
Subspace Clustering Using Evolvable Genome Structure

Sergio Peignier
Université de Lyon

INSA-Lyon, CNRS, INRIA
LIRIS, UMR5205
F-69621, France

Sergio.Peignier@inria.fr

Christophe Rigotti
Université de Lyon

INSA-Lyon, CNRS, INRIA
LIRIS, UMR5205
F-69621, France

Christophe.Rigotti@insa-
lyon.fr

Guillaume Beslon
Université de Lyon

INSA-Lyon, CNRS, INRIA
LIRIS, UMR5205
F-69621, France

Guillaume.Beslon@inria.fr

ABSTRACT
In this paper we present an evolutionary algorithm to tackle
the subspace clustering problem. Subspace clustering is rec-
ognized as more difficult than standard clustering since it
requires to identify not only the clusters but also the various
subspaces where the clusters hold. We propose to tackle this
problem with a bio-inspired algorithm that includes many
bio-like features like variable genome length and organiza-
tion, functional and non-functional elements, and variation
operators including chromosomal rearrangements. These
features give the algorithm a large degree of freedom to
achieve subspace clustering with satisfying results on a ref-
erence benchmark with respect to state of the art methods.
One of the main advantages of the approach is that it needs
only one subspace clustering ad-hoc parameter: the maximal
number of clusters. This is a single and intuitive parameter
that sets the maximal level of details of the clustering, while
other algorithms require more complicated parameter space
exploration. The other parameters of the algorithm are re-
lated to the evolution strategy (population size, mutation
rate, ...) and for them we use a single setting that turns out
to be effective on all the datasets of the benchmark.

1. INTRODUCTION
Subspace clustering is recognized as more general and

more difficult than clustering. A subspace clustering task
searches for objects sharing similar feature values, and also
at the same time searches for the subspaces where these sim-
ilarities appear, while usual clustering only looks for groups
of objects similar over the whole data space. Subspace clus-
tering can be thought as ”similarity examined under dif-
ferent representations” [Patrikainen and Meila, 2006] and
is particularly useful when dealing with high dimensional
spaces [Kriegel et al., 2009].

According to [Banzhaf et al., 2006], bio-inspired optimiza-
tion algorithms could be improved by incorporating knowl-
edge from molecular and evolutionary biology. A promising

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to al-
low others to do so, for Government purposes only.
GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c⃝ 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754709

source of advances in optimization is one of the important
phenomena in evolutionary biology: the dynamic evolution
of the genome structure. Several studies showed for instance
that an evolvable genome structure allows evolution to mod-
ify the effects that evolution principles (e.g., mutations)
have on individuals, a phenomenon known as evolution of
evolution [Hindré et al., 2012]. Evolvable genome struc-
ture can encompass various aspects, such as variable genome
length or variable ratio of functional versus non-functional
elements [Knibbe et al., 2007]. Among the state-of-the-art
formalisms used for in silico experimental evolution and re-
viewed in [Hindré et al., 2012], two models enable genome
structure evolution: [Knibbe et al., 2007] and [Crombach and
Hogeweg, 2007], and have inspired key aspects of our work.

In this paper, we present Chameleoclust, an evolutionary
subspace clustering algorithm that incorporates a genome
having an evolvable structure. The genome is a coarse-
grained genome, inspired on [Crombach and Hogeweg, 2007],
and defined as a list of tuples of numbers. These tuples are
mapped at the phenotype level to denote core point loca-
tions in different dimensions, which are then used to build
the subspace clusters. In Chameleoclust, the genome also
contains a variable proportion of non-functional elements
as in [Knibbe et al., 2007], and is subject to local muta-
tions and to large random rearrangements similar to those
used in [Knibbe et al., 2007] and [Crombach and Hogeweg,
2007], namely: large deletions, duplications and transloca-
tions. The local mutations and rearrangements modify the
genome elements but also the genome length and the pro-
portion of non-functional elements. The key intuition in the
design of the Chameleoclust algorithm is to take advantage
of such an evolvable structure to detect various numbers of
clusters in subspaces of various dimensions.

Chameleoclust is assessed using a reference framework for
subspace clustering evaluation[Müller et al., 2009], and com-
pared to state-of-the-art algorithms on both real and syn-
thetic datasets. The experiments show that Chameleoclust
obtains competitive results. Moreover, these results can be
achieved with a single parameter related to the domain, i.e.,
the maximal number of clusters.

The rest of the paper is organized as follows. The next
section introduces the proposed algorithm, and Sections 3
and 4 describe respectively the evaluation method and re-
sults. Section 5 presents the related work and we conclude
with a summary in Section 6.

575

2. Chameleoclust
Chameleoclust includes many bio-like features such as a

variable genome length and organization, presence of both
functional and non-functional elements, and variation op-
erators including large chromosomal rearrangements. These
features, inspired by the in silico experimental evolution for-
malisms of [Knibbe et al., 2007] and [Crombach and Hogeweg,
2007], give the algorithm a large degree of freedom by mak-
ing the genome structure evolvable. Chameleoclust takes
advantage of this structural flexibility to build subspace clus-
tering with various number of clusters and in subspaces hav-
ing different numbers of dimensions.

Dataset and clusters.
A dataset S is a set of objects described in RD by D fea-

tures (the coordinates of the objects). The size of S is the
number of objects in S, and D is the number of dimensions
(i.e., the dimensionality) of S. Each dimension is defined by
a number from 1 to D and the set of all dimensions of the
dataset is denoted D = {1, . . . , D}. The algorithm takes as
input a dataset S and a parameter cmax that is the maximal
number of desired clusters. The algorithm outputs a sub-
space clustering in the form of a set of clusters, where each
cluster is defined by a set of objects and a set of dimensions.

Overall clustering principle.
Each individual encodes in its genome a subspace cluster-

ing. More precisely a genome defines a set of so called core
points located in various subspaces having possibly less than
D dimensions. If the objects of the dataset tends to form
groups around these core points, then a high fitness is as-
sociated to the corresponding individual. The reproduction
(including selection and mutations) is performed for a whole
generation in a synchronized way. After a given number of
generations the process stops and the subspace clustering
corresponding to the individual having the highest fitness is
retained.

Preprocessing.
As in many typical clustering problems, the first step is to

standardize the dataset to ensure that all features could have
similar impact on the distance computation during the clus-
tering. Thus each feature value x is replaced by its z-score:
z = x−µ

σ , where µ is the dataset mean and σ is dataset stan-
dard deviation for the given feature. After standardization,
data values in different dimensions are independent of the
offset and scale, and features have all the same zero mean
and the same unitary dispersion. Finally the maximal value
among all absolute values of the z-score of all features is
computed and is noted xmax in the rest of the paper.

Genome structure.
A genome Γ is a list [γ1, . . . , γi, . . . , γn] of tuples of the

form γi = ⟨gi, ci, di, xi⟩, where gi ∈ {0, 1} indicates if γi is
a functional element of the genome (gi = 1) or not (gi = 0),
and ci, di, xi will be used to define the individual phenotype
and have the following specific domains: c ∈ {1, . . . , cmax},
d ∈ {1, . . . , D} and x ∈ V alCoord, with V alCoord = {j ×
xmax/1000 | j ∈ { −1000, . . . , 1000}}, i.e. all values from
−xmax to xmax with step xmax/1000.

Phenotype.
A phenotype is simply a set of core points. Informally a

core point is a specific point, around which objects can be
grouped to form a subspace cluster. The number of core
points cannot exceed the maximal number of desired clus-
ters cmax. Each core point is identified by a number c ∈
[1, cmax] and is denoted pc. The intuition of the genotype-
phenotype mapping is that each functional element of the
genome ⟨1, c, d, x⟩ is a contribution of value x to the loca-
tion of core point pc in dimension d. More precisely, let
xd be the coordinate of pc for dimension d, then xd is the
sum of all the values x contained in a tuple of the form
⟨1, c, d, x⟩ in the genomeΓ . The subspace associated to
pc (and for wich pc is defined) is the set of dimensions
Dpc = {d | ⟨1, c, d, x⟩ ∈ Γ for some x}, i.e., the dimensions
that contribute to pc inΓ . Notice that the non-functional
elements of Γ do not contribute to the phenotype.
For a given dataset S, a phenotype Φ defines a subspace

clustering of S, by associating each object of S to the best
matching core point in Φ. A non empty set of objects as-
sociated to a core point pc forms a cluster in subspace Dpc .
The precise definition of the notion of best match is given in
paragraph Fitness here after.

Notice that the length of the genome can be different
among individuals, leading to phenotypes containing differ-
ent numbers of core points in various subspaces and thus
defining subspace clustering models with different number
of clusters in subspaces having different number of dimen-
sions.

Mutation operators.
Each new genome is copied from a parent and modified

by biologically inspired mutation operators of two kinds:
Global rearrangements and point mutations. These oper-
ators are general mutation operators and are not guided by
some criteria related to the subspace-clustering task. The
model uses a single point mutation operator defined as fol-
lows for a genomeΓ.

• Point substitution: Let γi ∈ Γ and k ∈ {1, 2, 3, 4},
both uniformly chosen, the k-th element of the tuple γi

is replaced by a new random number drawn uniformly
in its associated range:

γi ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⟨U({0, 1}), c, d, x⟩ if k = 1

⟨g,U({1, . . . , cmax}), d, x⟩ if k = 2

⟨g, c,U({1, . . . , D}), x⟩ if k = 3

⟨g, c, d,U(V alCoord)⟩ if k = 4

where U denotes the uniform random selection of a
element in a set.

For the rearrangements, Γ is considered as being circular
(as bacterial genomes). This means that the tuple γn is
adjacent to the tuple γ1. In order to define the possible
rearrangements let us define three basic operators.

• Sublist extraction operator:

[γ1, . . . , γn]i,j =

{
[γi, . . . , γj] if i < j

[] (the empty list) if i ≥ j.

• List concatenation operator:

[γ1, . . . , γn] +
[
γ′
1, . . . , γ

′
m

]
=

[
γ1, . . . , γn, γ

′
1, . . . , γ

′
m

]

576

• Tuple merge operator M : Let γ = ⟨g, c, d, x⟩ and γ′ =
⟨g′, c′, d′, x′⟩, then four merges are defined depending on a
merge index k:

M(γ,γ ′, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⟨g, c′, d′, x′⟩ if k = 1

⟨g, c, d′, x′⟩ if k = 2

⟨g, c, d, x′⟩ if k = 3

⟨g, c, d, x⟩ if k = 4

Rearrangements are responsible for changing the tuples po-
sitions, increasing or decreasing the genome length. In addi-
tion rearrangement breakpoints operate inside tuples, break-
ing them and recombining them according to the rearrange-
ment operation, creating new tuples from old genetic mate-
rial. The model uses three kinds of rearrangements: large
deletions, large duplications and large translocations. For a
rearrangement of a genome Γ = [γ1, . . . , γn], a portion ofΓ
bounded by two tuples γi, γj ∈ Γ is considered, where i and
j are uniformly chosen in {1, . . . , n}. A breakpoint index
is also uniformly chosen in {1, . . . , 4} to specify where the
rearrangement limit is located within the bounding tuples.
The three rearrangement operators can then be defined as
follows:

• Large deletions: The segment between tuples γi and
γj is excised.

If i ≤ j:

Γ ← Γ1,i−1 +M(γi, γj , k) + Γj+1,n

If i > j, because of genome circularity, we have:

Γ ← Γj+1,i−1 +M(γi, γj , k)

• Large duplications : The segment between tuples γi

and γj is copied and inserted at the location of a third
tuple γp (uniformly chosen).

If i ≤ j:

Γ ← Γ1,p−1 + M(γp, γi, k) + Γi+1,j−1 + M(γj , γp, k) +
Γp+1,n

If i > j, because of genome circularity, we have:

Γ ← Γ1,p−1+M(γp, γj , k)+Γj+1,n+Γ1,i−1+M(γi, γp, k)+
Γp+1,n

• Large translocations: The segment between tuples
γi and γj is cut and inserted at the location of a third
tuple γp (uniformly chosen) such that p ̸∈ [i, j] if i ≤ j
and p ̸∈ [1, j] ∪ [i, n] if i > j. Translocation can be de-
fined with the two previous rearrangement operations.
At first the segment between tuples γi and γj is dupli-
cated at the location of the third tuple γp, and then it
is deleted.

During the reproduction of an individual, the mutations
stage is defined as follows. For each of the three kinds of re-
arrangement operations, the number of rearrangements per
genome is drawn from a binomial law B(L, um) where L is
the genome size and um is the mutation rate (same rate for
all mutation operators). The rearrangements of the three
kinds are then performed in a random order. Once rear-
rangements have been applied, the number of point substi-
tutions per genome is drawn from a binomial law B(L′, um)
where L′ is the genome size after applying the rearrange-
ment operations, and then all these point substitutions are
carried out.

Fitness.
For a given dataset S, the fitness of a individual of phe-

notype Φ is related to the quality of the subspace clustering
defined by Φ over S. This quality measure is an internal
measure based on a distance, and reflecting how the objects
in S tend to form groups around core points ofΦ.

In [Beyer et al., 1999] and [Aggarwal et al., 2001] it has
been shown that distance comparisons are less meaningful
when dimensionality increases, this effect is called the con-
centration effect of the distances. Furthermore, distances
do not have the same meaning in subspaces with different
numbers of dimensions: It is not fair to compare distances
calculated in subspaces with different dimensionality.

It has been shown in [Aggarwal et al., 2001] that the Man-
hattan distance is robust to the concentration effect. In
the Chameleoclust algorithm, the distance used is the Man-
hattan segmental distance introduced in [Aggarwal et al.,
1999] for the well known subspace clustering algorithm PRO-
CLUS. It is a normalized version of the classic Manhattan
distance to compare distances in subspaces with different
number of dimensions. Let y1 and y2 be two points in a
space over the set of dimension D, and y1,i (resp. y2,i) de-
notes the coordinate of y1 (resp. y2) in the dimension i of
D. Then, the Manhattan segmental distance is defined as:

dD(y1, y2) =
∑

i∈D

|y1,i − y2,i|
|D|

The functions to evaluate the subspace clustering models
corresponding to phenotypes and the fitness of the individ-
uals are defined as follows.

• A function E(x, pc) is used to assess the mismatch of
the assignment of an object x ∈ S in space D to a core
point pc in subspace Dpc . The highest is E(x, pc), the
worst is the association of x to pc. This function is
defined by:

E(x, pc) =
|Dpc | · dDpc

(x, pc) + |D \ Dpc | · dD\Dpc
(x,O)

| D |

where O is the centroid of dataset S, i.e., the origin
of the coordinate system after the z-score standardiza-
tion. The mismatch evaluation E(x, pc) increases with
the distance between the core point pc and the object
x (i.e., dD(x, pc)). E(x, pc) also increases if the sub-
space Dpc has not enough dimensions to explain the
shift of x with respect to O (i.e., dD′\D(x,O)).

• Each object x ∈ S is assigned to the core point pc ∈ Φ
for which E(x, pc) is minimal (in the rare cases where
several core points lead to the same minimal value,
then one of them is chosen nondeterministically). Let
Spc be the set of objects associated to pc, then if Spc

is not empty, the core point pc defines the subspace
cluster ⟨Spc ,Dpc⟩.

• Finally the fitness F can be defined as the opposite of
the sum of the mismatches of the best possible assign-
ments of the objects:

F = −
∑

pc∈Φ

∑

x∈Spc

E(x, pc)

577

The fitness function F goes to 0 when the evaluation of
the mismatches between objects and core points tends to 0
(perfect match), and is strongly negative when objects and
core points are poorly related. Notice that a core point pc
with no associated object (Spc = ∅) is not penalized, and its
corresponding functional elements in the genome may then
be preserved for further exploration.

Population.
Each individual can be perceived as an asexual artificial

organism containing a single chromosome. The population
evolves during T generations. At each generation the popu-
lation is completely renewed but its size N remains constant
over time. The following rank based selection method is used
for reproduction. The individual of the current generation
are ranked according to their fitness, in increasing order of
performance (the worst has rank 0 and the best rank N).
Then for each of the N individuals of the offspring genera-
tion, the parent of this individual is determined by a trial
over a N classes multinomial law, where each class is asso-
ciated to an individual of the current generation. For this
multinomial law, a class associated to an individual α has a

success probability pα = (s− 1) s
N−rα

sN−1
where rα is the rank

of the individual α and s the selection pressure parameter.
In order to avoid the best fitness to decrease Chameleoclust
uses an elitist selection method. More precisely, it always
adds in the next generation an unchanged copy of the best
current individual, and performs the random reproduction
using only N − 1 trials.

For the first generation, every initial individual is gener-
ated with a genome of size 100 containing random tuples
of the form: ⟨g,U({1, cmax}),U({1, D}),U(V alCoord})⟩, with
g = 1 for 1/3 of them (functional elements) and g = 0 for the
others (non-functional elements).

3. EXPERIMENTAL SETUP

Experimental protocol.
In order to evaluate and compare Chameleoclust to state-of-

the-art algorithms, we used the evaluation framework of refer-
ence designed for subspace clustering and described in [Müller
et al., 2009]. We clustered with Chameleoclust the same datasets
and computed the same evaluation measures as recommended
by [Müller et al., 2009]. We report in the Table 2 and Figure 3
the results given in [Müller et al., 2009] for the state-of-the-art
algorithms, together with the results obtained for Chameleoclust.

In the framework of [Müller et al., 2009], as each algorithm
requires several parameters (from 2 to 9), they are executed with
many different parameter settings to explore the parameter space.
Then, using an external labeling of the objects, only the subspace
clusterings that are among the best (with respect to the external
labeling) are retained. So, the results reported for these algo-
rithms are in some sense the best possible subspace clusterings
that could be achieved if we were able to find the most appro-
priated parameter values. Since generally no external labeling is
available when we search for clusters, parameter tuning is most
of the time a difficult task and these high quality subspace clus-
terings are likely to be hard to obtain.

An important point to notice, is that for Chameleoclust we
did not perform any parameter optimization using external in-
formation. We simply ran Chameleoclust and took the subspace
clustering defined by the individual of the last generation having
the best fitness. Since the algorithm is non-deterministic, we ran
it 10 times in the same conditions and report the minimal, max-
imal and mean values of the measures over these 10 runs. So,
we compare clusterings effectively found by Chameleoclust to the
best clusterings that could potentially be found by the other al-

gorithms. All experiments were run on a quad-core Intel 2.67GHz
CPU running Linux Ubuntu 14.04, and using a single core.

Datasets.
We studied Chameleoclust performances on real word data us-

ing the six benchmark datasets selected in [Müller et al., 2009] for
their representativity: breast, diabetes, liver, glass, shape, pendig-
its and vowel (most of them coming from the UCI archive [Bache
and Lichman, 2013]). These datasets have different dimensional-
ities and contain different numbers of objects. These objects are
already structured in classes, and the class membership is used by
quality measures to assess the cluster purity. However the num-
ber of classes does not necessarily reflect the number of subspace
clusters, since even within a class the objects can form several
clusters in different subspaces.

We also ran Chameleoclust on the 16 synthetic benchmark
datasets provided by [Müller et al., 2009]. These datasets are
particularly useful to study the algorithm performances, as the
true clusters and their subspaces are known. They have different
number of dimensions (5, 10, 15, 20, 25, 50 and 75), contain dif-
ferent number of objects (1500, 2500, 3500, 4500 and 5500), and
various percentages of added noise (0, 10, 30, 50 and 70%). Each
dataset contains 10 hidden subspace clusters.

For the real datasets we ran Chameleoclust using all objects,
while for the synthetic dataset it was executed on random samples
containing 20% of the objects to reduce the duration of the exper-
iments. However, in both cases we used 100% of the objects for
the evaluation of the clustering quality. This means that for a syn-
thetic dataset after having computed a subspace clustering with
20% of the objects, then we associated 100% of the objects to the
clusters (using the best matching core points). All datasets and
additional material are made available by the authors of [Müller
et al., 2009] at http://dme.rwth-aachen.de/openSubspace/evalua-
tion.

Parameter setting.
We used the same setting of the evolution strategy parameters

for all datasets: mutation rate um = 0.005, selection pressure
s = 0.8, population size N = 100, and number of generations
T = 5000. With 5000 generations the algorithm achieved a good
convergence for fitness and genome length, as illustrated in Fig-
ure 1 and Figure 2. A single parameter needed to be changed:
cmax the maximal number of subspace clusters that are built.
However, this parameter does not require a fine tuning since
Chameleoclust adapts the number of subspace clusters between
1 and cmax. It was set to 20 for all synthetic datasets and for
three real datasets: shape, pendigits and breast. For the other real
datasets, Chameleoclust was also tried with cmax = 20, but in
this case the algorithm output exactly 20 subspace clusters. This
meant that it did not succeed to regulate the number of subspace
clusters because cmax was to small. Thus for these datasets the
clusterings were repeated with cmax = 100 that turned out then
to be a sufficient upper bound.

Evaluation measures.
In order to compare our algorithm to the others, we used the

same standard evaluation measures for clusters and subspace clus-
ters as [Müller et al., 2009]: entropy, accuracy, F1, RNIA and CE.
We performed also the same simple transformation of entropy
and RNIA, by computing RNIA = 1 − RNIA and entropy =
1− entropy to have all evaluation measures ranging from 0 (low
quality) to 1 (high quality). The three first measures (entropy,
accuracy and F1) reflect how well objects that should have been
grouped together were effectively grouped. The two last measures
(RNIA and CE) take into account the way the objects are grouped
and also relevancy of the subspaces found by the algorithm. For
these measures, when the true dimensions of the subspace clus-
ters are not known (for real datasets), then as in [Müller et al.,
2009] all dimensions have been considered as relevant. We refer
the reader to [Müller et al., 2009] for a detailed presentation of
the evaluation measures.

578

0 5000 10000 15000 20000

-7
00

-6
00

-5
00

-4
00

GENERATION

B
E

S
T

FI
TN

E
S

S

Figure 1: Average of the best fitness for 10 runs
on one of the synthetic dataset (1500 objects, 10
dimensions, 0% noise).

0 5000 10000 15000 20000

10
0

12
0

14
0

16
0

GENERATION

G
E

N
O

M
E

 L
E

N
G

TH

Figure 2: Average genome length of all individuals
over 10 runs on one of the synthetic dataset (1500
objects, 10 dimensions, 0% noise).

4. EXPERIMENTAL RESULTS

Real dataset.
As aforementioned, we computed the minimum, the maximum

and the mean of the evaluation measures over 10 standard runs of
Chameleoclust, while for the other algorithms the measure values
are taken from the best possible runs (the ones leading to the high-
est evaluation measures over the parameter space). Even though
Chameleoclust has been executed on a computer (2.67GHz CPU)
different from the one used by [Müller et al., 2009] (2.3GHz CPU),
we report the runtimes, since at least their orders of magnitude
can still be compared. We also give the number of subspace clus-
ters found, the average dimensionality of these clusters, and their
coverage (i.e., the percentage of objects of the dataset that were
associated to clusters).

In order to illustrate the performances of Chameleoclust we fo-
cus on dataset shape in Table 2. For the sake of completeness the
other results are given in Figure 3 . In Table 2, when an algorithm
has a best possible run with a higher evaluation than Chameleo-
clust the result is highlighted in grey, and if the evaluation is simi-
lar to Chameleoclust then the result is simply emphasized in bold.
The best possible runs of DOC and MINECLUS are observed
with better results than standard runs of Chameleoclust for al-

Table 1: Average number of clusters and average
dimensionality per cluster found for each dataset

Dataset NumClusters AvgDim
breast 15.2 5.32
diabetes 60.8 2.06
glass 34.8 2.67
liver 62.8 1.93

pendigits 17.5 5.61
shape 14.9 7.27
vowel 48.7 2.59

most every quality measures, but they tend to split the dataset
in more clusters (same behaviour also on the synthetic datasets)
and have runtimes significantly higher than Chameleoclust. For
PROCLUS and STAPC the best possible runs achieve better re-
sults than Chameleoclust for F1 and CE, but in these cases their
coverage falls to about 80% to 90% leaving an important part
of the dataset outside of the clusters. Looking at entropy many
algorithms have best possible runs leading to a better entropy
than Chameleoclust. However, in clustering tasks, the entropy
cannot be interpreted regardless of the number of clusters, be-
cause usually the entropy quality measure tends to improve when
the number of clusters increases. Indeed, by definition of the
entropy measure, the best entropy is obtained for the extreme
case where we have one cluster per object. Chameleoclust and
three other algorithms (FIRES, P3C, STATPC) provide reason-
able number of clusters with average quality entropy. As it can
be expected, algorithms that increase importantly the number of
clusters achieve higher entropy quality. Notice that Chameleo-
clust is the only one to obtain a reasonable number of clusters
with a 100% coverage. Finally, the last row of the table shows
the evaluations obtained when running Chameleoclust using only
functional elements in the genome (i.e., g is constant and set to
1 in all genome elements ⟨g, c, d, x⟩). In this case we can ob-
serve a decrease of the performances that seems to advocate for
the interest of the presence of both functional and non-functional
elements, and that needs to be investigated further.

Figure 3 shows that for almost every dataset, the performances
of Chameleoclust are reasonable with respect to the best possi-
ble runs of the other algorithms. Note that most of the time
the number of classes within a dataset does not correspond to
the number of clusters found by the algorithms. Indeed, prede-
fined classes do not always form clusters. Consequently it is not
surprising to obtain more clusters than classes. In some cases a
few algorithms found a very large number of clusters (sometimes
even more clusters than objects) and this is due to their ability
to search for overlapping clusters. For all datasets, the number
of clusters found by Chameleoclust is coherent with the number
of clusters found by the other algorithms. Indeed Chameleoclust
is able to adapt the number of clusters it produces and also their
average dimensionality according to each dataset without specific
parameter tuning, as summarized in Table 1.

Synthetic data.
Chameleoclust was executed 10 times on each of the 16 syn-

thetic datasets. For each dataset we kept the run reaching the
highest fitness (for the best individual) among the 10 runs (notice
that this selection is made without using any external labeling,
but only the fitness values). Then for each evaluation measure,
we plotted the measure value obtained with respect to the num-
ber of clusters found by each of the 16 selected runs. The results
are shown Figures 4 to 8. For almost every synthetic dataset
the number of clusters found by Chameleoclust is very close to
the real number of clusters in the dataset (i.e., 10). Chameleo-
clust always found between 9 and 16 clusters, and for most of the
datasets it found the exact number of clusters. As reported in
[Müller et al., 2009] the other algorithms found between 5 and
50 clusters, excepted a few cases where much more clusters were
found (up to more than several thousands). Among the other

579

Breast: 33 dimensions, 2 classes, 198 objects
F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min
CLIQUE 0.67 0.67 0.71 0.71 0.02 0.02 0.40 0.40 0.26 0.26 1.00 1.00 107 107 1.7 1.7 453 453
DOC 0.73 0.61 0.81 0.76 0.11 0.04 0.84 0.07 0.46 0.27 1.00 0.80 60 6 27.2 2.8 1E+06 37515

MINECLUS 0.78 0.69 0.78 0.76 0.19 0.18 1.00 1.00 0.56 0.37 1.00 1.00 64 32 33.0 33.0 40359 29437
SCHISM 0.67 0.67 0.75 0.69 0.01 0.01 0.36 0.34 0.35 0.34 1.00 0.99 248 197 2.3 2.2 158749 114609
SUBCLU 0.68 0.51 0.77 0.67 0.02 0.01 0.54 0.04 0.27 0.24 1.00 0.82 357 5 2.0 1.0 5265 16
FIRES 0.49 0.03 0.76 0.76 0.03 0.00 0.05 0.00 1.00 0.01 0.76 0.04 11 1 2.5 1.0 250 31
INSCY 0.74 0.55 0.77 0.76 0.02 0.00 0.24 0.11 0.60 0.39 0.97 0.74 2038 167 11.0 4.4 134373 63484

PROCLUS 0.57 0.52 0.80 0.74 0.51 0.11 0.65 0.43 0.32 0.23 0.89 0.69 9 2 24.0 18.0 703 141
P3C 0.63 0.63 0.77 0.77 0.04 0.04 0.19 0.19 0.36 0.36 0.85 0.85 28 28 6.9 6.9 6281 6281

STATPC 0.41 0.41 0.78 0.78 0.16 0.16 0.33 0.33 0.29 0.29 0.43 0.43 5 5 33.0 33.0 5187 4906
Chameleoclust 0.64 0.58 0.8 0.76 0.15 0.09 0.32 0.23 0.31 0.25 1 1 18 12 12.08 4.61 566 523

mean 0.61 0.78 0.11 0.26 0.28 1 15.2 7.45 544

Diabetes: 8 dimensions, 2 classes, 768 objects
F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min
CLIQUE 0.70 0.39 0.72 0.69 0.03 0.01 0.14 0.01 0.23 0.13 1.00 1.00 349 202 4.2 2.4 11953 203
DOC 0.71 0.71 0.72 0.69 0.31 0.26 0.92 0.79 0.31 0.24 1.00 0.93 64 17 8.0 5.1 1E+06 51640

MINECLUS 0.72 0.66 0.71 0.69 0.63 0.13 0.89 0.58 0.29 0.17 0.99 0.96 39 3 6.0 5.2 3578 62
SCHISM 0.70 0.62 0.73 0.68 0.08 0.01 0.36 0.09 0.34 0.20 1.00 0.79 270 21 4.2 3.9 35468 250
SUBCLU 0.74 0.45 0.71 0.68 0.01 0.01 0.01 0.01 0.14 0.11 1.00 1.00 1601 325 4.7 4.0 190122 58718
FIRES 0.52 0.03 0.65 0.64 0.12 0.00 0.27 0.00 0.68 0.00 0.81 0.03 17 1 2.5 1.0 4234 360
INSCY 0.65 0.39 0.70 0.65 0.37 0.11 0.45 0.42 0.44 0.15 0.83 0.73 132 3 6.7 5.7 112093 33531

PROCLUS 0.67 0.61 0.72 0.71 0.34 0.21 0.78 0.69 0.23 0.19 0.92 0.78 9 3 8.0 6.0 360 109
P3C 0.39 0.39 0.66 0.65 0.56 0.11 0.85 0.22 0.09 0.07 0.97 0.88 2 1 7.0 2.0 656 141

STATPC 0.73 0.59 0.70 0.65 0.06 0.00 0.63 0.17 0.72 0.28 0.97 0.75 363 27 8.0 8.0 27749 4657
Chameleoclust 0.74 0.7 0.79 0.76 0.1 0.04 0.41 0.36 0.34 0.3 1 1 65 52 2.6 1.97 1956 1811

mean 0.72 0.77 0.07 0.38 0.32 1 60.8 2.24 1871

Glass: 9 dimensions, 6 classes, 214 objects
F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min
CLIQUE 0.51 0.31 0.67 0.50 0.02 0.00 0.06 0.00 0.39 0.24 1.00 1.00 6169 175 5.4 3.1 411195 1375
DOC 0.74 0.50 0.63 0.50 0.23 0.13 0.93 0.33 0.72 0.50 0.93 0.91 64 11 9.0 3.3 23172 78

MINECLUS 0.76 0.40 0.52 0.50 0.24 0.19 0.78 0.45 0.72 0.46 1.00 0.87 64 6 7.0 4.3 907 15
SCHISM 0.46 0.39 0.63 0.47 0.11 0.04 0.33 0.20 0.44 0.38 1.00 0.79 158 30 3.9 2.1 313 31
SUBCLU 0.50 0.45 0.65 0.46 0.00 0.00 0.01 0.01 0.42 0.39 1.00 1.00 1648 831 4.9 4.3 14410 4250
FIRES 0.30 0.30 0.49 0.49 0.21 0.21 0.45 0.45 0.40 0.40 0.86 0.86 7 7 2.7 2.7 78 78
INSCY 0.57 0.41 0.65 0.47 0.23 0.09 0.54 0.26 0.67 0.47 0.86 0.79 72 30 5.9 2.7 4703 578

PROCLUS 0.60 0.56 0.60 0.57 0.13 0.05 0.51 0.17 0.76 0.68 0.79 0.57 29 26 8.0 2.0 375 250
P3C 0.28 0.23 0.47 0.39 0.14 0.13 0.30 0.27 0.43 0.38 0.89 0.81 3 2 3.0 3.0 32 31

STATPC 0.75 0.40 0.49 0.36 0.19 0.05 0.67 0.37 0.88 0.36 0.93 0.80 106 27 9.0 9.0 1265 390
Chameleoclust 0.7 0.59 0.71 0.67 0.24 0.11 0.52 0.33 0.64 0.6 1 1 38 27 5.03 3.42 603 432

mean 0.62 0.68 0.19 0.46 0.62 1 34.8 4.17 544

Liver: 6 dimensions, 2 classes, 345 objects
F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min
CLIQUE 0.68 0.65 0.67 0.58 0.08 0.02 0.38 0.03 0.10 0.02 1.00 1.00 1922 19 4.1 1.7 38281 15
DOC 0.67 0.64 0.68 0.58 0.11 0.07 0.51 0.35 0.18 0.11 0.99 0.90 45 13 3.0 1.9 625324 1625

MINECLUS 0.73 0.63 0.65 0.58 0.09 0.09 0.68 0.48 0.33 0.16 0.99 0.92 64 32 4.0 3.7 49563 1954
SCHISM 0.69 0.69 0.68 0.59 0.04 0.03 0.45 0.26 0.10 0.08 0.99 0.99 90 68 2.7 2.1 31 0
SUBCLU 0.68 0.68 0.64 0.58 0.11 0.02 0.68 0.05 0.07 0.02 1.00 1.00 334 64 3.4 1.3 1422 47
FIRES 0.58 0.04 0.58 0.56 0.14 0.00 0.39 0.01 0.37 0.00 0.84 0.03 10 1 3.0 1.0 531 46
INSCY 0.66 0.66 0.62 0.61 0.03 0.03 0.42 0.39 0.21 0.20 0.85 0.81 166 130 2.1 2.1 407 234

PROCLUS 0.53 0.39 0.63 0.63 0.26 0.11 0.66 0.25 0.05 0.05 0.83 0.46 6 2 5.0 3.0 78 31
P3C 0.36 0.35 0.58 0.58 0.55 0.27 0.96 0.47 0.02 0.01 0.98 0.94 2 1 6.0 3.0 172 32

STATPC 0.69 0.57 0.65 0.58 0.23 0.01 0.58 0.37 0.63 0.05 0.77 0.71 159 4 6.0 3.3 1890 781
Chameleoclust 0.71 0.65 0.78 0.7 0.12 0.07 0.51 0.43 0.27 0.18 1 1 69 56 2.34 1.85 730 636

mean 0.68 0.75 0.10 0.46 0.21 1 62.8 2.04 703

Pendigits: 16 dimensions, 10 classes, 7494 objects
F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min
CLIQUE 0.30 0.17 0.96 0.86 0.06 0.01 0.20 0.06 0.41 0.26 1.00 1.00 1890 36 3.1 1.5 67891 219
DOC 0.52 0.52 0.54 0.54 0.18 0.18 0.35 0.35 0.53 0.53 0.91 0.91 15 15 5.5 5.5 178358 178358

MINECLUS 0.87 0.87 0.86 0.86 0.48 0.48 0.89 0.89 0.82 0.82 1.00 1.00 64 64 12.1 12.1 780167 692651
SCHISM 0.45 0.26 0.93 0.71 0.05 0.01 0.30 0.08 0.50 0.45 1.00 0.93 1092 290 10.1 3.4 5E+08 21266
SUBCLU - - - - - - - - - - - - - - - - - -
FIRES 0.45 0.45 0.73 0.73 0.09 0.09 0.33 0.33 0.31 0.31 0.94 0.94 27 27 2.5 2.5 169999 169999
INSCY 0.65 0.48 0.78 0.68 0.07 0.07 0.30 0.28 0.77 0.69 0.91 0.82 262 106 5.3 4.6 2E+06 1E+06

PROCLUS 0.78 0.73 0.74 0.73 0.31 0.27 0.64 0.45 0.90 0.71 0.90 0.74 37 17 14.0 8.0 6045 4250
P3C 0.74 0.74 0.72 0.72 0.28 0.28 0.58 0.58 0.76 0.76 0.90 0.90 31 31 9.0 9.0 2E+06 2E+06

STATPC 0.91 0.32 0.92 0.10 0.09 0.00 0.67 0.11 1.00 0.53 0.99 0.84 4109 56 16.0 16.0 5E+07 3E+06
Chameleoclust 0.7 0.51 0.73 0.59 0.4 0.25 0.6 0.47 0.67 0.56 1 1 19 14 7.44 4.64 12638 9760

mean 0.59 0.63 0.31 0.53 0.60 1 18 5.74 12284

Vowel: 10 dimensions, 11 classes, 990 objects
F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min
CLIQUE 0.23 0.17 0.64 0.37 0.05 0.00 0.44 0.01 0.10 0.09 1.00 1.00 3062 267 4.9 1.9 523233 1953
DOC 0.49 0.49 0.44 0.44 0.14 0.14 0.85 0.85 0.58 0.58 0.86 0.86 64 64 10.0 10.0 120015 120015

MINECLUS 0.48 0.43 0.37 0.37 0.09 0.04 0.62 0.34 0.60 0.46 0.98 0.87 64 64 7.2 3.6 7734 5204
SCHISM 0.37 0.23 0.62 0.52 0.05 0.01 0.43 0.11 0.29 0.21 1.00 0.93 494 121 4.3 2.8 23031 391
SUBCLU 0.24 0.18 0.58 0.38 0.04 0.01 0.39 0.04 0.30 0.13 1.00 1.00 10881 709 3.6 2.0 26047 2250
FIRES 0.16 0.14 0.13 0.11 0.02 0.02 0.14 0.13 0.16 0.13 0.50 0.45 32 24 2.1 1.9 563 250
INSCY 0.82 0.33 0.61 0.15 0.09 0.07 0.75 0.26 0.94 0.21 0.90 0.81 163 74 9.5 4.3 75706 39390

PROCLUS 0.49 0.49 0.44 0.44 0.11 0.11 0.53 0.53 0.65 0.65 0.67 0.67 64 64 8.0 8.0 766 766
P3C 0.08 0.05 0.17 0.16 0.12 0.08 0.69 0.43 0.13 0.12 0.98 0.95 3 2 7.0 4.7 1610 625

STATPC 0.22 0.22 0.56 0.56 0.06 0.06 0.12 0.12 0.14 0.14 1.00 1.00 39 39 10.0 10.0 18485 16671
Chameleoclust 0.45 0.37 0.49 0.42 0.11 0.08 0.42 0.36 0.47 0.43 1 1 56 31 3.02 2.66 2925 1947

mean 0.43 0.48 0.10 0.39 0.46 1 48.7 2.88 2618

Figure 3: Result tables for six other real datasets

Table 2: Results for the Shape real dataset: 17 dimensions, 9 classes, 160 objects
F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min
CLIQUE 0.31 0.31 0.76 0.76 0.01 0.01 0.07 0.07 0.66 0.66 1.00 1.00 486 486 3.3 3.3 235 235
DOC 0.90 0.83 0.79 0.54 0.56 0.38 0.90 0.82 0.93 0.86 1.00 1.00 53 29 13.8 12.8 2E+06 86500

MINECLUS 0.94 0.86 0.79 0.60 0.58 0.46 1.00 1.00 0.93 0.82 1.00 1.00 64 32 17.0 17.0 46703 3266
SCHISM 0.51 0.30 0.74 0.49 0.10 0.00 0.26 0.01 0.85 0.55 1.00 0.92 8835 90 6.0 3.9 712964 9031
SUBCLU 0.36 0.29 0.70 0.64 0.00 0.00 0.05 0.04 0.89 0.88 1.00 1.00 3468 3337 4.5 4.1 4063 1891
FIRES 0.36 0.36 0.51 0.44 0.20 0.13 0.25 0.20 0.88 0.82 0.45 0.39 10 5 7.6 5.3 63 47
INSCY 0.84 0.59 0.76 0.48 0.18 0.16 0.37 0.24 0.94 0.87 0.88 0.82 185 48 9.8 9.5 22578 11531

PROCLUS 0.84 0.81 0.72 0.71 0.25 0.18 0.61 0.37 0.93 0.91 0.89 0.79 34 34 13.0 7.0 593 469
P3C 0.51 0.51 0.61 0.61 0.14 0.14 0.17 0.17 0.80 0.80 0.66 0.66 9 9 4.1 4.1 140 140

STATPC 0.43 0.43 0.74 0.74 0.45 0.45 0.55 0.55 0.56 0.56 0.92 0.92 9 9 17.0 17.0 250 171
Chameleoclust 0.74 0.67 0.82 0.73 0.42 0.34 0.6 0.48 0.79 0.73 1 1 16 13 10 7.29 314 287

mean 0.71 0.79 0.38 0.54 0.76 1 15 8.26 309
Only functional 0.73 0.53 0.8 0.66 0.45 0.18 0.65 0.28 0.77 0.62 1 1 15 9 11.33 3.78 366 159

mean 0.64 0.75 0.35 0.51 0.72 1 12 6.84 269

algorithms, P3C is the one that gave the most often a number of
clusters close to the real number, outputting between 6 and 16
clusters on these 16 synthetic datasets. Most of the evaluation
measures for Chameleoclust are comparable to the ones reported
in [Müller et al., 2009], keeping in mind that for the other algo-
rithms only the best values of the evaluation measures over the
parameter spaces were retained.

In addition, we give Figure 9 and Figure 10 the runtime of
Chameleoclust with respect to the number of objects and number
of dimensions of the synthetic datasets. The corresponding curves
show that the algorithm scales rather linearly in both cases.

5. RELATED WORK
Many approaches have been investigated for subspace cluster-

ing in the literature using various clustering paradigms. The
reader is referred for instance to [Kriegel et al., 2009], [Müller
et al., 2009], and [Parsons et al., 2004] for detailed reviews and
comparisons of the best methods and main categories:

• The cell-based approach, that defines clusters as hyper-
rectangles laying in specific subspaces and containing more
than a given number of objects. Clusters are usually con-
structed by discretizing the data space into axis-parallel
cells and then aggregating promising cells. These selected
cells are commonly the ones containing more objects than
a threshold given as parameter. Other typical parameters
are the number or the size of the cells.

• The density based approach, in which clusters are dense
groups of objects in space. A cluster can have an arbitrary
shape, but must be separated from the other clusters by
low density regions. This approach defines dense regions
as regions where within a given radius a number of objects
exceeding a minimum threshold can be found. Clusters are
built by joining together the objects from adjacent dense
regions.

• The clustering-oriented approach, that usually defines prop-
erties of the targeted clustering such as the expected num-
ber of clusters or the cluster average dimensionality. Ac-
cording to these constraints, the objects are grouped to-
gether mainly using distance-based similarity. Most of these
methods tend to build hyper-spherical shaped clusters in
particular subspaces.

Even if many evolutionary clustering approaches exist [Hr-
uschka et al., 2009] very few of them address the subspace clus-
tering problem. An early approach was presented in [Sarafis
et al., 2003], introducing a subspace clustering evolutionary al-
gorithm that uses a rule-based representation to encode axis-
parallel hyper-rectangular disjoint clusters. This algorithm is
a member of the cell-based subspace clustering family. It uses
task-specific mutation and recombination operators, and requires
a non-evolutionary first stage to find promising clusters in 2D
subspaces. More recently, in [Vahdat et al., 2010], a different
evolutionary approach has been presented. It is also based on
a first non-evolutionary clustering stage, used here to find a set

580

�
�

�

�

�

�
�

�

�

�
�

�

�

�

�
�

9 10 11 12 13 14 15 16

0.
76

0.
80

0.
84

0.
88

NUMBER OF CLUSTERS

AC
CU

RA
CY

Figure 4: Accuracy and number of clusters for the
best fitness among 10 runs for the 16 synthetic
datasets.

�

�

�

�

�

�

� �

�

�
�

�

�

�

�

�

9 10 11 12 13 14 15 16

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

NUMBER OF CLUSTERS

F1

Figure 5: F1 and number of clusters for the best
fitness among 10 runs for the 16 synthetic datasets.

of cluster candidate positions in each dimension. Next, it uses a
genetic algorithm to produce subspace clusters by combining the
candidate positions found at the previous step. The final stage
is then to run a second genetic algorithm to find the best com-
bination of subspace clusters to form the whole clustering of the
data. This approach is related to the clustering-oriented family.
The Chameleoclust algorithm presented in this paper also falls
into the clustering-oriented category, but it is a single stage fully
evolutionary approach, without any preliminary stage to iden-
tified clusters in lower dimensional spaces. In addition it relies
on generic bio-like mutation operations that are not specific to
the subspace clustering task. Moreover, Chameleoclust has been
compared to state-of-the-art subspace clustering algorithms using
a reference framework and performed well, while requiring a sin-
gle and easy to tune parameter (the maximal number of desired
clusters).

6. CONCLUSION
In this paper, we presented Chameleoclust, an evolutionary al-

gorithm for subspace clustering. Its key underlying principle is
to use an evolvable genome structure to find various numbers of
clusters in subspaces of various dimensionality. It was shown to
be competitive with respect to state-of-the-art algorithms using
an evaluation framework of reference. Directions for future work

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

9 10 11 12 13 14 15 16

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

NUMBER OF CLUSTERS

RN
IA

Figure 6: RNIA and number of clusters for the best
fitness among 10 runs for the 16 synthetic datasets.

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

9 10 11 12 13 14 15 16

0.
82

0.
86

0.
90

NUMBER OF CLUSTERS

EN
TR

O
PY

Figure 7: Entropy and number of clusters for the
best fitness among 10 runs for the 16 synthetic
datasets.

include: a deeper analysis of the benefits of the presence of the
non-functional elements, the study of the stability of the param-
eters related to the evolution strategy (population size, mutation
rate, ...), and the extension of the approach to try to take advan-
tage of some crossover operations.

Acknowledgements
This research has been supported by EU-FET grant EvoEvo (ICT-
610427).

7. REFERENCES
[Aggarwal et al., 2001] Aggarwal, C. C., Hinneburg, A., and

Keim, D. A. (2001). On the surprising behavior of distance
metrics in high dimensional space. In Proc. of the 8th Int.
Conf. on Database Theory, pages 420–434. Springer.

[Aggarwal et al., 1999] Aggarwal, C. C., Wolf, J. L., Yu, P. S.,
Procopiuc, C., and Park, J. S. (1999). Fast algorithms for
projected clustering. In Proc. of the 1999 ACM SIGMOD Int.
Conf. on Management of Data, pages 61–72, New York, NY,
USA.

[Bache and Lichman, 2013] Bache, K. and Lichman, M. (2013).
UCI machine learning repository.

581

�

�

�

��

�

�

�

�

�

�

��

��
�

9 10 11 12 13 14 15 16

0.
2

0.
3

0.
4

0.
5

NUMBER OF CLUSTERS

CE

Figure 8: CE and number of clusters for the best
fitness among 10 runs for the 16 synthetic datasets.

10 20 30 40 50 60 70

0
50

0
10

00
15

00

DIMENSIONALITY

RU
NT

IM
E

(S
EC

O
ND

S)

�

�

�

�

�

�

�

Figure 9: Runtime vs. dimensionality of the syn-
thetic datasets. Maximal in red (circles), median
in cyan (triangles), average in green (squares) and
minimal in blue (crosses).

[Banzhaf et al., 2006] Banzhaf, W., Beslon, G., Christensen, S.,
James, A., Képès, F., Lefort, V., Julian, F., Radman, M., and
Ramsden, J. J. (2006). Guidelines: From artificial evolution
to computational evolution: a research agenda. Nature
Reviews Genetics, 7(9):729–735.

[Beyer et al., 1999] Beyer, K., Goldstein, J., Ramakrishnan, R.,
and Shaft, U. (1999). When is ”nearest neighbor” meaningful?
In Proc. of the 7th Int. Conf. on Database Theory, pages
217–235, London, UK.

[Crombach and Hogeweg, 2007] Crombach, A. and Hogeweg, P.
(2007). Chromosome rearrangements and the evolution of
genome structuring and adaptability. Molecular Biology and
Evolution, 24(5):1130–9.

2000 3000 4000 5000

0
50

0
10

00
20

00

DATABASE SIZE

RU
NT

IM
E

(S
EC

O
ND

S)

�

�

�

�

�

Figure 10: Runtime vs. number of objects of the
synthetic datasets. Maximal in red (circles), median
in cyan (triangles), average in green (squares) and
minimal in blue (crosses).

[Hindré et al., 2012] Hindré, T., Knibbe, C., Beslon, G., and
Schneider, D. (2012). New insights into bacterial adaptation
through in vivo and in silico experimental evolution. Nature
Reviews Microbiology.

[Hruschka et al., 2009] Hruschka, E. R., Campello, R. J. G. B.,
Freitas, A. A., and de Carvalho, A. C. P. L. F. (2009). A
survey of evolutionary algorithms for clustering. IEEE
Transactions on Systems, Man, and Cybernetics,
39(2):133–155.

[Knibbe et al., 2007] Knibbe, C., Coulon, A., Mazet, O.,
Fayard, J.-M., and Beslon, G. (2007). A Long-Term
Evolutionary Pressure on the Amount of Noncoding DNA.
Molecular Biology and Evolution, 24(10):2344–2353.

[Kriegel et al., 2009] Kriegel, H.-P., Kröger, P., and Zimek, A.
(2009). Clustering high-dimensional data: A survey on
subspace clustering, pattern-based clustering, and correlation
clustering. ACM Transactions on Knowledge Discovery from
Data, 3(1):1:1–1:58.

[Müller et al., 2009] Müller, E., Günnemann, S., Assent, I., and
Seidl, T. (2009). Evaluating clustering in subspace projections
of high dimensional data. In Proc. 35th Int. Conf. on Very
Large Data Bases (VLDB 2009), volume 2, pages 1270–1281,
Lyon, France.

[Parsons et al., 2004] Parsons, L., Haque, E., and Liu, H.
(2004). Subspace clustering for high dimensional data: A
review. SIGKDD Explorations Newsletter, 6(1):90–105.

[Patrikainen and Meila, 2006] Patrikainen, A. and Meila, M.
(2006). Comparing subspace clusterings. IEEE Transactions
on Knowledge and Data Engineering, pages 902–916.

[Sarafis et al., 2003] Sarafis, I. A., Trinder, P. W., and Zalzala,
A. (2003). Towards effective subspace clustering with an
evolutionary algorithm. In Proc. of the 2003 Congress on
Evolutionary Computation (CEC-2003), volume 2, pages
797–806.

[Vahdat et al., 2010] Vahdat, A., Heywood, M. I., and
Zincir-Heywood, A. N. (2010). Bottom-up evolutionary
subspace clustering. In IEEE Congress on Evolutionary
Computation, pages 1–8.

582

