which is critical
when operating in cluttered underwater environments [15].
Second, since robotic fish produce very little noise and ex-
hibit wake signatures similar to live fish, they are less in-
trusive to aquatic ecosystems and offer stealth in security-
related applications. Finally, with fin/body motions operat-
ing at relatively low frequencies (typically a few Hz), these
systems are less likely to harm aquatic animals or become
jammed with foreign objects.

Autonomy and adaptation are particularly important in
aquatic environments, where human oversight is often lim-
ited, if not impossible. However, while studies of robotic fish
have produced many advances over the past two decades [18,
1, 9, 15], robotic fish still do not approach their biological
counterparts in terms of agility or robustness. Integrating
flexible materials as fins, or as entire bodies, is one approach
to improving the performance of robotic fish [16, 8]. For ex-

ample, Clark et al. [3] demonstrated how a genetic algorithm
can be utilized to optimize both morphological characteris-
tics and control patterns. However, an equally important
issue is how the system can adapt to changes that occur
after deployment.

Adaptive Control.
Adaptive control is a well-established field of study for

dealing with uncertainty in cyber-physical systems [6]. For
example, in model reference adaptive control (MRAC), a
reference model defines the desired response of the system
and control laws are designed such that the controlled sys-
tem is forced to behave as this reference model. However,
reliance on a model of the target system makes it difficult
to accommodate unexpected conditions for which the un-
derlying reference model does not apply. In addition, the
complexity associated with many physical systems, such as
robots with flexible components, often renders the design of
a model-based controller intractable or inconvenient.

Hou and Huang [4] first proposed the idea of model-free
adaptive control (MFAC), based on the concept of a pseudo-
partial-derivative and reliance on only system inputs and
outputs. The MFAC approach we use in this study, proposed
by Cheng [2], combines a traditional proportional controller
with an adaptive ANN, as shown in Figure 2. As an input,
the ANN receives a continuous error signal e, calculated as
the difference between a desired reference input and the ac-
tual state of the robot (see Figure 3). The error signal is
discretized at a sampling rate Ts, and then normalized be-
tween -1 and 1 using an error bound eb. This normalized,
discretized error signal, denoted E, is passed to the first
input neuron, I1, and then propagated to each subsequent
input neuron at successive discrete sampling times. This
process is repeated such that the N input neurons store the
N most recent error signals E. By storing these values and
using them as inputs to the ANN, MFAC controllers take ad-
vantage of state information. Additionally, at each sampling
time, the input neuron values (E1..EN ) are fed forward to
the ANN hidden neurons (H1..HN ) which in turn feed their
values to the output neuron (V ). The final output of the
controller, u, is the sum of the value from a single output
neuron and the current error signal, amplified by the con-
troller gain Kc. Adding the current error signal to the net-
work output improves the responsiveness of the controller.
Specifically, any change in error will results in an immedi-
ate change in the controller’s output. Hidden and output
neurons are activated with a sigmoidal activation function.

The weights of links connecting the input layer to the
hidden layer (wij) and from the hidden layer to the out-
put neuron (hj) are updated at each sample time. Learning
rules were derived by minimizing the error signal [2]; specif-
ically, the partial derivative of an objective function, based
on the error signal, is taken with respect to the link weights.
Formally, these rules are described by Equations 1 and 2:

∆wij(n) = ηKce(n)qj(n)(1 − qj(n))Ei(n)

N∑
k=1

hk(n), (1)

∆hj(n) = ηKce(n)qj(n), (2)

where (n) denotes the sample time and qj refers the out-
put of the jth hidden neuron. The number of recent error
signals, N , as well as the rate at which link weights are up-
dated (called the adaptive learning rate, η), are configurable.
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Figure 2: A graphical representation of the MFAC
ANN. A continuous time error signal e is first nor-
malized (Nrm block) and then propagated through
the input neurons Ii. The ANN is then activated as
a feed-forward network to produce an output v. The
final controller output u is an amplified summation
of v and e.

The magnitude of an MFAC controller output is adjustable
through the controller gain value Kc.

Determining the optimal values of the MFAC parame-
ters is challenging and depends on the application domain.
In this study, we address this challenge with evolutionary
computation. Specifically, we use the differential evolution
(DE) algorithm [14] to optimize MFAC parameters (Ts, eb,
N , Kc, and η); the MFAC controllers govern a (simulated)
robotic fish, which can have varying fin characteristics (i.e.,
fin length and fin flexibility). It is the job of an MFAC
controller to adapt to these variations, which are meant to
mimic changes in the caudal fin material that occur after
deployment, in order to realize effective locomotion.

Before continuing, it is perhaps useful to distinguish the
adaptive control process discussed in this paper from other
forms of adaptive control. Specifically, a well-known method
for realizing adaptability in autonomous robots is to intro-
duce synaptic plasticity in ANNs. So-called plastic ANNs
are able to strengthen or weaken their synapses by follow-
ing a set of learning rules [17]. However, the objective for
plastic ANNs is fundamentally different from that of the
adaptive controllers employed in this paper. Specifically,
plastic ANNs are meant to learn a new behavior, whereas
the adaptive controller is regulating a desired control signal.
For example, a plastic ANN may be used to dynamically
change a swimming gait while an MFAC controller would
be used to maintain a specific swimming speed.

3. METHODOLOGY
MFAC for Robotic Fish.

Figure 3 shows a block diagram of the MFAC controller
with the robotic fish. The input to the entire system is a
reference signal r, which can be any physical signal relating
to the robotic fish. For this study, r refers to a desired speed,
and the output of the robotic fish y is the actual (measured)
speed. For physical experiments, speed can be measured
by filtering and integrating accelerometer data. Generally,
reference signals are generated by a higher-level module.

The controller’s objective is to produce a control signal u
such that y closely tracks r. That is, an effective controller

MotorNCO Caudal FinMFAC
e u yr

+_

Robotic Fish

Figure 3: A block diagram of the MFAC controller
and the robotic fish. Signals r and y denote the
reference and measured speeds, respectively, e is the
difference between reference and measured speeds,
and u is the controller output.

will force the robotic fish to closely match the desired speed,
and have little error e between y and r. For the robotic
fish, u is a frequency of oscillation for the caudal fin motor,
and a numerically controlled oscillator (NCO) generates a
sinusoidal pattern at the given frequency. For this study, we
have fixed the sinusoid’s amplitude to 20◦.

The motivating problem for this study is how to specify
the MFAC parameters in such a way that they allow the con-
troller to adapt to variations in caudal fin behavior. As a
robotic fish’s caudal fin undergoes regular wear and degrada-
tion it will begin to respond differently to motor commands,
particularly if the fin is fabricated from flexible materials.
Consequently, a static, non-adaptive feedback controller will
begin to detune, leading to deteriorated performance. Addi-
tionally, an MFAC controller should be better able to handle
noisy accelerometer data, although we do not consider noisy
measurements in our simulations.

MFAC parameters are typically set based on expert knowl-
edge. For example, the robotic fish that this study is based
on has a maximum tail frequency of roughly 3.5 Hz. Cheng
et al. [2] recommend for the sampling rate to be less than
one-third of the period of the controlled system, or roughly
0.1 seconds for the robotic fish. The error bound used for
normalization eb can be set to near the maximum speed at
which the robotic fish is expected to travel (i.e., 15 cm/s
for the modeled robotic fish). A good starting point for the
number of input and hidden neurons N is 3, as the ANN
can interpret inputs as the current error and its first and
second derivatives. This setup would roughly correspond to
a PID algorithm, a widely used general-purpose feedback
controller. Typical initial values for the gain Kc and the
learning rate η are 1.0 and 0.8, respectively. In Section 4,
we compare the performance of an MFAC controller imple-
mented with these values to that of one with evolved values.

Simulation dynamics.
Simulation of the robotic fish is conducted in Simulink [13],

enabling a straightforward translation of dynamic equations
(described below) into simulation. A critical aspect of the
simulation is modeling of the flexible caudal fin dynamics.
The model used in this study, developed by Wang et al. [21],
has proven to be both accurate and computationally effi-
cient. Figure 4 depicts the modeled hydrodynamics. Wang’s
model assumes that all motions are constrained to a two-
dimensional plane. Flexibility in the caudal fin is modeled as
multiple rigid segments connected by springs and dampers.
The spring constant between two consecutive segments de-
termines how stiff or flexible the caudal fin behaves. The
force acting on each fin segment fi can be calculated inde-
pendently, and the resulting thrust force FT is simply a sum-
mation of all segment forces, including an additional force
that acts at the tip of the final segment fL.
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Figure 4: Graphical representation of the simulated
hydrodynamics. Linear velocity v and angular veloc-
ity w are the result of thrust force FT , drag force FD,
lift force FL, and drag moment MD. FT is calculated
as the sum of all forces acting on the fin segments.

The robotic fish prototype upon which this simulation is
based (similar to that in Figure 1) is approximately 20 cm in
length, including a 7.6 cm long tail fin of moderate flexibility
made from a 3D-printed ABS plastic.

Differential evolution.
To enhance the adaptability of MFAC controllers we apply

differential evolution (DE), a global optimization algorithm
developed by Storn et al. [14]. DE was chosen because
studies have shown that it will converge faster than real-
valued genetic algorithms for problems similar to ours [11].

DE progresses in a fashion similar to other evolutionary
algorithms. First, a population is randomly initialized. For
this study, the population size is set to 50, which is the
recommended value for a DE experiment with 5 evolving
parameters (Ts, eb, N , Kc, and η). Next, each individual
is evaluated with a problem-specific fitness function. In this
study, we employ two different fitness schemes. In the first,
individuals are simulated for only one set of conditions, and
fitness is assigned as the mean absolute error (MAE) (i.e.,
the average error between r and y). In the second, each
individual is simulated under a variety of different conditions
(varying caudal fin characteristics). Fitness is then assigned
as the sum of the MAE for each set of conditions. Once
each individual has been assigned fitness, the DE algorithm
produces a new generation of individuals.

Mutation and crossover operators are where DE differs
from conventional real-valued genetic algorithms. DE fo-
cuses on creating new individuals near the best member of
the parent population. Each child is initialized as a linear
combination of the best and at least two other randomly
selected parents. During this recombination, the relative
weight of the best parent to the random parents is referred
to as the mutation factor and is configurable (0.8 in this
study). The child is then crossed with the base parent (each
parent is taken as the base in turn) using a configurable
crossover rate (0.7 in this study). DE algorithm specifics,
as well as a comparison with other evolutionary optimiza-
tion algorithms, can be found in [11]. Using Storn’s DE
notation, the algorithm utilized for this study is denoted
as DE/best/2/bin, where best signifies that all children are
created around the previous generations best individual, 2

denotes that mutation is based on two individuals, and bin
refers to a binary crossover operation.

MFAC parameters are allowed to evolve only within a cer-
tain range. The range for each parameter is listed in Table 1.
These ranges are based on the typical MFAC parameters dis-
cussed earlier.

Parameter Minimum Maximum Typical
Ts (s) 0.0 0.17 0.1
eb (cm/s) 5.0 50.0 15.0
N 1 8 3
Kc 0.1 4.0 1.0
η 0.1 4.0 0.8

Table 1: Evolutionary range of MFAC parameters,
as well as the typical values.

4. SINGLE-EVALUATION RESULTS
In this set of evolutionary experiments we evolve MFAC

parameters under a single set of conditions. However, we
first conduct a simulation of the robotic fish incorporating
typical MFAC parameters (as listed in Table 1). Figure 5
shows results from this simulation. The task for the MFAC
controller is to track a reference speed r (the orange, dashed
line in Figure 5), which varies over time according to a prede-
fined pattern. This reference speed, utilized during evolution
and most test cases, is designed to contain periods requiring
acceleration, deceleration, and sustaining a constant speed.
Despite choosing parameters based on expert knowledge, the
controller struggles to track (i.e., closely match) the refer-
ence speed. Ideally, in Figure 5 (and all similar figures) the
solid blue line (y) would match the dashed orange line (r),
and the error line (e) would remain at zero.
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Figure 5: Results for an MFAC controller with
typical parameters controlling a robotic fish. The
dashed orange line denotes the reference speed r,
the actual speed y of the robotic fish is the blue
line, and the error e between these signals is red.

After the initial simulation using typical parameters, we
conducted 20 replicate differential evolution (DE) experi-
ments. Replicates are seeded with a unique number, and
DE algorithm parameters are configured as described in Sec-
tion 3. Each set of MFAC parameters (i.e., individual solu-
tions) is evaluated under identical circumstances: it is sim-
ulated for 60 seconds with the same reference speed signal,
and fitness is measured as the mean absolute error (MAE).
All replicate experiments converge to similar fitness values
within 150 generations.
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As shown in Figure 6, solutions from the single-evaluation
experiments perform the evolutionary task well (i.e., track-
ing the reference speed encountered during evolution for 60
seconds). However, even a slight change to this task, such
as doubling the simulation to 120 seconds, causes a large
change in performance. This behavior can be seen during
the final 60 seconds of Figure 6, where simply repeating the
reference signal results in poorer tracking and increased er-
ror. This experiment demonstrates that evolved solutions
are incapable of adapting to new conditions while maintain-
ing the same level of performance. More specifically, the
evolved parameters appear to be overfit. The best solutions
only work for the conditions encountered during evolution.
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Figure 6: Results for the overall best (across
all replicate experiments) single-evaluation solution
simulated with default fin characteristics and the
same reference signal utilized during evolution. The
controller shows poor performance starting at the
80 second mark, and similar results were found in
all replicate experiments.

5. MULTI-EVALUATION RESULTS
Given the results from Section 4, we conducted a second

set of experiments in which fitness of each individual is based
on its performance under multiple different conditions. The
settings for these simulations, referred to as the 9-evaluation
experiments, are listed in Table 2. In the table, sim1 corre-
sponds to the conditions used in the previous experiments.
For each simulation, fin flexibility is set to: 100%, increased
to 200%, or decreased to 50% of the default value. Likewise,
the caudal fin length is set to: 100%, lengthened to 110%,
or contracted to 90% of the default value.

Name Flexibility Length
sim1 100% 100%
sim2 200% 100%
sim3 50% 100%
sim4 100% 110%
sim5 200% 110%
sim6 50% 110%
sim7 100% 90%
sim8 200% 90%
sim9 50% 90%

Table 2: Fin characteristics for the 9-evaluations ex-
periment.

Evaluating individuals under a variety of conditions is in-
tended to eliminate the tendency of evolving overfit solu-
tions. Experiencing multiple conditions also simulates how

fins may change once deployed. For example, fin dynamics
can change if the fin is damaged (e.g., cut) or encumbered by
environmental entities (e.g., seaweed). Fitness is calculated
as the summation of the MAE from each of the 9 60-second
simulations. Evolving with this fitness function is meant
to add an implicit objective to the fitness function: better
solutions must be more adaptable.

Figure 7 shows the best solution from 20 replicates of the
9-evaluation experiments. Here, the controller continues to
closely track the reference for 120 seconds, even though evo-
lutionary evaluations are only 60 seconds in length. Figure 8
shows that tracking is accomplished by adjusting the fin’s os-
cillating frequency in a pattern roughly matching that of the
reference signal. Although this test indicates improvement
over the single-evaluation experiment, it does not address
the issue of adapting to different conditions.
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Figure 7: The overall best 9-evaluation solution eval-
uated on sim1. The MFAC controller is able to drive
the robotic fish at the desired reference speed (r).
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Figure 8: Control signal u and the resulting motor
angle for the overall best 9-evaluation solution eval-
uated on sim1. The control signal trajectory roughly
follows the reference signal.

Figure 9 depicts performance of the same solution when
confronted with conditions that were not encountered during
evolution. As shown, the controller is able to adapt to the
novel fin lengths. This evolved MFAC controller should al-
low a robotic fish to maintain a certain level of performance
even if the fin length changes during operation.

The fin can, however, reach lengths that cause the con-
troller to lose its tracking ability. While fixing fin flexibility
and the reference signal, we performed a sweep over a wide
range of different fin lengths and found that the controller
can maintain performance while caudal fin length is within
a range of 60% to 137% of the default value. Effectively the
caudal fin can be cut from 7.6 to 4.5 cm (or lengthened to
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Figure 9: The overall best 9-evaluation solution
tested against fin lengths that were not encountered
during any of the evolutionary simulations. In (a)
fin length is shortened to 80% of the default length,
and in (b) fin length is lengthened to 120% of the
default length. In both cases, the evolved controller
is able to adapt to a novel fin length.

10.4 cm) without the controller losing its ability to drive the
robotic fish at a desired speed. Values outside of this range
cause a noticeable increase in the error signal.

Figure 10 shows that evolved controllers are also able to
adapt to changes in fin flexibility. Similar to the fin length
parameter sweep, we found upper and lower limits for fin
flexibility changes. While keeping all other factors constant,
the evolved MFAC controllers can maintain performance as
long as flexibility remains within a range from 90% to 160%
of the default value.

In addition to changes in fin characteristics, evolved con-
trollers have the ability to adapt to different reference sig-
nals. Figure 11 demonstrates that an evolved controller is
capable of tracking a novel pattern for the reference speed,
in this case alternating periods of fast acceleration and de-
celeration. Additional test results (not shown) demonstrate
that limits on the reference signal depend only on the lim-
its of the robotic fish. Specifically, the adaptive controller
will remain effective as long as the reference signal does not
require speeds, accelerations, or decelerations that are im-
possible for the robotic fish. For example, if the reference
signal changes too quickly, the robotic fish may not be phys-
ically capable of accelerating fast enough.

Figure 12 shows how the evolved controller handles si-
multaneous changes to both fin length and fin flexibility.
For this test, fin length is set to values outside of the range
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Figure 10: The overall best 9-evaluation solution
evaluated with a fin that is 150% of the default fin
flexibility. Evolved controllers were able to adapt to
this novel value for flexibility.
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Figure 11: The overall best 9-evaluation solution
simulated with default fin characteristics and a ref-
erence signal not encountered during evolution.

encountered during all evolutionary simulations. For the
test in 12(b), increasing the fin’s length actually allows the
evolved controller to adapt to a flexibility (80%) that would
otherwise cause performance degradation. Specifically, a
flexibility of 80% (of the default value) is beyond the lower
limit found when flexibility was altered in isolation (i.e., the
range of 90% to 160% mentioned previously). This is indica-
tive of the complex interactions among material properties
(e.g., flexibility and dimensions). Such interactions cause
difficulties when designing a simple feedback controller, such
as a PID controller, or a model-based controller that must
account for all of the necessary dynamics. An evolved adap-
tive controller can automatically handle these complex in-
teractions.

To further increase adaptability of an evolved MFAC con-
troller (i.e., increase the range of fin characteristic varia-
tion while maintaining the same performance levels), the
9-evaluations experiments were repeated with larger varia-
tions from the default values. For instance, in sim5 (refer to
Table 2) the flexibility is set to 1000% of the default value,
and length is increased to 200% of the default value. Like-
wise, in sim9 flexibility is set to 10% of the default value,
while length is decreased to 67% of the default value.

Although the evolved controller is generally still able to
track r, the best solutions from all replicates performed
worse, on all test cases, than previous solutions. Figure 13
shows an individual from the altered experiments.
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Figure 12: The overall best 9-evaluation solution
tested against fin lengths and fin flexibilities that
were not encountered during evolutionary simula-
tions. In (a) fin length is shortened to 80% of the de-
fault length and the flexibility is increased to 120%
of the default, and in (b) fin length is lengthened
to 120% of the default length and fin flexibility is
reduced to 80% of the default value.
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Figure 13: Performance of the best evolved solution
from the altered 9-evaluations experiments tested
with a fin length 120% of the default.

The primary reason for the MFAC’s inability to adapt to
large variations lies in how the dynamics change. Certain fin
characteristics or combinations of characteristics cause the
physical system to behave fundamentally differently. The
basic MFAC presented in this study relies on the robotic
system to be direct-acting. That is, as the MFAC controller
output increases, the output from the controlled device must
monotonically increase. Figure 14 depicts how changes to fin
characteristics can alter the robotic fish’s response to com-

mands from the controller. Essentially, if fin characteristics
vary beyond a certain threshold, the robotic fish may no
longer behave as a direct-acting robotic system. This is-
sue is most clearly demonstrated by the green, dotted curve
(200%), which changes from direct to reverse-acting near 1.5
Hz, and then back to direct-acting near 3.5 Hz. A similar
effect can be seen, to a lesser extent, for each of the curves.
Even an optimized MFAC controller will be unable to cope
with these highly varied dynamics.

Figure 14: Speed vs. oscillating frequency for sev-
eral different fin characteristics. For certain con-
ditions increasing the frequency results in slower
speeds.

6. CONCLUSION
In this study, we explored the integration of evolutionary

computation and adaptive control. Specifically, we applied
differential evolution to optimize the parameters of a model-
free adaptive controller. The goal of evolution is to find a set
of parameters that enable an MFAC controller to adapt to
changes in fin characteristics (i.e., length and flexibility) and
changes to the reference signal (e.g., faster/slower acceler-
ations). Additionally, evolved MFAC controllers should be
able to handle changes to the reference signal (i.e., different
desired reference speeds).

Results show that evolving MFAC parameters against a
single set of fin characteristics can produce a controller ca-
pable of achieving good fitness (i.e., specifically, low mean
absolute error). However, these solutions do not produce
a controller capable of adapting to changing fin character-
istics. Next, the fitness function was modified to include
a variety of different fin characteristics. The newly evolved
controllers were tested under several different conditions, in-
cluding scenarios in which the fin characteristics were out-
side the range experienced during evolution. This method
succeeded in generating more adaptable controllers. Specifi-
cally, the best MFAC controllers were able to maintain close
tracking as long as fin length remained within 60% to 137%
of the default and fin flexibility remained within 90% to
160% of the default.

To explore the limits of this approach, the fitness func-
tion was again modified to include a larger variety of dif-
ferent characteristics. However, these experiments resulted
in poorer performing controllers. Drastically varying the fin
characteristics essentially creates a fundamentally different
set of governing dynamics. Evolved controllers require the
system to be either direct- or reverse-acting, which is not
always the case when, for example, the fin is made to be
too flexible; in such cases, increasing the control frequency
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results in slower speeds rather than faster. Even the most
fit individuals were incapable of successful adaptation when
subjected to such conditions.

We note that the MFAC controllers presented in this study
are designed to handle a single-input, single-output (SISO)
system. However, more complex MFAC controllers have
been designed to accommodate multiple inputs and mul-
tiple outputs. In the future, we plan to extend the ap-
proach presented in this study to include tracking a desired
reference heading while simultaneously tracking a reference
speed. Doing so will produce controllers capable of more
complex behaviors that incorporate both turning and for-
ward locomotion. Adaptive techniques may also improve an
evolved solution’s ability to cross the reality gap, as all un-
modeled and poorly modeled dynamics will be treated as
variations and accounted for during adaptation. Although
this study demonstrates adaptation in the aquatic domain,
the proposed technique can be applied to similarly control
the speeds of terrestrial robots, and more broadly to other
cyber-phsyical system.
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