
Metabolic Design And Engineering Through Ant Colony
Optimization

Stephen Lincoln

Department of Chemical and
Biomolecular Engineering,

University of Connecticut, Storrs,
CT, USA

191 Auditorium Road
Storrs, CT 06226 USA

stephen.lincoln@uconn.edu

Ian Rogers

Department of Chemical and
Biomolecular Engineering,

University of Connecticut, Storrs,
CT, USA

191 Auditorium Road
Storrs, CT 06226 USA

ian.rogers@uconn.edu

Ranjan Srivastava

Department of Chemical and
Biomolecular Engineering,
University of Connecticut,

Storrs, CT, USA
191 Auditorium Road
Storrs, CT 06226 USA

srivasta@engr.uconn.edu

ABSTRACT
Due to the vast search space of all possible combinations of
reaction knockouts in Escherichia coli, determining the best
combination of knockouts for over-production of a metabolite of
interest is a computationally expensive task. Ant colony
optimization (ACO) applied to genome-scale metabolic models
via flux balance analysis (FBA) provides a means by which such a
solution space may feasibly be explored. In previous work, the
Minimization of Metabolic Adjustment (MoMA) objective
function for FBA was used in conjunction with ACO to identify
the best gene knockouts for succinic acid production. In this
work, algorithmic and biological constraints are introduced to
further reduce the solution space. We introduce Stochastic
Exploration Edge Reduction Ant Colony Optimization, or
STEER-ACO. Algorithmically, ACO is modified to refine its
search space over time allowing for greater initial coverage of the
solution space while ultimately honing on a high quality solution.
Biologically, a heuristic is introduced allowing the maximum
number of knockouts to be no greater than five. Beyond this
number, cellular viability becomes suspect. Results using this
approach versus previous methods are reported.

Categories and Subject Descriptors
J.3 [Life and Medical Science]: Biology and genetics

General Terms: Algorithms.

Keywords: Metabolic modeling, computational biology,
metabolic engineering, ant colony optimization, genome-scale,
flux balance analysis, systems biology

1. INTRODUCTION
 The production of molecules and biomaterials from
microorganisms is a well-established practice in industrial
settings, as well as bench scale experiments. For example, active
pharmaceutical ingredients (APIs) that are too complex or too
costly to be produced via classic organic chemistry reactions can
be synthesized via metabolically engineered microorganisms due
to the high value of the API of interest and low cost and low
quantity of reactants needed by the engineered microorganism
[10]. Another example is the production of hydrogen with
Escherichia coli. Recent studies have been conducted for utilizing
the cheap and abundant substrate glycerol to produce biofuel, or
hydrogen gas. The production of H2 via E. coli is of growing
interest because H2 can be used directly as a reactant in fuel cells
and does not contribute to greenhouse gas emissions. H2 also
reduces the need for fossil fuel sources and can be created by E.
coli via waste generated from agriculture and industry. However,
gene insertions and deletions must be made into the wild-type E.
coli in order to maximize the production of H2 to feasible levels
[24].
 Determining the best gene knockouts and insertions to produce
a molecule or biomaterial of interest in E. coli is a
computationally and theoretically difficult task. Genome-scale
metabolic models have become a powerful computational tool for
simulating an organism’s metabolism under a given set of genetic
and environmental constraints. The term “genome-scale” simply
refers to how the metabolic network is constructed. The genome
annotation of an organism is used to identify genes that catalyze
metabolic reactions. If such a gene is present, the metabolic
reaction it catalyzes is inferred to be present. In this way, it is
possible to create a genome-scale metabolic model [4; 9; 14; 15].
 Attempts have been made to predict and analyze gene and
reaction knockouts in metabolic networks using genome-scale
metabolic modeling [16]. As an example, the genome-scale
metabolic model of E. coli, iJR904, has 1075 reactions, 761
metabolites, and 904 genes, and models are constantly being

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
GECCO '15, July 11 - 15, 2015, Madrid, Spain
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3472-3/15/07…$15.00
DOI: http://dx.doi.org/10.1145/2739480.2754817

225

updated as new genes, kinetic information, and thermodynamic
information is discovered [17; 18]. If the number of reactions
knocked out is limited to three in iJR904, there are on the order of
109 different combinations of reactions to knock out. Increasing
the maximum number of knockouts to five increases the number
of possible combination to 1015, and six to the order of 1018. It is
apparent that computational time and power become a concern as
the number of knockouts is increased.
 There are a number of in silico simulation programs to identify
the best knockouts. For example, OptKnock [5] has been used to
identify triplets of knockouts for overproduction of 1-butanol, 1-
propanol, and 1,3-propanediol in E. coli in previous work [12].
However, this method is computationally expensive. For more
five or more knockouts at a time, computations may take several
hours to days on standard computing hardware.
 Most approaches to modeling metabolism at the genome-scale
use flux balance analysis (FBA) to analyze resulting fluxes based
on the knockouts [3; 11; 13; 19]. The term “fluxes” refers to the
throughput or “flux” of a metabolite through a given reaction
pathway. Due to the number of equations and variables in an
FBA model, the system is underdetermined. To calculate flux
values, optimization theory is used where an objective function
regarding how the cell will grow is postulated. The most
commonly used objective function is maximization of growth
rate. The premise for this objective function is that the cells that
grow the fastest would be the most competitive. Thus those cells
would be selected by evolution to be the dominant strain.
However, when carrying out genetic engineering, the network that
nature evolved is disrupted, casting doubt on the use of such an
objective for genetically engineered organisms. To overcome this
issue, another objective function has been proposed which states
that the genetically engineered cell will attempt to distribute its
metabolic resources in a manner similar to the wild type because
that is how it evolved. This idea is referred to as “minimization of
metabolic adjustment” or MoMA [20]. The MoMA concept may
be formulated as a quadratic programming problem, which then
may be solved to return reasonable flux distributions and identify
more realistic best knockout sets. However, while MoMA can
predict how metabolic resources will be distributed in genetically
engineered organisms, it does not predict what genes should be
knocked out to optimize production of a metabolite.
 In this work, we propose a new method to identify the best sets
of gene knockouts for metabolite production. Specifically we
combine MoMA with ant colony optimization (ACO). We refer
to this method as Stochastic Exploration Edge Reduction Ant
Colony Optimization (STEER-ACO). A similar ACO/MoMA
approach has recently been attempted [6]. However, the STEER-
ACO algorithm improves on the previous work in several ways.
The newly developed algorithm refines the search space over time
to converge better solutions, as well as avoiding large reductions
in the growth rate of E. coli by using the growth rate as a heuristic
factor. It avoids a pre-processing step reduced the metabolic
network that was used in the older algorithm, which had the
potential to generate false positives and false negative knockouts.
In addition, we have ported MoMA to Python and implemented
our algorithm in Python while utilizing a Redis database system
setting the stage for parallelization of the algorithm in the future.
It is anticipated that this will further reduce the computational
time required.

 To evaluate the STEER-ACO algorithm, succinic acid
production from genetically engineered E. coli was used as a case
study. Succinic acid was chosen for two primary reasons. First,
succinic acid is an important compound in industrial processes,
ranging from food and pharmaceutical products, surfactants and
detergents, green solvents and biodegradable plastics, and
ingredients to stimulate animal and plant growth [25]. In addition,
numerous studies on maximization of succinic acid production in
E. coli have been performed, providing a large body of
experimental data to compare with.

2. METHODS
2.1 Minimization of Metabolic Adjustment
(MoMA)
 MoMA is a constraint based programming method FBA which
was first introduced by Daniel Segre, Dennis Vitkup, and George
M. Church in 2002 [20]. One of the core principles of FBA is that
the metabolic network of an organism of interest, such as E. coli,
is assumed to be at steady state, which is strictly true for cells
growing in chemostats and approximately true for cells growing
in exponential phase [14; 23]. Under such conditions, the mass
balance for each metabolite in the metabolic network of reactions
must be zero. This can be denoted by the equation

𝑺 ∙ 𝒗 = 𝟎 (1)

Where S is the stoichiometric coefficient matrix of size m x n
where m is the number of metabolites, and n is the number of
reactions in the network. v is the vector of fluxes in the network.
The system is also bound to a set of constraints for the amount of
nutrients available to the system, as well as the theoretical
minimum and maximum fluxes supported by the system, such that

𝒂𝒊 ≤ 𝒗𝒊 ≤ 𝒃𝒊 (2)

 Linear programming (LP) is used to determine each flux for the
wild-type microorganism using the system described above. After
the system is solved with the objective of maximizing biomass
growth, MoMA is used in order to determine the new fluxes in the
system once a reaction, or set of reactions is knocked out. This is
simulated in MoMA by setting the lower and upper bounds for the
knocked out flux to zero. MoMA then uses quadratic
programming (QP) to determine the network’s new fluxes, under
the assumption that the mutant flux distribution will be as close to
the wild-type’s flux distribution as possible. In other words, the
goal is to determine a flux vector, x in which the Euclidian
distance is as close as possible to the wild-type flux vector w:

𝑫 = 𝒘𝒊 − 𝒙𝒊 𝟐 𝑵
𝒊!𝟏 (3)

D is the distance between the wild-type flux (w) and mutant flux x
and N is the number of optimal points.

 Since MoMA uses QP in order to solve the system, the goal is
to minimize the standard QP problem

226

𝒇 𝒙 = 𝑳 ∙ 𝒙 + 𝟏
𝟐
𝒙𝑻𝑸𝒙 (4)

Such that the vector L is of length N and the matrix Q is of size
NxN. Q is used to define the linear and quadratic objective
function, and xT represents the transpose of x. Since minimizing
D in Equation (3) is the same as minimizing its square and
constants can be omitted from the objective function, Q can be set
to an N x N unit matrix and L can be set to –w, where w = vwt.

2.2 Ant Colony Optimization (ACO)
 Ant Colony Optimization is a subset of swarm intelligence that
is based on the behavior of ant colonies foraging for food. Ants
communicate indirectly by depositing pheromone trails that decay
over time in their environment while foraging. Although ants
randomly choose a path to take, there is a greater probability to
take a path that contains a large amount of pheromones. This
allows ants to converge towards the shortest path to food in an
autocatalytic reinforcement process [22]. The metaheuristic that
governs ACO is as follows:

Set parameters, initialize pheromone trails
While termination condition not met do
 Construct solutions
 Apply local search (optional)
 Update Pheromones
End

 The choice of solutions is guided stochastically with bias from
the pheromone trails. The optional local search is performed to
improve upon known solutions by locally searching the solution
space, and is usually included in most ACO algorithms in order to
improve upon known good solutions [7].

2.3 Stochastic Exploration Edge Reduction
Ant Colony Optimization (STEER-ACO)
 Although previous work has applied ACO/MoMA hybrid
techniques [6] to determining the best sets of reaction knock outs
in E. coli for succinic acid production, the approach used a
completely stochastic search for knockout combinations based off
of known viable reaction knock out candidates. In addition, the
growth rate of mutant E. coli was not taken into account as a
factor in engineering the final organism. The STEER-ACO
algorithm is proposed as improvement to the previous approach
based on both algorithmic and biological strategies. STEER-ACO
consists of three stages

1. Initialization
a. Bias generation

2. Solution Generation/Deletion
a. Determine solution/path
b. Update pheromone trails
c. Forget bad solutions

3. Solution Examination

2.3.1 Initialization
 During the initialization phase, the growth rate and flux of
interest is determined and returned using LP FBA. Then each

reaction is knocked out one at a time and the growth rate and flux
of interest is determined using MoMA. If the growth rate is 0, the
knockout is deemed lethal and removed from the selection of
reactions that may be knocked out during solution generation.
Otherwise, the value of the flux of interest is stored for that
particular knockout in order to calculate the bias term that allows
the algorithm to converge onto a better solution over time. Each
viable knockout is stored as a key in a Redis database with the
values of the current pheromone trail value, flux of interest from
MoMA, growth rate returned from MoMA, and probability
associated with choosing the solution. The value returned from
MoMA is stored so that if an ant picks a known solution, MoMA
would not have to be run again simply to return the QP value; it
could just be grabbed from the database to speed up the algorithm.
Besides being open source and easy to use, Redis was chosen for
solution storage for two primary reasons:

1. Storing solutions with Redis is fast due to its in-memory
storage

2. Redis allows for easy parallelization of STEER-ACO

The pheromone trail value is generated using the equation

𝑷𝒉𝒆𝒓𝒐𝒎𝒐𝒏𝒆 𝒂𝒎𝒐𝒖𝒏𝒕 = 𝝉𝜶𝜼𝜷 (5)

Where τ represents the flux of interest value such that

𝝉𝒊 =
𝒗𝒎𝒖𝒕
𝒗𝒘𝒕

 𝒊𝒇 𝒗𝒘𝒕 ≠ 𝟎

𝒗𝒎𝒖𝒕 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (6)

which is done to normalize the value returned from MoMA. The
value for η was the growth rate for the knockout, and α and β are
constants to influence the strength of each term. The growth rate
was used for η to allow a higher probability of choosing solutions
that have both a good growth rate and good flux of interest, which
is one of the ways STEER-ACO integrates the algorithm and
biological knowledge. It is also one of the ways in which
STEER-ACO differs from previous work. In addition, by defining
η this way, it also allows for STEER-ACO to score a solution
with very high flux of interest value with a subpar growth rate as a
good solution, as long as the growth rate is not too poor.

2.3.2 Bias Generation
 Each viable single reaction knockout has its flux of interest
value stored into an array. At the end of initialization, the array is
divided by its sum in order to determine probabilities associated
with selecting a particular gene to knock out during solution
generation. In other words, each viable flux has a probability of
being selected if an ant chooses to find a new solution; the higher
the value from Equation (7) below, the higher the probability it
has of being chosen.

2.3.3 Solution Generation
 At the beginning of each epoch of solution generation, all of the
current keys, or solutions, present in the Redis database are
returned with their pheromone value. The probability of choosing
a particular known solution, denoted pi, is calculated for each
solution:

227

𝒑𝒊 =
𝝉𝒊𝜶𝜼𝒊

𝜷

𝝉𝒊𝜶𝜼𝒊
𝜷𝑲

𝒊!𝟏
 (7)

where K is the total number of known solutions

2.3.4 Determine solutions/paths
 For each ant in the system, there exists a probability denoted as
ω to choose a new path based on the list of known solutions. This
value is set high initially and decreases as the number of epochs
increases. The purpose of this gradual decrease of ω is to
encourage ants to explore new solutions initially, then converge
on to known good solutions as time goes on. If an ant chooses a
new solution, a knockout is chosen from the list of viable
knockouts generated during initialization. This knockout is
determined using a uniform random distribution initially in order
to exhaust the search space. However, after the ants have gone
through half of the allowed epochs, the knockout is chosen based
on the bias determined during initialization. In other words,
knockout candidates that return both a good flux value of interest
and growth rate have a higher chance of being selected as time
goes on.
 Once a new knockout is selected, a random key is returned from
the Redis database and the knockout is added to it to form a new
solution. If the key already has the maximum amount of
knockouts allowed, a knockout is removed based on the bias term
calculated initially. Therefore, knockouts that generate a lower
flux value of interest and growth rate compared to other
knockouts in the solution have a higher probability to be removed
and replaced. Finally, if the ant does not choose a new solution
with a probability of 1- ω, a known solution is selected from the
Redis database by the probability described in Equation (7).

2.3.5 Update Pheromone Trails and Solution Deletion
 After all the ants have chosen a path, the pheromone trails are
updated

𝝉𝒊 ← 𝟏 − 𝝆 𝝉𝒊 + 𝝉𝒊𝒌𝒌 = 𝟏 − 𝝆 𝝉𝒊 + 𝒏𝝉𝒊 (8)

Where ρ is the pheromone evaporation coefficient, and 𝝉𝒊𝒌 is the
amount of pheromone deposited on solution i by the kth ant, which
simply reduces to n𝝉𝒊 where n is the amount of ants that selected
the solution. After all the pheromone trails have been updated, the
solutions in the database are iterated through, and old solutions
are deleted. A solution is forgotten and deleted if the τ of the
solution is less than τmin. A maximum tau is also set. See Figure
1 for the algorithm flowchart.

Table 1. Parameters used for each trial of STEER-ACO

Parameter Value
α 1
β 1.5
ρ 0.65
ω 0.7

Max Epochs 100
Num. Ants 200

Max Knockouts 5
τmin 0.01
τmax 100

2.3.5 Solution Examination
 At the end of the maximum epochs allowed, the solutions in the
database are sorted according to the amount of pheromone
deposited at each solution. The top five results are returned
according to the amount of pheromone deposited. The top five
most common knockouts are also put into a separate knockout set
and run through MoMA. Results that are deemed best return the
largest succinic acid production, while sub-optimal results are
defined as any combination of knockouts that produce a moderate
amount of succinic acid with a high growth rate close to the wild-
type growth rate.

Figure 1. Flowchart for STEER-ACO algorithm

3. SIMULATIONS
 The latest edition of dataset iJR904 for E. coli was used [18],
which contains 1075 reactions, 761 metabolites, and 904 genes, as
well as gene to protein to reaction (GPR) information. For each
calculation of the wild-type fluxes as well as MoMA simulations,
the glucose uptake rate was set to 10 mmol gDW-1hr-1. The wild-
type growth rate for the model was found to be 0.9219 h-1. The
objective was kept at maximizing biomass growth, while the τ
value returned from MoMA was set to succinic acid production.
Unlike previous work, there was no preprocessing done on the
dataset in order to retain the complete model. Although this will

228

increase the computational time, the average time required to
achieve the algorithms best solution is 8.4 minutes under current
settings shown in Table 1 for five knockouts. More importantly,
the potential for false positive and false negatives is reduced by
leveraging the use of the entire metabolic network rather than an
abridged, albeit more tractable, version. Additionally, plans to
parallelize STEER-ACO and utilize PyCUDA GPU programming
will significantly decrease the computational time, so
preprocessing to remove reactions and metabolites was deemed
unnecessary.
 The number of maximum epochs was set to 100 in order to
allow enough iterations to exhaust the search space, but still
converge on a good solution. The number of ants was set to 200,
or about 0.2 of the total number of reactions. Simulations using
more ants took more computation time and did not return a better
solution. In order to take advantage of parallelization and GPU
programming in future work, MoMA was ported to Python v2.7.9
utilizing CPLEX v12.6 with Python bindings for LP and QP
calculations. The STEER-ACO algorithm was written in Python
2.7.9 utilizing Numpy v1.9.0. All solutions were stored in a Redis
database utilizing Python bindings (v2.9.1). The model from the
database was parsed into CPLEX [1] using COBRA v0.2.1 [8].
All simulations were performed on Ubuntu 12.04.5 LTS with an
Intel Core 2 Duo 2.0 GHz processor and 4 GB of DDR2 RAM.

4. RESULTS
 Previous approaches used an older model of iJR904, and the
model was preprocessed. Thus those results are not directly
comparable to the results presented here. To compare results
generated by STEER-ACO with previous studies, the top three
triplet knockouts generated by those older studies were input into
MoMA using the updated, unprocessed iJR904 model, with the
results shown in Table 2. STEER-ACO was run 20 times, with
the top five results returned for each trial shown in Table 3.

Table 2. Top three triplet knockouts returned from previous
studies using updated & unprocessed model iJR904

Reactions
Knocked Out

Succinic Acid
Production

(mmol gDW-1

h-1)

Growth Rate
(h-1)

G6PDH2r
PDH

SUCD1i
2.8542 0.1139

FUM
G6PDH2r

PDH
2.6463 0.1162

FUM
G6PDH2r

PYK
2.2042 0.1244

The top five results of all the trials are listed in Table 4. The top
ten most common knockouts for the top five sets over 20 trials
were found as seen in Figure 2.

 STEER-ACO not only performed better in terms of succinic
acid production, but growth rate as well. The best solution
returned from STEER-ACO had a succinic acid production and
growth rate of 3.5815 mmol gDW-1h-1 and 0.1270 h-1 respectively.

In comparison, the best result from the older algorithm had a
succinic acid production rate of 2.8542 mmol gDW-1h-1 and
growth rate of 0.1139 h-1 based on the knockouts they predicted.
This is a 25.5% increase in succinic acid production, and 11.5%
increase in growth rate. Even the fifth best solution returned from
STEER-MOMA had an 11.5% increase in growth rate while
producing approximately the same amount of succinic acid as
compared to the best solution returned using the approach
described in the previous studies.

Table 3. Top five sets of three knockouts returned from
STEER-ACO from unprocessed model iJR904

Reactions
Knocked Out

Succinic Acid
Production

(mmol
gDW-1 h-1)

Growth Rate
(h-1)

ACt2r
GLCDe
SUCD4

3.5815 0.1270

ACt2r
SUCD4
XYLt2

3.5466 0.1273

ACNML
EX_ac_(e)

SUCD4
3.5466 0.1287

EX_ac_(e)
Kt2r

SUCD4
3.5285 0.1287

DBTSr
SUCD1i

PTAr
2.8288 0.1363

Given the speed at which the STEER-ACO ran, it was feasible to
explore a larger knockout space. Based on our experimental
experience, the viability of E. coli generally degraded
significantly once more than five knockouts were made. A five
knockout limit was thus decided upon. When comparing the
predictions of STEER-ACO for five knockouts to previous work
that had only three knockouts, STEER-ACO predicted genetic
modifications that yielded higher levels of succinic acid. This
result is unsurprising given that five knockouts provide
substantially more flexibility relative to three knockouts if one is
able to effectively take advantage of it. What is surprising,
however, is that even with five knockouts, STEER-ACO predicts
growth rates higher than previous studies did with three
knockouts. The best solution returned from SEARCH-ACO had a
succinic acid production and growth rate of 5.1206 mmol gDW-1h-

1 and 0.1393 h-1 respectively, shown in Table 4. This is a 79.4%
increase in succinic acid production and a 22.3% increase in
growth rate.
 The fifth best solution returned from STEER-MOMA had a
51.8% increase in succinic acid production rate and 22.5%
increase in growth rate as compared to the best solution obtained
using the previous study’s results. This result is surprising
because it would be expected that as more succinic acid is
produced, few metabolic resources would be available to for
cellular growth. However, it appears that by incorporating the
growth rate into the value of η, it was possible to identify high
succinic acid production rates while maintaining relatively high
growth rates. Maintaining high growth rates in cell culture is

229

important in the biotech industry for a variety of reasons [21].
Such a result indicates the potential usefulness and value of the
STEER-ACO algorithm.

Table 4. Top five sets of five knockouts returned from
STEER-ACO from unprocessed model iJR904

Reactions
Knocked Out

Succinic Acid
Production

(mmol
gDW-1 h-1)

Growth Rate
(h-1)

ACt2r
EX_leu_L_(e)

NMNAT
SUCD1i
TALA

5.1206 0.1393

EX_ac_(e)
FUM

G6PDH2r
SUCD4
TMPKr

4.5951 0.1253

EX_ac_(e)
FUM

G6PDH2r
GUAPRT
SUCD4

4.5889 0.1256

EX_ac_(e)
EX_no2_(e)
G6PDH2r

PYRt2r
SUCD4

4.5779 0.1277

EX_ac_(e)
MTHFC
RNDR3
SUCD1i
SUCD4

4.3329 0.1224

 The remainder of the analysis focuses on data collected from the
simulations and optimization using the five knockout systems. In
an attempt to create better set of knockouts, the top five most
common knockouts are put into a separate set and run through
MoMA, which returned a growth rate of 0.8450 h-1 and succinic
acid production rate of 0.9317 mmol gDW-1h-1, which falls under
a sub-optimal knockout set due to the moderate succinic acid
production and high growth rate.
 An acetic acid transport export reaction was found to be present
in all of the top five knockouts combinations. In terms of the
TCA cycle, this theoretically allows more acetic acid to be fed
into the TCA cycle via acetyl-CoA. In addition, fumarase and
succinate dehydrogenase are the most frequently knocked out
reactions and appear in all of the top five knockouts. As seen in
Figure 3, this disallows key reactions that consume succinic acid
in the TCA cycle.

Table 5. Genes associated with each set of top five reactions.
Note that all reactions starting with “EX” refer to transport
reactions or “exchange/export fluxes” were resources are
taken up by the cell or secreted from the cell.

Reactions
Knocked Out Gene Name

ACt2r
EX_leu_L_(e)

NMNAT
SUCD1i
TALA

-
-

nadD
sdh

talA or talB
EX_ac_(e)

FUM
G6PDH2r
SUCD4
TMPKr

-
fum
zwf
sdh
thiL

EX_ac_(e)
FUM

G6PDH2r
GUAPRT
SUCD4

-
fumA or fumC or fumB

zwf
gpt or hpt

sdhD, sdhC, sdhA, sdhB
EX_ac_(e)

EX_no2_(e)
G6PDH2r

PYRt2r
SUCD4

-
-

zwf
-

sdh
EX_ac_(e)
MTHFC
RNDR3
SUCD1i
SUCD4

-
folD
nrd
sdh
sdh

Figure 2. Top ten most common knockouts for overproduction
of succinic acid in E. coli iJR904 found in the top five results
for 100 trials.

230

Figure 3. Basic TCA cycle diagram. Knocking out acetate
exporters, succinate dehydrogenase, and fumarase allows for
overproduction of succinic acid

Although fumarase was present in only two of the five top results,
it is present in nearly every sub-optimal knockout set. In the sub-
optimal sets, the growth rate is closer to the wild-type growth rate
of 0.9219 h-1 but the succinic acid production is lower than in the
best sets presented in Table 3. In the case of fumarase, it was
present in 58 of the 100 top knockout sets, which includes the best
and sub-optimal sets. The average succinic acid production and
growth rate for the sets that contained fumarase were 1.6777
mmol gDW-1h-1 and 0.5731 h-1 respectively. This is further
demonstrated for each of the top ten reaction knockouts in Table
5. In general, if a reaction knockout has a higher average succinic
acid production rate, it has a lower growth rate due to the majority
of the carbon available to the E. coli being shunted towards the
succinic acid synthesis rather than production of biomass. The
genes catalyzing the reactions that were recommended to be
knocked out are shown in Table 4.

Table 5. The average succinic acid production rate and
growth rate for all knockout sets containing each reaction

Reaction Name
Average Succinic
Acid Production
(mmol gDW-1h-1)

Average Growth
Rate (h-1)

FUM 1.6777 0.5731
SUCD4 2.6715 0.2210
SUCD1i 2.7725 0.2096
PPCDC 0.8838 0.8434
ACt2r 6.1650 0.3074

EX_ac_(e) 3.6132 0.1908
PNTK 0.8857 0.8452

PANTS 0.8863 0.8453
EX_leu_L_(e) 2.6929 0.3202

G6PDH2r 4.3057 0.1324

5. CONCLUSION
 This work focused on implementation of STEER-ACO in order
to determine the best reaction knockouts to be performed for
overproduction of succinic acid in E. coli model iJR904. This
algorithm differs from the previous ACO/MoMA hybrid methods

developed by Chong et. al. in that while the solution space is
searched in a completely stochastic manner in the first iterations
of the algorithm, it refines the search space over time towards
favorable solutions or edges. This is performed with a bias
towards favorable single reaction knockouts determined in the
initialization phase of the algorithm, as well as a probability of
local search that decays over time. The top five predicted best
knockouts in five sets of twenty runs not only had a higher
succinic acid production rate, but a higher growth rate as well
when compared to reaction knockouts reported from Chong et. al..
This is due in part by using the growth rate as a heuristic factor in
determining the amount of pheromone to be deposited on a
solution, as well as the bias towards favorable knockouts as time
goes on. This allows for solutions that return a high succinic acid
production rate and a reasonable growth rate. It also allows for
identification of sub-optimal solutions that return a moderate
succinic acid production rate and growth rate close to the wild
type, which is important if growth rate is an important factor.
 In addition, good solutions can be converged upon in just over
eight minutes for up to a maximum of five reaction knockouts.
The methods described in this work can be applied to any flux of
interest, such as H2 production for biofuel or API’s for
pharmaceutical use. Furthermore, predictions made by STEER-
ACO may be used as a guideline for wet laboratory experiments
to guide overproduction of a molecule or biomaterial of interest,
especially because custom reaction and constraints easily be
inserted into the in silico model and replicated in vitro.
 This algorithm is still in its early stages of development. In the
future, the algorithm will be further optimized for speed and
performance. This will be accomplished by parallelization across
multiple CPU’s, as well as utilizing PyCUDA for GPU
programming, which can achieve 20x-2000x performance
increase [2]. This will eliminate the need for any preprocessing of
the model to cut down computation time, and allow for more ants
and iterations for exhaustion of the search space and convergence
on best solutions.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 1137249.

7. REFERENCE

[1] CPLEX Optimizer. In CPLEX Optimization Studio

IBM.
[2] 2015. GPU Accelerated Computing with Python. In

CUDA ZONE NVIDIA.
[3] Bautista, E.J., Zinski, J., Szczepanek, S.M., Johnson,

E.L., Tulman, E.R., Ching, W.M., Geary, S.J., and
Srivastava, R., 2013. Semi-automated Curation of
Metabolic Models via Flux Balance Analysis: A Case
Study with Mycoplasma gallisepticum. PLoS Comput
Biol 9, 9 (Sep), e1003208. DOI=
http://dx.doi.org/10.1371/journal.pcbi.1003208.

[4] Becker, S.A., Feist, A.M., Mo, M.L., Hannum, G.,
Palsson, B.O., and Herrgard, M.J., 2007. Quantitative
prediction of cellular metabolism with constraint-based

231

models: the COBRA Toolbox. Nat Protoc 2, 3, 727-
738. DOI= http://dx.doi.org/10.1038/nprot.2007.99.

[5] Burgard, A.P., Pharkya, P., and Maranas, C.D., 2003.
Optknock: a bilevel programming framework for
identifying gene knockout strategies for microbial strain
optimization. Biotechnol Bioeng 84, 6 (Dec 20), 647-
657.

[6] Chong, S.K., Mohamad, M.S., Mohamed Salleh, A.H.,
Choon, Y.W., Chong, C.K., and Deris, S., 2014. A
hybrid of ant colony optimization and minimization of
metabolic adjustment to improve the production of
succinic acid in Escherichia coli. Comput Biol Med
49(Jun), 74-82. DOI=
http://dx.doi.org/10.1016/j.compbiomed.2014.03.011.

[7] Dorigo, M., Birattari, M., and Stutzle, T., 2006. Ant
colony optimization. Computational Intelligence
Magazine, IEEE 1, 4, 28-39.

[8] Ebrahim, A., Lerman, J.A., Palsson, B.O., and Hyduke,
D.R., 2013. COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Syst Biol
7, 74. DOI= http://dx.doi.org/10.1186/1752-0509-7-74.

[9] Feist, A.M. and Palsson, B.O., 2008. The growing scope
of applications of genome-scale metabolic
reconstructions using Escherichia coli. Nat Biotechnol
26, 6 (Jun), 659-667. DOI=
http://dx.doi.org/10.1038/nbt1401.

[10] Keasling, J.D., 2010. Manufacturing molecules through
metabolic engineering. Science 330, 6009 (Dec 3),
1355-1358. DOI=
http://dx.doi.org/10.1126/science.1193990.

[11] Latendresse, M., Krummenacker, M., Trupp, M., and
Karp, P.D., 2012. Construction and completion of flux
balance models from pathway databases. Bioinformatics
28, 3 (Feb 1), 388-396. DOI=
http://dx.doi.org/10.1093/bioinformatics/btr681.

[12] Ohno, S., Furusawa, C., and Shimizu, H., 2013. In silico
screening of triple reaction knockout Escherichia coli
strains for overproduction of useful metabolites. J
Biosci Bioeng 115, 2 (Feb), 221-228. DOI=
http://dx.doi.org/10.1016/j.jbiosc.2012.09.004.

[13] Orth, J.D., Thiele, I., and Palsson, B.O., 2010. What is
flux balance analysis? Nat Biotechnol 28, 3 (Mar), 245-
248. DOI= http://dx.doi.org/10.1038/nbt.1614.

[14] Palsson, B.O., 2006. Systems Biology: Properties of
Reconstructed Networks. Cambridge University Press,
New York.

[15] Price, N.D., Reed, J.L., and Palsson, B.O., 2004.
Genome-scale models of microbial cells: evaluating the
consequences of constraints. Nat Rev Microbiol 2, 11
(Nov), 886-897.

[16] Reed, J.L. and Palsson, B.O., 2003. Thirteen years of
building constraint-based in silico models of
Escherichia coli. J Bacteriol 185, 9 (May), 2692-2699.

[17] Reed, J.L., Vo, T.D., Schilling, C.H., and Palsson, B.O.,
2003. An expanded genome-scale model of Escherichia
coli K-12 (iJR904 GSM/GPR). Genome Biol 4, 9, R54.

[18] Schellenberger, J., Park, J.O., Conrad, T.M., and
Palsson, B.O., 2010. BiGG: a Biochemical Genetic and
Genomic knowledgebase of large scale metabolic
reconstructions. BMC Bioinformatics 11, 213. DOI=
http://dx.doi.org/10.1186/1471-2105-11-213.

[19] Schilling, C.H., Edwards, J.S., Letscher, D., and
Palsson, B.O., 2000. Combining pathway analysis with
flux balance analysis for the comprehensive study of
metabolic systems. Biotechnol Bioeng 71, 4, 286-306.

[20] Segre, D., Vitkup, D., and Church, G.M., 2002.
Analysis of optimality in natural and perturbed
metabolic networks. Proc Natl Acad Sci U S A 99, 23
(Nov 12), 15112-15117. DOI=
http://dx.doi.org/10.1073/pnas.232349399.

[21] Shuler, M.L. and Kargi, F., 2001. Bioprocess
Engineering: Basic Concepts. P T R Prentice Hall,
Englewood Cliffs.

[22] Solnon, C., 2010. Ant colony optimization and
constraint programming. Wiley Online Library.

[23] Stephanopoulos, G.N., Aristidou, A.A., and Nielsen, J.,
1998. Metabolic Engineering: Principles and
Methodologies. Academic Press, San Diego.

[24] Tran, K.T., Maeda, T., Sanchez-Torres, V., and Wood,
T.K., 2015. Beneficial knockouts in Escherichia coli for
producing hydrogen from glycerol. Appl Microbiol
Biotechnol(Jan 8). DOI=
http://dx.doi.org/10.1007/s00253-014-6338-7.

[25] Zeikus, J., Jain, M., and Elankovan, P., 1999.
Biotechnology of succinic acid production and markets
for derived industrial products. Appl Microbiol
Biotechnol 51, 5, 545-552.

232

