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ABSTRACT
Due to the vast search space of all possible combinations of 
reaction knockouts in Escherichia coli, determining the best 
combination of knockouts for over-production of a metabolite of 
interest is a computationally expensive task.  Ant colony 
optimization (ACO) applied to genome-scale metabolic models 
via flux balance analysis (FBA) provides a means by which such a 
solution space may feasibly be explored.  In previous work, the 
Minimization of Metabolic Adjustment (MoMA) objective 
function for FBA was used in conjunction with ACO to identify 
the best gene knockouts for succinic acid production.  In this 
work, algorithmic and biological constraints are introduced to 
further reduce the solution space.  We introduce Stochastic 
Exploration Edge Reduction Ant Colony Optimization, or 
STEER-ACO. Algorithmically, ACO is modified to refine its 
search space over time allowing for greater initial coverage of the 
solution space while ultimately honing on a high quality solution.  
Biologically, a heuristic is introduced allowing the maximum 
number of knockouts to be no greater than five.  Beyond this 
number, cellular viability becomes suspect.  Results using this 
approach versus previous methods are reported. 
 
Categories and Subject Descriptors 
J.3 [Life and Medical Science]: Biology and genetics 
 
General Terms: Algorithms. 
 

Keywords: Metabolic modeling, computational biology, 
metabolic engineering, ant colony optimization, genome-scale, 
flux balance analysis, systems biology 
 
1.  INTRODUCTION 
 The production of molecules and biomaterials from 
microorganisms is a well-established practice in industrial 
settings, as well as bench scale experiments.  For example, active 
pharmaceutical ingredients (APIs) that are too complex or too 
costly to be produced via classic organic chemistry reactions can 
be synthesized via metabolically engineered microorganisms due 
to the high value of the API of interest and low cost and low 
quantity of reactants needed by the engineered microorganism 
[10].  Another example is the production of hydrogen with 
Escherichia coli. Recent studies have been conducted for utilizing 
the cheap and abundant substrate glycerol to produce biofuel, or 
hydrogen gas. The production of H2 via E. coli is of growing 
interest because H2 can be used directly as a reactant in fuel cells 
and does not contribute to greenhouse gas emissions. H2 also 
reduces the need for fossil fuel sources and can be created by E. 
coli via waste generated from agriculture and industry.  However, 
gene insertions and deletions must be made into the wild-type E. 
coli in order to maximize the production of H2 to feasible levels 
[24]. 
 Determining the best gene knockouts and insertions to produce 
a molecule or biomaterial of interest in E. coli is a 
computationally and theoretically difficult task.  Genome-scale 
metabolic models have become a powerful computational tool for 
simulating an organism’s metabolism under a given set of genetic 
and environmental constraints.  The term “genome-scale” simply 
refers to how the metabolic network is constructed.  The genome 
annotation of an organism is used to identify genes that catalyze 
metabolic reactions.  If such a gene is present, the metabolic 
reaction it catalyzes is inferred to be present.  In this way, it is 
possible to create a genome-scale metabolic model [4; 9; 14; 15].  
 Attempts have been made to predict and analyze gene and 
reaction knockouts in metabolic networks using genome-scale 
metabolic modeling [16].  As an example, the genome-scale 
metabolic model of E. coli, iJR904, has 1075 reactions, 761 
metabolites, and 904 genes, and models are constantly being 
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updated as new genes, kinetic information, and thermodynamic 
information is discovered [17; 18]. If the number of reactions 
knocked out is limited to three in iJR904, there are on the order of 
109 different combinations of reactions to knock out. Increasing 
the maximum number of knockouts to five increases the number 
of possible combination to 1015, and six to the order of 1018.  It is 
apparent that computational time and power become a concern as 
the number of knockouts is increased. 
 There are a number of in silico simulation programs to identify 
the best knockouts. For example, OptKnock [5] has been used to 
identify triplets of knockouts for overproduction of 1-butanol, 1-
propanol, and 1,3-propanediol in E. coli in previous work [12]. 
However, this method is computationally expensive. For more 
five or more knockouts at a time, computations may take several 
hours to days on standard computing hardware.   
 Most approaches to modeling metabolism at the genome-scale 
use flux balance analysis (FBA) to analyze resulting fluxes based 
on the knockouts [3; 11; 13; 19].  The term “fluxes” refers to the 
throughput or “flux” of a metabolite through a given reaction 
pathway.  Due to the number of equations and variables in an 
FBA model, the system is underdetermined.  To calculate flux 
values, optimization theory is used where an objective function 
regarding how the cell will grow is postulated.  The most 
commonly used objective function is maximization of growth 
rate.  The premise for this objective function is that the cells that 
grow the fastest would be the most competitive.  Thus those cells 
would be selected by evolution to be the dominant strain.  
However, when carrying out genetic engineering, the network that 
nature evolved is disrupted, casting doubt on the use of such an 
objective for genetically engineered organisms.  To overcome this 
issue, another objective function has been proposed which states 
that the genetically engineered cell will attempt to distribute its 
metabolic resources in a manner similar to the wild type because 
that is how it evolved.  This idea is referred to as “minimization of 
metabolic adjustment” or MoMA [20].  The MoMA concept may 
be formulated as a quadratic programming problem, which then 
may be solved to return reasonable flux distributions and identify 
more realistic best knockout sets.  However, while MoMA can 
predict how metabolic resources will be distributed in genetically 
engineered organisms, it does not predict what genes should be 
knocked out to optimize production of a metabolite.  
 In this work, we propose a new method to identify the best sets 
of gene knockouts for metabolite production.  Specifically we 
combine MoMA with ant colony optimization (ACO).  We refer 
to this method as Stochastic Exploration Edge Reduction Ant 
Colony Optimization (STEER-ACO).  A similar ACO/MoMA 
approach has recently been attempted [6].  However, the STEER-
ACO algorithm improves on the previous work in several ways.  
The newly developed algorithm refines the search space over time 
to converge better solutions, as well as avoiding large reductions 
in the growth rate of E. coli by using the growth rate as a heuristic 
factor. It avoids a pre-processing step reduced the metabolic 
network that was used in the older algorithm, which had the 
potential to generate false positives and false negative knockouts.  
In addition, we have ported MoMA to Python and implemented 
our algorithm in Python while utilizing a Redis database system 
setting the stage for parallelization of the algorithm in the future.  
It is anticipated that this will further reduce the computational 
time required. 

 To evaluate the STEER-ACO algorithm, succinic acid 
production from genetically engineered E. coli was used as a case 
study. Succinic acid was chosen for two primary reasons. First, 
succinic acid is an important compound in industrial processes, 
ranging from food and pharmaceutical products, surfactants and 
detergents, green solvents and biodegradable plastics, and 
ingredients to stimulate animal and plant growth [25]. In addition, 
numerous studies on maximization of succinic acid production in 
E. coli have been performed, providing a large body of 
experimental data to compare with. 
 
2.  METHODS 
2.1 Minimization of Metabolic Adjustment 
(MoMA) 
 MoMA is a constraint based programming method FBA which 
was first introduced by Daniel Segre, Dennis Vitkup, and George 
M. Church in 2002 [20].  One of the core principles of FBA is that 
the metabolic network of an organism of interest, such as E. coli, 
is assumed to be at steady state, which is strictly true for cells 
growing in chemostats and approximately true for cells growing 
in exponential phase [14; 23]. Under such conditions, the mass 
balance for each metabolite in the metabolic network of reactions 
must be zero. This can be denoted by the equation 
 
𝑺 ∙ 𝒗 = 𝟎       (1) 
 
Where S is the stoichiometric coefficient matrix of size m x n 
where m is the number of metabolites, and n is the number of 
reactions in the network.  v is the vector of fluxes in the network.  
The system is also bound to a set of constraints for the amount of 
nutrients available to the system, as well as the theoretical 
minimum and maximum fluxes supported by the system, such that 
 
𝒂𝒊 ≤ 𝒗𝒊 ≤ 𝒃𝒊     (2) 
 
 Linear programming (LP) is used to determine each flux for the 
wild-type microorganism using the system described above. After 
the system is solved with the objective of maximizing biomass 
growth, MoMA is used in order to determine the new fluxes in the 
system once a reaction, or set of reactions is knocked out. This is 
simulated in MoMA by setting the lower and upper bounds for the 
knocked out flux to zero.  MoMA then uses quadratic 
programming (QP) to determine the network’s new fluxes, under 
the assumption that the mutant flux distribution will be as close to 
the wild-type’s flux distribution as possible. In other words, the 
goal is to determine a flux vector, x in which the Euclidian 
distance is as close as possible to the wild-type flux vector w: 
 

𝑫 = 𝒘𝒊 − 𝒙𝒊 𝟐  𝑵
𝒊!𝟏      (3) 

 
D is the distance between the wild-type flux (w) and mutant flux x 
and N is the number of optimal points.   
 
 Since MoMA uses QP in order to solve the system, the goal is 
to minimize the standard QP problem 
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𝒇 𝒙 = 𝑳 ∙ 𝒙 + 𝟏
𝟐
𝒙𝑻𝑸𝒙    (4) 

 
Such that the vector L is of length N and the matrix Q is of size 
NxN. Q is used to define the linear and quadratic objective 
function, and xT represents the transpose of x.  Since minimizing 
D in Equation (3) is the same as minimizing its square and 
constants can be omitted from the objective function, Q can be set 
to an N x N unit matrix and L can be set to –w, where w = vwt. 
 
2.2 Ant Colony Optimization (ACO) 
 Ant Colony Optimization is a subset of swarm intelligence that 
is based on the behavior of ant colonies foraging for food. Ants 
communicate indirectly by depositing pheromone trails that decay 
over time in their environment while foraging. Although ants 
randomly choose a path to take, there is a greater probability to 
take a path that contains a large amount of pheromones. This 
allows ants to converge towards the shortest path to food in an 
autocatalytic reinforcement process [22]. The metaheuristic that 
governs ACO is as follows: 
 
Set parameters, initialize pheromone trails 
While termination condition not met do 
 Construct solutions 
 Apply local search (optional) 
 Update Pheromones 
End 
 
 The choice of solutions is guided stochastically with bias from 
the pheromone trails. The optional local search is performed to 
improve upon known solutions by locally searching the solution 
space, and is usually included in most ACO algorithms in order to 
improve upon known good solutions [7]. 
 
2.3 Stochastic Exploration Edge Reduction 
Ant Colony Optimization (STEER-ACO) 
 Although previous work has applied ACO/MoMA hybrid 
techniques [6] to determining the best sets of reaction knock outs 
in E. coli for succinic acid production, the approach used a 
completely stochastic search for  knockout combinations based off 
of known viable reaction knock out candidates.  In addition, the 
growth rate of mutant E. coli was not taken into account as a 
factor in engineering the final organism.  The STEER-ACO 
algorithm is proposed as improvement to the previous approach 
based on both algorithmic and biological strategies. STEER-ACO 
consists of three stages 
 

1. Initialization 
a. Bias generation 

2. Solution Generation/Deletion 
a. Determine solution/path 
b. Update pheromone trails 
c. Forget bad solutions 

3. Solution Examination 
 
2.3.1  Initialization 
 During the initialization phase, the growth rate and flux of 
interest is determined and returned using LP FBA. Then each 

reaction is knocked out one at a time and the growth rate and flux 
of interest is determined using MoMA. If the growth rate is 0, the 
knockout is deemed lethal and removed from the selection of 
reactions that may be knocked out during solution generation.  
Otherwise, the value of the flux of interest is stored for that 
particular knockout in order to calculate the bias term that allows 
the algorithm to converge onto a better solution over time. Each 
viable knockout is stored as a key in a Redis database with the 
values of the current pheromone trail value, flux of interest from 
MoMA, growth rate returned from MoMA, and probability 
associated with choosing the solution. The value returned from 
MoMA is stored so that if an ant picks a known solution, MoMA 
would not have to be run again simply to return the QP value; it 
could just be grabbed from the database to speed up the algorithm. 
Besides being open source and easy to use, Redis was chosen for 
solution storage for two primary reasons:  
 

1. Storing solutions with Redis is fast due to its in-memory 
storage 

2. Redis allows for easy parallelization of STEER-ACO 
 
The pheromone trail value is generated using the equation 
 
𝑷𝒉𝒆𝒓𝒐𝒎𝒐𝒏𝒆  𝒂𝒎𝒐𝒖𝒏𝒕 = 𝝉𝜶𝜼𝜷  (5) 
 
Where τ represents the flux of interest value such that 
 

𝝉𝒊 =
𝒗𝒎𝒖𝒕
𝒗𝒘𝒕

  𝒊𝒇  𝒗𝒘𝒕 ≠ 𝟎

𝒗𝒎𝒖𝒕  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
           (6) 

 
which is done to normalize the value returned from MoMA. The 
value for η was the growth rate for the knockout, and α and β are 
constants to influence the strength of each term. The growth rate 
was used for η to allow a higher probability of choosing solutions 
that have both a good growth rate and good flux of interest, which 
is one of the ways STEER-ACO integrates the algorithm and 
biological knowledge.  It is also one of the ways in which 
STEER-ACO differs from previous work. In addition, by defining 
η this way, it also allows for STEER-ACO to score a solution 
with very high flux of interest value with a subpar growth rate as a 
good solution, as long as the growth rate is not too poor. 
 
2.3.2  Bias Generation 
 Each viable single reaction knockout has its flux of interest 
value stored into an array. At the end of initialization, the array is 
divided by its sum in order to determine probabilities associated 
with selecting a particular gene to knock out during solution 
generation. In other words, each viable flux has a probability of 
being selected if an ant chooses to find a new solution; the higher 
the value from Equation (7) below, the higher the probability it 
has of being chosen. 
 
2.3.3  Solution Generation 
 At the beginning of each epoch of solution generation, all of the 
current keys, or solutions, present in the Redis database are 
returned with their pheromone value. The probability of choosing 
a particular known solution, denoted pi, is calculated for each 
solution: 
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𝒑𝒊 =
𝝉𝒊𝜶𝜼𝒊

𝜷

𝝉𝒊𝜶𝜼𝒊
𝜷𝑲

𝒊!𝟏
    (7) 

 
where K is the total number of known solutions 
 
2.3.4  Determine solutions/paths 
 For each ant in the system, there exists a probability denoted as 
ω to choose a new path based on the list of known solutions. This 
value is set high initially and decreases as the number of epochs 
increases. The purpose of this gradual decrease of ω  is to 
encourage ants to explore new solutions initially, then converge 
on to known good solutions as time goes on.  If an ant chooses a 
new solution, a knockout is chosen from the list of viable 
knockouts generated during initialization. This knockout is 
determined using a uniform random distribution initially in order 
to exhaust the search space. However, after the ants have gone 
through half of the allowed epochs, the knockout is chosen based 
on the bias determined during initialization. In other words, 
knockout candidates that return both a good flux value of interest 
and growth rate have a higher chance of being selected as time 
goes on.    
 Once a new knockout is selected, a random key is returned from 
the Redis database and the knockout is added to it to form a new 
solution. If the key already has the maximum amount of 
knockouts allowed, a knockout is removed based on the bias term 
calculated initially. Therefore, knockouts that generate a lower 
flux value of interest and growth rate compared to other 
knockouts in the solution have a higher probability to be removed 
and replaced. Finally, if the ant does not choose a new solution 
with a probability of 1- ω, a known solution is selected from the 
Redis database by the probability described in Equation (7). 
 
2.3.5 Update Pheromone Trails and Solution Deletion 
 After all the ants have chosen a path, the pheromone trails are 
updated  
 
𝝉𝒊 ← 𝟏 − 𝝆 𝝉𝒊 + 𝝉𝒊𝒌𝒌 = 𝟏 − 𝝆 𝝉𝒊 + 𝒏𝝉𝒊 (8) 
 
Where ρ is the pheromone evaporation coefficient, and 𝝉𝒊𝒌 is the 
amount of pheromone deposited on solution i by the kth ant, which 
simply reduces to n𝝉𝒊 where n is the amount of ants that selected 
the solution. After all the pheromone trails have been updated, the 
solutions in the database are iterated through, and old solutions 
are deleted. A solution is forgotten and deleted if the τ of the 
solution is less than τmin.  A maximum tau is also set. See Figure 
1 for the algorithm flowchart.  
 

Table 1. Parameters used for each trial of STEER-ACO 
 

Parameter Value 
α 1 
β 1.5 
ρ 0.65 
ω 0.7 

Max Epochs 100 
Num. Ants 200 

Max Knockouts 5 
τmin 0.01 
τmax 100 

 
 
2.3.5  Solution Examination 
 At the end of the maximum epochs allowed, the solutions in the 
database are sorted according to the amount of pheromone 
deposited at each solution. The top five results are returned 
according to the amount of pheromone deposited. The top five 
most common knockouts are also put into a separate knockout set 
and run through MoMA.  Results that are deemed best return the 
largest succinic acid production, while sub-optimal results are 
defined as any combination of knockouts that produce a moderate 
amount of succinic acid with a high growth rate close to the wild-
type growth rate. 
 

  
Figure 1. Flowchart for STEER-ACO algorithm 

 
3.  SIMULATIONS 
 The latest edition of dataset iJR904 for E. coli was used [18], 
which contains 1075 reactions, 761 metabolites, and 904 genes, as 
well as gene to protein to reaction (GPR) information. For each 
calculation of the wild-type fluxes as well as MoMA simulations, 
the glucose uptake rate was set to 10 mmol gDW-1hr-1.  The wild-
type growth rate for the model was found to be 0.9219 h-1. The 
objective was kept at maximizing biomass growth, while the τ 
value returned from MoMA was set to succinic acid production. 
Unlike previous work, there was no preprocessing done on the 
dataset in order to retain the complete model. Although this will 

228



increase the computational time, the average time required to 
achieve the algorithms best solution is 8.4 minutes under current 
settings shown in Table 1 for five knockouts. More importantly, 
the potential for false positive and false negatives is reduced by 
leveraging the use of the entire metabolic network rather than an 
abridged, albeit more tractable, version.  Additionally, plans to 
parallelize STEER-ACO and utilize PyCUDA GPU programming 
will significantly decrease the computational time, so 
preprocessing to remove reactions and metabolites was deemed 
unnecessary.  
 The number of maximum epochs was set to 100 in order to 
allow enough iterations to exhaust the search space, but still 
converge on a good solution. The number of ants was set to 200, 
or about 0.2 of the total number of reactions. Simulations using 
more ants took more computation time and did not return a better 
solution.  In order to take advantage of parallelization and GPU 
programming in future work, MoMA was ported to Python v2.7.9 
utilizing CPLEX v12.6 with Python bindings for LP and QP 
calculations. The STEER-ACO algorithm was written in Python 
2.7.9 utilizing Numpy v1.9.0. All solutions were stored in a Redis 
database utilizing Python bindings (v2.9.1).  The model from the 
database was parsed into CPLEX [1] using COBRA v0.2.1 [8].  
All simulations were performed on Ubuntu 12.04.5 LTS with an 
Intel Core 2 Duo 2.0 GHz processor and 4 GB of DDR2 RAM.  
 
4.  RESULTS 
 Previous approaches used an older model of iJR904, and the 
model was preprocessed.  Thus those results are not directly 
comparable to the results presented here.  To compare results 
generated by STEER-ACO with previous studies, the top three 
triplet knockouts generated by those older studies were input into 
MoMA using the updated, unprocessed iJR904 model, with the 
results shown in Table 2. STEER-ACO was run 20 times, with 
the top five results returned for each trial shown in Table 3.  
 
Table 2. Top three triplet knockouts returned from previous 
studies using updated & unprocessed model iJR904 

Reactions 
Knocked Out 

Succinic Acid 
Production 

(mmol gDW-1 

h-1) 

Growth Rate 
(h-1) 

G6PDH2r 
PDH 

SUCD1i 
2.8542 0.1139 

FUM 
G6PDH2r 

PDH 
2.6463 0.1162 

FUM 
G6PDH2r 

PYK 
2.2042 0.1244 

 
The top five results of all the trials are listed in Table 4. The top 
ten most common knockouts for the top five sets over 20 trials 
were found as seen in Figure 2. 
 
 STEER-ACO not only performed better in terms of succinic 
acid production, but growth rate as well. The best solution 
returned from STEER-ACO had a succinic acid production and 
growth rate of 3.5815 mmol gDW-1h-1 and 0.1270 h-1 respectively. 

In comparison, the best result from the older algorithm had a 
succinic acid production rate of 2.8542 mmol gDW-1h-1 and 
growth rate of 0.1139 h-1 based on the knockouts they predicted.  
This is a 25.5% increase in succinic acid production, and 11.5% 
increase in growth rate.  Even the fifth best solution returned from 
STEER-MOMA had an 11.5% increase in growth rate while 
producing approximately the same amount of succinic acid as 
compared to the best solution returned using the approach 
described in the previous studies. 
 
Table 3. Top five sets of three knockouts returned from 
STEER-ACO from unprocessed model iJR904 

Reactions 
Knocked Out 

Succinic Acid 
Production 

(mmol 
gDW-1 h-1) 

Growth Rate 
(h-1) 

ACt2r 
GLCDe 
SUCD4 

3.5815 0.1270 

ACt2r 
SUCD4 
XYLt2 

3.5466 0.1273 

ACNML 
EX_ac_(e) 

SUCD4 
3.5466 0.1287 

EX_ac_(e) 
Kt2r 

SUCD4 
3.5285 0.1287 

DBTSr 
SUCD1i 

PTAr 
2.8288 0.1363 

 
Given the speed at which the STEER-ACO ran, it was feasible to 
explore a larger knockout space.  Based on our experimental 
experience, the viability of E. coli generally degraded 
significantly once more than five knockouts were made.  A five 
knockout limit was thus decided upon. When comparing the 
predictions of STEER-ACO for five knockouts to previous work 
that had only three knockouts, STEER-ACO predicted genetic 
modifications that yielded higher levels of succinic acid.  This 
result is unsurprising given that five knockouts provide 
substantially more flexibility relative to three knockouts if one is 
able to effectively take advantage of it.  What is surprising, 
however, is that even with five knockouts, STEER-ACO predicts 
growth rates higher than previous studies did with three 
knockouts.  The best solution returned from SEARCH-ACO had a 
succinic acid production and growth rate of 5.1206 mmol gDW-1h-

1 and 0.1393 h-1 respectively, shown in Table 4.  This is a 79.4% 
increase in succinic acid production and a 22.3% increase in 
growth rate.   
 The fifth best solution returned from STEER-MOMA had a 
51.8% increase in succinic acid production rate and 22.5% 
increase in growth rate as compared to the best solution obtained 
using the previous study’s results.  This result is surprising 
because it would be expected that as more succinic acid is 
produced, few metabolic resources would be available to for 
cellular growth.  However, it appears that by incorporating the 
growth rate into the value of η, it was possible to identify high 
succinic acid production rates while maintaining relatively high 
growth rates.  Maintaining high growth rates in cell culture is 
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important in the biotech industry for a variety of reasons [21].  
Such a result indicates the potential usefulness and value of the 
STEER-ACO algorithm. 

 
 
 
Table 4. Top five sets of five knockouts returned from 
STEER-ACO from unprocessed model iJR904 

Reactions 
Knocked Out 

Succinic Acid 
Production 

(mmol 
gDW-1 h-1) 

Growth Rate 
(h-1) 

ACt2r 
EX_leu_L_(e) 

NMNAT 
SUCD1i 
TALA 

5.1206 0.1393 

EX_ac_(e) 
FUM 

G6PDH2r 
SUCD4 
TMPKr 

4.5951 0.1253 

EX_ac_(e) 
FUM 

G6PDH2r 
GUAPRT 
SUCD4 

4.5889 0.1256 

EX_ac_(e) 
EX_no2_(e) 
G6PDH2r 

PYRt2r 
SUCD4 

4.5779 0.1277 

EX_ac_(e) 
MTHFC 
RNDR3 
SUCD1i 
SUCD4 

4.3329 0.1224 

 
 The remainder of the analysis focuses on data collected from the 
simulations and optimization using the five knockout systems.  In 
an attempt to create better set of knockouts, the top five most 
common knockouts are put into a separate set and run through 
MoMA, which returned a growth rate of 0.8450 h-1 and succinic 
acid production rate of 0.9317 mmol gDW-1h-1, which falls under 
a sub-optimal knockout set due to the moderate succinic acid 
production and high growth rate. 
 An acetic acid transport export reaction was found to be present 
in all of the top five knockouts combinations.  In terms of the 
TCA cycle, this theoretically allows more acetic acid to be fed 
into the TCA cycle via acetyl-CoA. In addition, fumarase and 
succinate dehydrogenase are the most frequently knocked out 
reactions and appear in all of the top five knockouts.  As seen in 
Figure 3, this disallows key reactions that consume succinic acid 
in the TCA cycle. 

 
 

 
 
 
 

 
 
 
 
 
Table 5. Genes associated with each set of top five reactions.  
Note that all reactions starting with “EX” refer to transport 
reactions or “exchange/export fluxes” were resources are 
taken up by the cell or secreted from the cell. 

Reactions 
Knocked Out Gene Name 

ACt2r 
EX_leu_L_(e) 

NMNAT 
SUCD1i 
TALA 

- 
- 

nadD 
sdh 

talA or talB 
EX_ac_(e) 

FUM 
G6PDH2r 
SUCD4 
TMPKr 

- 
fum 
zwf 
sdh 
thiL 

EX_ac_(e) 
FUM 

G6PDH2r 
GUAPRT 
SUCD4 

- 
fumA or fumC or fumB 

zwf 
gpt or hpt 

sdhD, sdhC, sdhA, sdhB 
EX_ac_(e) 

EX_no2_(e) 
G6PDH2r 

PYRt2r 
SUCD4 

- 
- 

zwf 
- 

sdh 
EX_ac_(e) 
MTHFC 
RNDR3 
SUCD1i 
SUCD4 

- 
folD 
nrd 
sdh 
sdh 

 
 

 
Figure 2. Top ten most common knockouts for overproduction 
of succinic acid in E. coli iJR904 found in the top five results 
for 100 trials. 
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Figure 3. Basic TCA cycle diagram. Knocking out acetate 
exporters, succinate dehydrogenase, and fumarase allows for 
overproduction of succinic acid 
 
Although fumarase was present in only two of the five top results, 
it is present in nearly every sub-optimal knockout set. In the sub-
optimal sets, the growth rate is closer to the wild-type growth rate 
of 0.9219 h-1 but the succinic acid production is lower than in the 
best sets presented in Table 3. In the case of fumarase, it was 
present in 58 of the 100 top knockout sets, which includes the best 
and sub-optimal sets. The average succinic acid production and 
growth rate for the sets that contained fumarase were 1.6777 
mmol gDW-1h-1 and 0.5731 h-1 respectively. This is further 
demonstrated for each of the top ten reaction knockouts in Table 
5.  In general, if a reaction knockout has a higher average succinic 
acid production rate, it has a lower growth rate due to the majority 
of the carbon available to the E. coli being shunted towards the 
succinic acid synthesis rather than production of biomass. The 
genes catalyzing the reactions that were recommended to be 
knocked out are shown in Table 4. 
 
Table 5. The average succinic acid production rate and 
growth rate for all knockout sets containing each reaction 

Reaction Name 
Average Succinic 
Acid Production 
(mmol gDW-1h-1) 

Average Growth 
Rate (h-1) 

FUM 1.6777 0.5731 
SUCD4 2.6715 0.2210 
SUCD1i 2.7725 0.2096 
PPCDC 0.8838 0.8434 
ACt2r 6.1650 0.3074 

EX_ac_(e) 3.6132 0.1908 
PNTK 0.8857 0.8452 

PANTS 0.8863 0.8453 
EX_leu_L_(e) 2.6929 0.3202 

G6PDH2r 4.3057 0.1324 
 

5. CONCLUSION 
 This work focused on implementation of STEER-ACO in order 
to determine the best reaction knockouts to be performed for 
overproduction of succinic acid in E. coli model iJR904.  This 
algorithm differs from the previous ACO/MoMA hybrid methods 

developed by Chong et. al. in that while the solution space is 
searched in a completely stochastic manner in the first iterations 
of the algorithm, it refines the search space over time towards 
favorable solutions or edges. This is performed with a bias 
towards favorable single reaction knockouts determined in the 
initialization phase of the algorithm, as well as a probability of 
local search that decays over time.  The top five predicted best 
knockouts in five sets of twenty runs not only had a higher 
succinic acid production rate, but a higher growth rate as well 
when compared to reaction knockouts reported from Chong et. al.. 
This is due in part by using the growth rate as a heuristic factor in 
determining the amount of pheromone to be deposited on a 
solution, as well as the bias towards favorable knockouts as time 
goes on. This allows for solutions that return a high succinic acid 
production rate and a reasonable growth rate.  It also allows for 
identification of sub-optimal solutions that return a moderate 
succinic acid production rate and growth rate close to the wild 
type, which is important if growth rate is an important factor.   
 In addition, good solutions can be converged upon in just over 
eight minutes for up to a maximum of five reaction knockouts. 
The methods described in this work can be applied to any flux of 
interest, such as H2 production for biofuel or API’s for 
pharmaceutical use.  Furthermore, predictions made by STEER-
ACO may be used as a guideline for wet laboratory experiments 
to guide overproduction of a molecule or biomaterial of interest, 
especially because custom reaction and constraints easily be 
inserted into the in silico model and replicated in vitro. 
 This algorithm is still in its early stages of development. In the 
future, the algorithm will be further optimized for speed and 
performance. This will be accomplished by parallelization across 
multiple CPU’s, as well as utilizing PyCUDA for GPU 
programming, which can achieve 20x-2000x performance 
increase [2].  This will eliminate the need for any preprocessing of 
the model to cut down computation time, and allow for more ants 
and iterations for exhaustion of the search space and convergence 
on best solutions.    
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