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ABSTRACT
Combinatorial optimization problems and corresponding
(meta-)heuristics have received much attention in the lit-
erature. Especially, the structural or topological analysis of
search landscapes is important for evaluating the applica-
bility and the performance of search operators for a given
problem. However, this analysis is often tedious and usu-
ally the focus is on one specific problem and only a few
operators. We present a visual analysis method that can be
applied to a wide variety of problems and search operators.
The method is based on steepest descent walks and shortest
distances in the search landscape. The visualization shows
the search landscape as seen by the search algorithm. It
supports the topological analysis as well as the comparison
of search landscapes. We showcase the method by applying
it to two different search operators on the TSP, the QAP,
and the SMTTP. Our results show how differences between
search operators manifest in the search landscapes and how
conclusions about the suitability of the search operator for
different optimizations can be drawn.

CCS Concepts
•Mathematics of computing → Optimization with
randomized search heuristics; •Human-centered com-
puting → Information visualization;

Keywords
Combinatorial optimization, Local search, Fitness landscapes,
Empirical study
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1. INTRODUCTION
A frequent class of optimization problems are combinato-

rial optimization problems, where an optimal solution has to
be found from a finite set of solutions. Typically, the solution
space grows exponentially in the problem size. Therefore,
exhaustive search by complete enumeration is only possible
for very small problem instances.

Local search algorithms [15] use search operators to con-
struct a neighborhood among the solutions. They traverse
the emerging search landscape in order to find locally op-
timal solutions. The topological complexity of the search
landscape, e.g., indicated by the number of and the distance
between local minima, the average length of search paths,
or the probability of finding a good local minimum, depends
on the interaction between the search operator and the op-
timization function. Optimization is much easier in search
landscapes with simpler topology. Thus, an optimization
problem can be solved by finding a search operator that in-
duces a preferably simple search landscape.

The analysis of search landscapes is crucial in identifying
well-performing search operators. In this paper, we present
a method for analyzing search landscapes that is based on
approximating the search landscape using random samples
and steepest descent walks together with a visualization sys-
tem that shows the topology of the solutions found by the
sampling process. The method does not depend on a specific
problem and thus is widely applicable. The visualization
system fosters the interpretation of the analysis results. In
particular, the visualization of the search landscape shows
how the search algorithms perceives the optimization prob-
lem. We apply the method to instances of the TSP, the
QAP, and the SMTTP and compare the performance of two
different search operators on these problems.

2. SEARCH LANDSCAPES

2.1 Definition
Discrete combinatorial optimization addresses the selec-

tion of the best solution out of a finite set of solutions X
of a problem instance. Usually, a cost function f : X → R
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is used to model the quality of solutions: x ∈ X is better
than y ∈ X if f(x) < f(y). Solving the optimization prob-
lem is equivalent to finding the global minimum of f . Here,
we are particularly interested in permutation problems, i.e.,
optimization problems where the set of solutions is a set of
permutations of a given size, or a subset thereof. In the fol-
lowing, the length n of a permutation is referred to as the
problem size. Many practically relevant permutation prob-
lems are NP-hard [9]. The relevant problems for this paper
are discussed in Section 2.3.

Local search methods incrementally improve initial solu-
tions until no further improvement can be achieved, i.e., un-
til a local minimum is reached. Thereby, the neighborhood
defines the search candidates for every solution. Formally,
we define a neighborhood as a mapping N : X → 2X that
associates every solution with a set of neighbor solutions. In
practice, the neighborhood is often implemented by use of
a search operator. Following Schiavinotto et al. [24], we de-
fine a search operator ∆ as a collection of operator functions
δ : X → X such that y ∈ N(x) ⇐⇒ ∃δ ∈ ∆ with δ(x) = y.
The set of solutions together with the search operator form
the neighborhood graph GX,N = (X,EN ). Thereby, the set
of directed edges is defined as EN = {(x, y)|x, y ∈ X ∧ y ∈
N(x)} = {(x, y)|x, y ∈ X ∧ ∃δ ∈ ∆ : y = δ(x)}. In particu-
lar, we consider search operators that give rise to connected
and symmetric neighborhood graphs. Because the vertex
set is the set of solutions, the cost function f can be consid-
ered a function on the vertex set of the neighborhood graph.
Thus, the search landscape Sf,X,N = (GX,N , f) is formed.

The topological structure of the search landscape charac-
terizes the difficulty of the search. Interesting properties are
the number of local minima, the number of paths leading to
these minima, or the lengths of these paths. The cost func-
tion f has an important influence on the complexity of the
topology. Some problems give rise to much more complex
search landscapes than others. However, also the search op-
erator determines the topology, as it defines the connectivity
within the landscape. Thus, complexity may also arise when
the search operator does not fit the optimization problem
well.

Depending of the size of the search operator—the oper-
ators defined in [24] have |∆| ∈ O(n) or |∆| ∈ O(n2)—the
search landscape has O(n!) nodes and O(npn!) edges. This
makes it impossible to search the complete graph except for
very small n. Therefore, analysis approaches have been de-
veloped that use only parts of the landscape. One approach
generates a representative sampling of the landscapes [17],
i.e., it extracts a subset of solution with the same overall
properties as the whole set of solutions. Other approaches
consider search paths (steepest descent paths and descend-
ing random walks) and analyze their properties [8, 22, 26]. A
path p of length l is a sequence of solutions p = [p1p2 . . . pl]
with pi+1 ∈ N(pi) for all 1 ≤ i < l. A descending path
is a path p with f(pi+1) < f(pi). Naturally, descending
paths can only be extended as long as a better neighbor
exists. In particular, descending paths end in local min-
ima. For steepest descent paths we require additionally that
pi+1 = minf(p){p ∈ N(pi)}. Of special interest are short-
est paths within the landscape, especially their length. We
define the distance d∆(x, y) between x, y ∈ X as the length
of a shortest path between x and y, i.e., as the minimal
number of applications of operator functions δ ∈ ∆ that are
necessary to transform x into y. For many operators, there

exist efficient algorithms to compute the distance between
two solutions or at least a good approximation for this dis-
tance [24].

2.2 Proximate Optimality Principle
The Proximate Optimality Principle (POP) states, that

“good solutions at one level are likely to be found ’close to’
good solutions at an adjacent level” [7, 11]. In the case of
local search algorithms, it can be translated as such: good
local minima are likely to be found “close to” each other.
Thereby, closeness or proximity can be expressed by means
of the search operator distance.

This formulation of the POP does by no means hold for
every search landscape. If it holds, the result will be one or
several clear accumulations of local minima within a small
part of the search landscape. If this is the case, like for
the Traveling Salesman Problem [8, 26], it is very beneficial
for the search process and can be exploited. Therefore, we
are particularly interested in investigating whether the POP
holds for a search operator on given problems.

2.3 Optimization Problems
In the following, we define the three NP-complete opti-

mization problems that we consider in this paper. The Sym-
metric Traveling Salesman Problem (STSP) is to find for n
given locations and distances dij = dji between locations
1 ≤ i, j ≤ n the shortest round-trip that visits all loca-
tions. A round-trip can be considered as a permutation π
where π(i) is the location at position i of the round-trip. The
length of the tour is fTSP (π) =

∑n−1
i=1 dπ(i),π(i+1)+dπ(n),π(1).

The Quadratic Assignment Problem (QAP) requires n fa-
cilities to be assigned to n locations. Given are distances
dij = dji between two locations 1 ≤ i, j ≤ n and the
amount of exchange ekl = elk between two facilities 1 ≤
k, l ≤ n. An assignment of facilities to locations is a per-
mutation π, where facility k is assigned to location π(k).
Then a permutation is searched that minimizes fQAP (π) =∑n
k=1

∑n
l=1 ekl · dπ(k),π(l).

The Single Machine Total Tardiness Problem (SMTTP)
is to find an optimal, sequential schedule of n jobs. Each
job i has a processing time pi > 0 and a due date di > 0.
A schedule is a permutation π where job i is scheduled
at position π(i). Then, the completion time of job i is
Ci(π) =

∑
π(j)≤π(i) pj . The tardiness of job i is Ti(π) =

max{0, Ci(π)−di}. A schedule π is searched that minimizes
fSMTTP (π) =

∑n
i=1 Ti.

2.4 Search Operators
The following two operators are of particular interest and

will server as examples throughout the paper. The 2-opt op-
erator ∆2opt, also known as 2-edge exchange operator, is a
well established search operator for TSP ([5, 16]). Basically,
it disentangles a route by eliminating edge crossings. For-
mally, the application of this operator corresponds to the re-
versal of a subsequence of a (circular) permutation. The cor-
responding distance between to permutations is called rever-
sal distance. Unfortunately, the decision version of the prob-
lem to determine the reversal distance (or a corresponding
shortest transformation between two solutions—also called
the sorting by reversal problem) is NP-hard. However, the
bond distance provides a good approximation for it: the
number of edges is counted that are not in common between
the two tours. This yields a maximal possible bond distance
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of n. The bond distance differs from the reversal distance
at most by factor 2 as proven by Boese [2].

The interchange operator ∆X = {δijX |1 ≤ i < j ≤ n} is
the set of transpositions

δijX(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

for a permutation π = (π1 . . . πn). The distance between
two permutations with respect to ∆X can be determined by
d∆X (π, π′) = n− c(π−1 ◦ π′) (see [24] for details). Thereby,
c(π) is the number of cycles of the permutation π, and π−1 is
the inverse permutation, i.e., π◦π−1 = identity. A permuta-
tion has at least one cycle, so that the maximal interchange
distance is n− 1.

3. RELATED WORK
The analysis of search landscapes is an active area of re-

search, e.g., [7, 8, 10, 15, 21, 22, 26]. Stadler and Schnabl [26]
analyzed the auto-correlation function along random walks
to gain insight into the shape of the landscape. Fonlupt et
al. [8] also analyzed random walks as well as steepest de-
scent walks, but mostly regarding their lengths. Primarily,
they investigated the distribution of operator distances be-
tween local minima of the search landscape. Both of these
papers focus on the TSP and also restrict their analysis to
the 2opt operator. We consider our work a generalization of
these approaches in that we extend their method and also
expand the scope of the investigation to other optimization
problems and other search operators. Additionally, we com-
plement our method with a visualization that is tailored
towards the analysis of the results.

There exist several sampling-based approaches for analyz-
ing search landscapes since full enumeration is often infea-
sible because of the size of the landscape. Random sam-
pling provides uninformed samples with unknown distribu-
tion within the landscape. Khor [17] presents a method
based on Wang-Landau sampling that captures a represen-
tative subset of the search landscape. In particular, these
subsets allow for reasoning about the distribution of cost
values within the landscape. However, in this paper our
main concern is the connectivity and relation among the lo-
cal minima. We achieve this by considering a number of local
search paths rather than unconnected solutions throughout
the search landscape.

Flamm et al. [6] published an important work about the
topological structure of landscapes and introduced the bar-
rier tree. This work has been used in the analysis and
visualization of combinatorial optimization [1, 14, 27, 28].
However, all of these methods require the set of all solu-
tions below a certain cost threshold to be available. There-
fore, they can only be applied to search landscapes of rel-
atively small problems instances (see Section 2). Further-
more, no branch-and-bound techniques (as used by Hallam
and Prügel-Bennett [14]) that would allow for efficient reduc-
tion of the search space are available for permutation prob-
lems in general. Our proposed approach does not result in
a rigorous representation of the topology of the search land-
scape, but is applicable to problem instances that cannot be
exhaustively searched. Instead of a tree representation of
the search landscape, we derive visualizations that allow to
draw conclusions about the shape of the search landscape
from a small subset of it. A very similar approach has been
presented by McCandlish [20] for the visualization of evolu-
tionary landscapes. He uses an approximation of the number

of evolutionary generations between individuals to obtain a
transition or distance matrix. Afterward, he does an Eigen-
decomposition of this matrix to project the individuals into
2D space while preserving their evolutionary distance.

Halim et al. [13] propose a visualization system called
“Viz” that facilitates the analysis of local search behavior.
They create a search landscape representation by means of
a 2D embedding of important landmarks from searches in
the landscape, based on the Hamming distance function be-
tween the landmarks. Then, search runs are plotted as tra-
jectories in this depiction. The focus of the system is the
analysis of search algorithms, not on the search landscape
itself. Furthermore, the fixed distance function introduces a
gap between the perceived search space and the actual be-
havior of the search strategy. In contrast, we use distance
functions that match the search operator in order to visual-
ize the search landscape as seen by the search strategy.

4. ANALYSIS METHOD
The goal of our approach is to enable the topological anal-

ysis of search landscapes. The approach should be applica-
ble to problem instances of arbitrary size. Further, it should
not be specific to a certain problem type or search operator.
Thus, the comparison of search landscapes of different prob-
lem instances, different search operators, and even different
problems should be enabled. Thereby, the type of the prob-
lem should not need to be restricted. In particular, we do
not rely on the existence of efficiently enumerable solution
subsets or branch-and-bound techniques.

Our approach consists of two parts. In Section 4.1, the
sampling of the search landscape providing representative
data is described. The topological visualization (Section 4.2)
uses this data enabling to address the goals and to perform
the tasks in an effective and efficient manner.

4.1 Sampling of the Search Landscape
Analyzing the complete search landscape is infeasible for

all but small problem instances (up to a problem size of
about 15 for permutation problems). Instead, we analyze
the properties of chosen solutions as well as of walks within
the search landscape. Our analysis approach follows closely
the approach of Fonlupt et al. [8, 22] and to some extend
the one of Stadler and Schnabl [26].

We obtain a set of initial solutions, called samples, by
generating random permutations using Knuth shuffles [18].
Then, we obtain a number of search paths by tracing each
sample to a local minimum. Thereby, we use steepest de-
scent paths that associate every solution with exactly one
local minimum. The length of the search path provides in-
formation about the closeness of the minima to the samples.

We also obtain two additional sets of solutions from the
search paths. First, we have the set of found local minima.
Since multiple steepest descent paths may end at the same
local minimum, the number of found local minima is equal
to or less than the number of samples.

Second, we have the solutions on the search paths be-
tween the samples and the local minima. Since the lengths
of search paths scale with the problem size [8], this can be
a large amount of solutions. Adding all of them to the vi-
sualization would results in visual clutter. Therefore, we
represent each path by its median solution.

We obtain information about the connectivity and the ad-
jacency within the search landscape by computing the dis-
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Figure 1: 2-opt search landscapes for three TSP instances from the TSPlib. The number in the problem
names indicates the problem size. In the top row, the layout of the search landscapes is shown. Minima
are shown in green, medians in light blue, and the samples (initial solutions) in orange. A clear, crater-like
appearance can be seen. In the middle row, the distribution of the distances is shown. Colors correspond
to the top row. The short distances between the local minima are clearly visible. In the bottom row, the
distribution of the path lengths is plotted.

tance with respect to the search operator between any two
solutions from all three sets (i.e., the samples, the corre-
sponding local minima, and the corresponding median so-
lutions). This results in six groups of distances. Based on
knowledge about the search operator (e.g., the maximal dis-
tance or diameter of the search landscape, and the global dis-
tribution of distances), conclusions about the location and
mutual proximity of local minima within the search land-
scape can be drawn [8]. Furthermore, the length of the
search paths can be contrasted against the theoretical di-
ameter of the search landscape.

Discussion.
Arguably, Knuth shuffles do not generate samples that

represent the search landscape well in general [17]. Dur-
ing our experiments we found that only a small range of
cost values is found by this sampling method and local min-
ima or solutions near local minima are rarely encountered.
However, random permutations are often used to initialize
local search or simulated annealing methods. Therefore, our
sampling method is in agreement with common optimization
techniques. Because of that, we did not incorporate more
elaborate sampling methods into our analysis.

Some analysis approaches (e.g., Stadler and Schnabl [26])
use random descending walks rather then steepest descent

paths. These can be computed faster, because the neigh-
borhood of each solution along the path does not need to
be expanded completely. However, random walks typically
can map each solution to several local minima. It is more
straightforward to create a topological partition of the search
landscape into basins around local minima using steepest de-
scents [6] than using random descending walks [25]. There
is also a close connection between steepest descent and the
barrier tree [6]. Therefore, we preferred to use steepest de-
scent in our method.

4.2 Visualization of the Search Landscape
In the following, we outline a visualization system that fa-

cilitates the understanding of the search landscape based on
the extracted solutions (Section 4.1). For every solution we
have a permutation and the associated cost value. Addition-
ally, the distance between any two solutions is known. We
propose using (stacked) bar charts of histograms [30] and
scatterplots [12] for presenting the data. A detailed discus-
sion of design alternatives and the design choices made are
presented in a companion paper [29].

The distribution of the paths’ length is shown using bar
charts (e.g., bottom row of Figure 1). Histograms are very
well suited for the analysis of single attributes.Thereby, the
range of possible values is partitioned into equally-sized bins
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Figure 2: Juxtaposition of the layouts (left image and center image) and the distance distributions (right
images) of the search landscape of the Bier127 problem for the 2-opt operator and the interchange operator.
The search landscape from the interchange operator reveals much less structure, and the distances within all
groups of solutions are almost maximal.

and the number of data values in every bin is counted. The
bins are represented by bars in a two-dimensional plot. The
position of the bar on the x-axis corresponds to the range of
the bin, while the height of the bar (y-axis) corresponds to
the number of elements in the bin. Altogether, this results
in a so-called bar chart.

The distances between the solutions are represented us-
ing stacked bar charts and scatterplots. In the stacked bar
chart (e.g., the middle row of Figure 1), six groups of dis-
tances are shown: distances within one class of solutions
(3), and distances between two of these classes (3). For each
group of distances, its histogram is computed. Stacking the
histograms then yields the stacked bar chart. Thereby, each
group of distances is assigned a particular color, e.g., green
for the group of distances between minima, and yellow for
the group of distances between minima and median solu-
tions. The color assignment is shown in a legend.

For showing the distances, the stacked bar charts are com-
plemented by a visual depiction of the search landscape (e.g.,
top row of Figure 1). Therefore, we exploit that the dis-
tances between the solutions carry topological information.
The constructed visualization should preserve the distances
and the topological properties as good as possible. Thereby,
the topological proximity is approximated by the spatial
proximity in the plot. To do so, the solutions are mapped
onto the 2D plane such that the Euclidean distances between
the points in the plane approximates the distances within the
search landscape. This mapping is achieved using a metric
Multidimensional Scaling technique [4], in particular, a vari-
ant of the Shepard-Kruskal algorithm that simulates a spring
force model is applied. Initially, all solutions are placed at
random positions in the 2D plane. Each solution exerts a
force on every other solution according to the deviation of
the Euclidean distance to the operator distance (for details
see [29]). Then, all solutions are moved, so that the overall
force is minimized. This is repeated until an equilibrium or
a maximal number of iterations is reached. The resulting
layout is shown in a 2D scatterplot. The same colors as-
signed to the solution classes for depicting the stacked bar
charts are used for coloring the points in the scatterplot.

5. RESULTS
The search landscapes obtained by applying the 2opt and

the interchange operator to TSP, QAP, and SMTTP were
analyzed. The results of this analysis are presented next.

5.1 TSP
The TSP is a classical benchmark problem for which well-

established results are available [8, 26]. Analyzing the search
landscapes of the 2opt operator on all instances of the
TSPlib [23] up to a problem size 1048 using our method
confirmed these results. Figure 1 shows the result for three
example problems of different sizes. Similar images have
been obtained for all other test instances. The local minima
(green) form a cluster in the center of the search landscape
layout (Figure 1, top row). From the stacked bar charts,
we can see, that the distances between the local minima are
1
3

to 1
2

of the problem size (Figure 1, middle row). Given
the definition of the bond distance (cf. Section 2.4), this
means that each two local minima have 1

2
to 2

3
inter-city

connections in common. This conformance is unexpectedly
high. Furthermore, we can see that the distances between
the samples (orange) are almost maximal and that there is
a large distance between the samples and the local minima
(dark blue). The average path length is slightly smaller than
the diameter of the search landscape. This indicates, that
2opt converges relatively straight to local minima.

Further, we compared the search landscapes of two differ-
ent search operators (2opt and interchange operator). Fig-
ure 2 shows a juxtaposition of both search landscapes for in-
stance Bier127 from the TSPlib, which is representative for
the other instances from the TSPlib. When using the inter-
change operator, the search paths are longer on average and
the found local minima (green) are not located close each
other. Instead, there are almost maximal distances both
between the samples (orange) as well as between the local
minima (green). This results in a very different landscape
layout that reveals little structure.

5.2 QAP
We applied our method to all instances of the QAPlib [3].

Results for two instances are shown in Figure 3 as an ex-
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Figure 3: Search landscapes of two instances from the QAPlib for the 2opt operator and the interchange
operator. The number in the problem names indicates the problem size. The search landscape layout is
shown in the top row. Minima are shown in green, medians in light blue and the samples (initial solutions)
in orange. In the middle row, the distribution of the distances is shown. Colors correspond to the top row.
At the bottom, histograms of the search path length distributions are shown.

ample. Different from the TSP, we typically did not find
the characteristic crater-like structure in the QAP. Usually,
as can be seen in the search landscape layouts in Figure 3,
top row, the local minima (green) are scattered through-
out the landscape. Distances between solutions of the same
group are nearly maximal almost without exception. In
many problem instances, e.g., the lipa90a instance (see right
images in Figure 3), there is no visual difference between
the search landscapes of both operators. However, the in-
terchange operator produces longer search paths (cf. path
length histograms in the bottom row of Figure 3). The path
length bar charts show that for some instances the local min-
ima are close to the samples, less than half of the diameter of
the search landscape (first, third, and fourth column of Fig-
ure 3). Interestingly, in some instances a subset of the found
local minima (green) are grouped together when using the
interchange operator (cf. the second column in Figure 3),
whereas others remain scattered throughout the landscape.
This can also be seen by the two peaks in the distribution
of distances between local minima in the histogram. Such a
grouping of local minima does not exist for the 2opt operator
in any of the instances of the QAPlib.

5.3 SMTTP
For the analysis of the SMTTP, we generated various test

instances of size 100. Both, the job lengths as well as the
due dates were determined randomly. The processing times
were chosen uniform randomly between 1 and 100. In the
following, T denotes the sum of all processing times, i.e., the
total processing time of the schedule. The due dates where
generated according to two parameters r (range length) and

d̃ (mean due date). Thereby, the due dates were chosen

uniformly from the interval
[
T · (d̃− r

2
), T · (d̃+ r

2
)
]
∩ [0, T ].

The larger d̃ is the earlier are the due dates, so that the total
tardiness increases.

Figure 4 shows the search landscapes of the 2opt operator
and the interchange operator for four selected instances. We

found that the due date parameter d̃ has a strong influence
on the characteristics of the search landscape. If the mean
due date is low, almost no structure is visible (top row).
As can be seen in the bottom row of Figure 4, this changes
when the mean due date increases. Then, a clear separation
between local minima (green) and initial solutions (orange)
can be seen, forming a crater-like structure similar as for
the TSP with 2opt (cf. Figure 1). This structure is already
visible in the search landscapes of the interchange operator
at smaller due date values than in the landscapes of the 2opt
operator. The range length appears to have an influence on
the sharpness of the crater. Larger distances within the
crater are possible when the range length is small.

6. DISCUSSION
We found the results of Fonlupt et al. [8] about 2opt on

the TSP confirmed by our experiments. The “massif cen-
tral” that is mentioned both by Fonlupt (and Stadler [26])
is clearly visible in the layout of the search landscapes. The
distances of n/3 – n/2 between the local minima (cf. Fig-
ure 1) are in accordance with Fonlupt’s findings as are the
average lengths of the steepest descent paths. All this indi-
cates that the POP holds for the TSP with the 2opt opera-
tor.

When applying the interchange operator to the TSP, we
obtain longer search paths and the search landscape layouts
reveal almost no structure. This confirms intuitively that
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2opt, r = 0.3 2opt, r = 0.7 interchange, r = 0.3 interchange, r = 0.7

d̃ = 0.3

d̃ = 0.7

Figure 4: Randomly generated instances of the SMTTP with size 100. r is the relative length of the due

dates interval and d̃ is the mean due date. The layouts of the search landscapes of the 2opt operator and the
interchange operator are shown. Local minima are shown in green, medians in light blue and the samples
(initial solutions) in orange.

steepest descent using the 2-opt operator is more efficient
than using the interchange operator [19, 26]. Our interpre-
tation is that the missing structure makes the TSP harder
when using the interchange operator. In any case, the POP
does not hold for the interchange operator on the TSP.

In contrast to the TSP, we did not find much structure
in the landscapes of the QAP with our method. Moreover,
algorithms are prone to get stuck in local minima that are
close to the sample points, which can be induced from the
short length of the search paths compared to the distances of
the minima and the diameter of the search landscape. The
interchange operator leads to longer search paths in compar-
ison to the 2opt operator. Furthermore, in some instances,
at least some structure among the local minima was present
in the landscapes of the interchange operator. From that
we conclude that the interchange operator seems to fit the
QAP better than the 2opt operator. However, even for the
interchange operator there is no clear clear indication that
the POP holds. This indicates that the QAP is a harder
problem than the TSP.

The results in the previous section show that the difficulty
of the SMTTP clearly depends on the mean due date. The
later the mean due date, the higher the tardiness and the
more crater-like the landscape. This indicates that the POP
holds and that the problem is potentially easier to solve. A
reason for this may be the asymmetry in the cost function
of the SMTTP, because of the cut-off of negative tardiness.
The higher the overall tardiness is, the smaller is the over-
all cut-off. Thus, changes in the schedule are reflected to
a greater extend by changes in the cost function. Also—in
contrast to the TSP—the crater-like structure is more pro-
nounced for the interchange operator compared to the 2opt

operator, especially for small mean due dates d̃ and small
ranges r. This indicates that for SMTTP, search algorithms

based on the interchange operator might produce better re-
sults than those based on the 2opt operator.

7. CONCLUSIONS AND FUTURE WORK
We presented an analysis method for search landscapes

that is applicable to permutation problems without restric-
tions, as well as to many different search operators. It
uses steepest descent paths from random solutions within
the search landscape to reveal topological properties of the
landscape. The method is in accordance with and extends
previous work on search landscapes [7, 8, 22, 26]. It includes
a visualization system [29] based on visualization of statis-
tical data as well as on a topological visualization of the
search landscape. This supports the interpretation of the
search landscape. We applied the method to instances of
the TSP, the QAP, and the SMTTP. Our findings confirm
previous work on the TSP and common assumptions about
the relation between TSP, QAP, and SMTTP. Furthermore,
we showed the influence of two due date parameters on the
difficulty of the SMTTP and presented indications that the
interchange operator is better suited for search algorithms
for QAP and SMTTP than the 2opt operator.

Our findings suggest, that a more complete study that
covers more search operators might reveal interesting in-
sights into these well-known problems. In particular, a search
operator that leads to crater-like structures in the QAP
landscapes would be worth finding.

Sophisticated metaheuristics combine multiple search op-
erators. Therefore, it is interesting future work to investigate
how our approach can be extended to such cases.
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