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ABSTRACT
Scalarization techniques are a popular method for articulat-
ing preferences in solving multi-objective optimization prob-
lems. These techniques, however, have so far proven to be
ill-suited in finding a preference-driven approximation that
still captures the Pareto front in its entirety. Therefore,
we propose a new concept that defines an optimal distri-
bution of points on the front given a specific scalarization
function. It is proven that such an approximation exists
for every real-valued problem irrespective of the shape of
the corresponding front under some very mild conditions.
We also show that our approach works well in obtaining
an equidistant approximation of the Pareto front if no spe-
cific preference is articulated. Our analysis is complemented
by the presentation of a new algorithm that implements the
aforementioned concept. We provide in-depth simulation re-
sults to demonstrate the performance of our algorithm. The
analysis also reveals that our algorithm is able to outper-
form current state-of-the-art algorithms on many popular
benchmark problems.

Keywords
multi-objective optimization; scalarization method; prefer-
ence-based approximation; electromagnetism-like mechanism

1. INTRODUCTION AND MOTIVATION
Multi-objective optimization focuses on finding solutions

to problems that have multiple conflicting goals. Opposing
aims lead to the problem not possessing a single solution at-
taining optimal values in each objective. Instead, we obtain
a set of Pareto optimal solutions that can only be improved
in one goal by deteriorating another objective at the same
time. The image of the set of Pareto optimal solutions in
the objective space is known as the Pareto optimal front [8].

Obtaining a closed form description of the Pareto front is
often too difficult in practice [27]. Therefore, multi-objective
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optimization algorithms approximate the Pareto front by a
finite set of points in its entirety to enable a decision maker
to make an informed choice about the solution he finally
implements. Such a decision maker usually already has a
certain idea about which type of solutions he prefers, for
example avoiding stark tradeoffs or extreme solutions. By
incorporating his preferences into a search algorithm, we
can generate more options that actually represent equitable
candidate implementations [8].

Scalarization techniques articulate preferences by map-
ping the vector of objectives to real values, thereby imposing
a total order on the objective space. Many calculation meth-
ods have been suggested in the literature [22]. Usually, these
techniques are only capable of identifying a single point on
the Pareto front. If only one solution is generated, however,
we obtain no additional information about the composition
of the Pareto front. There exists no possibility to assess
how the option retrieved compares to other alternatives. It
is well understood in economics and psychology, however,
that human preferences change depending on the alterna-
tives available [20]. One could argue that if the decision
maker is able to specify a scalarization function that ad-
heres to his preferences, there would be no need for obtaining
other options. In practice however, the scalarization func-
tion may produce results that run counter-intuitive to the
decision maker’s expectations. The weighted sum method,
for example, is only able to obtain boundary solutions on
concave Pareto fronts [22].

Some scalarization techniques offer the possibility to vary
given parameters to generate multiple solutions on the Pareto
front. However, manipulating these parameters yields no
guarantee for obtaining an approximation that actually ad-
heres to the decision maker’s preference. The weighted sum
method’s inability to find solutions on concave fronts amply
demonstrates this circumstance. Other scalarization tech-
niques have been used in conjunction with minimum thresh-
old levels, underneath which all solutions are considered
to be equal. Traditional evolutionary selection mechanisms
have then been applied to find an approximation of the pre-
ferred set [11, 25]. Nevertheless, choosing a threshold level
can be difficult. For a given threshold, the approximation
of the remaining front does not prioritize solutions whose
scalarization value is closer to the global optimum.

The observations in the two previous paragraphs necessi-
tate the development of a mechanism that obtains a prefer-
ence-driven approximation of the Pareto front. In order to
quantify the quality of such an approximation, we require
the definition of an optimal distribution of points. Defining
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global diversity criteria has only recently seen increasing at-
tention. Algorithms implementing traditional solving tech-
niques such as the popular crowding distance metric [13] do
not converge to an optimal distribution of points. One of
the few, hence very popular global diversity criteria is hy-
pervolume contribution [3]. Calculating hypervolume con-
tributions however remains intractable in higher dimensions.
Recent studies [28] have also shown that the optimal dis-
tribution of points depends on the chosen reference point.
Reference point methods such as [21] or [12] are ill-suited
for constrained problems or discontinuous Pareto fronts.

We propose an electrostatic potential energy inspired evo-
lutionary algorithm to solve the aforementioned issues. To
the best of our knowledge, [32] and [6] are till the present
date the only attempts at designing an electromagnetism-
inspired metaheuristic for solving multi-objective optimiza-
tion problems. Both approaches assign charges to each solu-
tion based on their closeness to a randomly selected subset
from an archive of non-dominated solutions. The charges are
translated to force vectors, which are used to move solutions
in the search space. The best solutions found are stored in
an archive that uses clustering in [32] and crowding distance
in [6] for pruning solutions.

The contributions of our work may be summarized in the
following way:

• we propose a new mathematical notion for defining an
optimal distribution of points according to a global di-
versity criterion. This notion can be combined with
scalarized preference information to drive the distri-
bution towards preferred subsets of the Pareto front,

• we develop a new algorithm for solving multi-objective
optimization problems that implements aforementioned
notion,

• a quantitative and qualitative study demonstrates the
performance of our algorithm. We can show that our
method outperforms current state-of-the-art algorithms
in finding a diverse approximation to the Pareto front
on many popular test problems.

The next section outlines some basic multi-objective opti-
mization notions and presents the electrostatic energy based
optimization concept. From this concept, we develop a multi-
objective evolutionary algorithm in the subsequent section.
Afterwards, the performance of our algorithm is evaluated.
We first analyze its behavior under no preference articula-
tion by assessing how its final population compares to an
energy minimum distribution of points. We then compare
its performance to other state-of-the-art algorithms. The
evaluation section illustrates the example runs using various
scalarization techniques whereas the concluding remarks at
the end of the article show possible extensions.

2. AN ELECTROSTATIC ENERGY BASED
OPTIMIZATION CONCEPT

Without loss of generality, we only consider minimization
problems in this work. We minimize m objective functions
f(x) := (f1(x), . . . , fm(x)) using n decision variables x :=
(x1, . . . , xn). The feasible search space is denoted by X and
its image by Y. Domination and Pareto optimality can then
be defined in the following way.

Definition 1 (Domination [24]). Let x1,x2 ∈ X be
given. x1 dominates x2, expressed as x1 � x2, if fi(x

1) ≤
fi(x

2) for all i = 1, . . .m with strict inequality for at least
one i.

Definition 2 (Pareto optimality [24]). A solution
x1 ∈ X is called Pareto optimal if no x2 ∈ X exists so that
fi(x

2) ≤ fi(x1) for all i = 1, . . . ,m with strict inequality for
at least one i.

We denote the set of Pareto optimal solutions by Xp and
its image, the Pareto front, by Yp. Next, we formally define
scalarization functions.

Definition 3 (Scalarization function). A scalari-
zation function is a map W : Rm 7→ R.

Our approach for approximating the Pareto front is foun-
ded on the physical phenomenon of electrostatic potential
energy. In physics, charged particles interact by Coulomb
forces with each other. In a closed system, these Coulomb
forces induce an electrostatic potential energy. The energy
that a given particle exhibits with respect to another particle
is equal to the product of both their charges multiplied by
Coulomb’s constant and divided by their Euclidean distance
to each other. The sum of all pairwise energies constitutes
the energy of the system. Given a finite set of charges, there
exists a distribution of particles that minimizes the energy
of the closed system [19].

We translate the physical system to the optimization con-
text. The Pareto front constitutes the closed system and a
finite set of points on the front S = (x1, . . . ,xN ) represents
the particles, with |S| = N and xi ∈ Xp for all i. Charges
are induced by the scalarization function. Our aim is to find
an approximation to the Pareto front that minimizes the
function

U(S) =

N∑
i=1

N∑
j=i+1

W (f(xi)) ·W (f(xj))

‖f(xi)− f(xj)‖2
. (1)

Theorem 1 (Existence of minimum). LetW be con-
tinuous and W (f(x)) > 0 for all x ∈ Xp. Further let Yp be
compact and |Yp| > N > 1. Then, U attains its minimum
on Yp.

Proof. The function U possesses a lower bound, since
we require W (f(x)) > 0 and because the denominator of U
is positive. Let P := (y1, . . . ,yN ) with yi ∈ Rn for all i and
M := {P | U(P) ≤ maxx∈Xp N ·W (f(x))/ε} denote a lower
level set with ε greater but close to zero. We obtain that the
set M ∩ Yp is compact and that U is continuous on M ∩ Yp,
because W is continuous and the denominator of U never
attains the value zero on M ∩ Yp. Then, the conditions for
the Weierstraß extreme value theorem are fulfilled [2].

Remark 1. Practically all non-degenerate real-valued op-
timization problems fulfill the requirements of Theorem 1.
Unbounded or open Pareto fronts are seldom encountered in
artificial or real problems. Deterministic and evolutionary
methods alike struggle to approximate an unbounded Pareto
front. The result of Theorem 1 can also be extended to
integer-valued or mixed integer-real-valued objective func-
tions. However, a formal proof goes beyond the scope of
this paper.
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Remark 2. The case, where no particular preference in-
formation is given, corresponds to choosing W (f(x)) = 1.
Such a scenario would result in finding a nearly equidistant
approximation to the Pareto front.1 Theorem 1 guarantees
that such an approximation exists irrespective of the shape
of the front, ignoring curvature and discontinuities.

The prerequisites for the function W in Theorem 1 are
met by most common scalarization techniques [22]. Nega-
tive scalarization values can be rescaled to positive values for
making them compatible with our approach. For illustrating
the capabilities of our concept, we focus on four particular
scalarization functions in this work. The sum of objectives
and the Chebyshev method [22] are among the most promi-
nent techniques in multi-objective optimization. The Nash
bargaining solution [23] is a renowned tool in economics for
choosing between Pareto optimal resource allocations. This
technique was originally designed for maximization prob-
lems. Therefore, we reformulated the notion to make it
compatible with minimization and to avoid scalarization val-
ues of zero. Finally, proper utility [25] is a concept that
has only recently emerged. It is founded on the concept of
proper Pareto optimality [18, 29] and describes desirability
in terms of tradeoffs. Let I := {1, . . . ,m} denote the set of
objectives. The four methods are defined in the following
way:

Sum of objectives:

W s(f(x)) =
∑
i∈I

fi(x).

Chebyshev method:

W c(f(x)) = max
i∈I

(fi(x)− u∗i )

with u∗i = miny∈X fi(y) and u∗ = (u∗1, . . . , u
∗
m) denot-

ing the Utopia point.

Nash bargaining solution:

Wn(f(x)) = α

(
max
y∈Xp

(N(y)) + min
y∈Xp

(N(y))

)
−N(x)

with

N(x) =
∏
i∈I

(
undr
i − fi(x)

)
(2)

with α > 1, undr
i = maxy∈Xp fi(y) and undr = (undr

1 ,

. . . , undr
m ) denoting the Nadir point.

Proper utility:

W p(f(x)) = max
y∈Xp\{x}

maxi∈I(fi(x)− fi(y))

maxi∈I(fi(y)− fi(x))
.

Corollary 1. Let Yp be compact and |Yp| > N > 1.
Then, the function U attains its minimum on Yp if W is
chosen as either the Chebyshev method, proper utility, the
Nash bargaining solution or the weighted sum method for
Yp ⊂ Rm

+ .

Proof. Corollary 1 is a consequence of Theorem 1.

1An exact equidistant approximation is not expected as
points close to the boundary of the Pareto front naturally ex-
hibit smaller energies compared to inner points, since neigh-
boring solutions are not located in every direction.

3. ALGORITHMIC APPROACH
Finding the minimum of (1) for a given N is a highly dif-

ficult task as the problem formulation practically requires
complete knowledge of the Pareto front. Additionally, the
Jacobian of (1) possesses N · n entries. For this reason, an
analytical or deterministic approach seems ill-advised to find
the energy minimum in practice. This makes the evolution-
ary algorithm an ideal candidate for tackling the problem.

Devising an evolutionary strategy for obtaining the energy
minimum provides two main challenges. First of all and ob-
viously, the algorithm needs to converge towards the energy
minimum state. This implies that the selection mechanism
needs to assure the population’s convergence to the Pareto
front, while retaining the energy minimization focus at the
same time. Secondly, once the optimal distribution has been
attained, the population should remain at its current posi-
tion if further search iterations are performed.

We pursue both goals by using a steady-state approach
in combination with an archive mechanism. The interaction
of both concepts fosters the population gradually converg-
ing towards an energy minimum state on the Pareto front,
while remaining computationally tractable. We maintain a
variable-sized archive A of non-dominated solutions attain-
ing a maximum size of N that contains the currently best
known minimum energy approximation. In each iteration, a
new solution p is created by recombining parents from the
archive and mutating the resulting offspring solution.2 p is
immediately discarded if it is dominated by or possesses the
same objective values as any archive member. The newly
created solution only enters the archive if either A has not
reached its maximum size or if p can replace an archive
member such that p reduces the overall energy of A.

An outline of the Electrostatic Potential Energy Evolu-
tionary Algorithm (ESPEA) is provided in Algorithm 1. The
function e(a) calculates the energy the member a introduces
into the archive:

e(a) =
∑

b∈A\{a}

W (f(a)) ·W (f(b))

‖f(a)− f(b)‖2
. (3)

The energy, p would introduce into the archive if it was
to replace archive member a, is given by

e−a(p) =
∑

b∈A\{a}

W (f(p)) ·W (f(b))

‖f(p)− f(b)‖2
. (4)

Step 13 encapsulates the replacement mechanism. As
stated before, p can only replace an archive member if it de-
creases the overall energy of the archive. It may occur, how-
ever, that there exist multiple candidates for replacement.
We have identified three different strategies for selecting the
archive member to replace in this case. Let A> denote the
subset of A consisting only of members that introduce more
energy in lieu of p, i.e. A> := {a ∈ A|e−a(p) < e(a)}.

Best feasible position: arg mina∈A> e−a(p)
Of all viable options, p replaces a such that it intro-
duces the least energy possible into A.

Worst in archive: arg maxa∈A> e(a)
The new solution replaces the member that exhibits
the highest energy of all elements in A>.

2An exact formulation of the offspring generation method
applied is provided in Section 4.
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Algorithm 1: ESPEA

1 begin
2 Generate initial population P
3 Copy all non-dominated solutions in P to archive A
4 repeat
5 Generate a single new solution p
6 Remove all solutions from A dominated by p
7 if p 6≺ a ∧ f(p) 6= f(a) ∀a ∈ A then
8 if |A| < N then
9 A := A ∪ {p}

10 else
11 Calculate e(a) for all a ∈ A
12 Calculate e := (e−a1(p), . . . , e−aN (p))
13 update(A,p,e)

14 until stopping criterion
15 return A

Largest energy decrease: arg maxa∈A>(e(a)− e−a(p))
The energy difference before and after inserting p is
maximized.

The three different selection mechanisms possess several
advantages and disadvantages. Best feasible position (BFP)
and worst in archive (WIA) put a very strong selection pres-
sure on including only the best solutions into the archive. On
the other hand, the total energy loss might only be marginal.
The largest energy decrease (LED) builds a bridge between
the two aforementioned approaches. However, considering
the largest decrease might not remove the least favorable
archive members in the long run.

A thorough mathematical proof for the convergence be-
havior of ESPEA goes beyond the scope of this paper. Whe-
ther convergence occurs, also depends on the scalarization
function. However, we provide a formal tool, with which the
stability of an archive given W can be calculated. We call an
archive evolutionary stable if no new solution can supersede
an existing archive member.

Proposition 1. Let E+(a) := {p ∈ X|e−a(p) < e(a)}
denote the set of points that would decrease the energy of A if
p was to supersede a and D(A) := {p ∈ X|∃a ∈ A : a � p}
the set of points that are dominated by the archive A. A is
evolutionary stable if

⋃
a∈AE

+(a) ⊆ D(A).

Proof. A new solution p may only replace an archive
member a if e−a(p) < e(a). According to Proposition 1,
this is only the case if any archive member dominates p. In
this case however, p is automatically discarded before even
being considered for insertion.

Conjecture 1. The ESPEA algorithm is evolutionary
stable for the BFP, WIA and LED update mechanism if
W (f(x)) = 1.

Remark 3. We base Conjecture 1 on an observation made
in two dimensions for an archive of size three and a Pareto
front consisting of an arbitrarily-shaped, continuous curve
that has fixed boundary points. In this case, the energy min-
imum consists of the two boundary solutions of the Pareto
front xl and xr and the solution xm, whose image lies on the
Pareto front and has exactly the same distance from both

boundary points. The complement of E+(xm) in Y (the im-
age of those points that would introduce more energy into
A than xm) consists of two circles having their centers at
f(xl) and f(xr) intersecting f(xm). Aforementioned space
overlaps into D(A) resulting in all solutions that would in-
troduce less energy into the archive being dominated by A.
We believe that this observation may be generalized for an
arbitrary number of points and objectives.

We would like to point out that other preference notions
such as variable cone orderings [26] or tradeoff thresholds
[5], effectively cropping the set of optimal solutions, can be
implemented on top of ESPEA by changing the archive up-
date mechanism in deciding if a solution is eligible to enter.
Additional preferences information regarding diversity can
also be encapsulated in the scalarization function.

Next, we analyze the complexity of ESPEA. Removing
dominated solutions from the archive in Step 6 and check-
ing if p is dominated by or if its objective values are equal
to that of any archive member can be conducted at the
same time. The worst case effort for this procedure lies
in O(mN) for an archive of size N . The computation effort
for energy values in Step 11 and 12 hinges on the complexity
of the scalarization function. As calculating the Euclidean
distance requires an effort of O(m), we gain a complexity
of O(N2(m + O(W ))) in Step 11. By exploiting the fact
that energies are symmetric, we can halve the number of
energy calculations, however this does not change the com-
plexity class. An intelligent evaluation scheme in Step 12
allows us to reduce the effort for calculating the vector e
to O(N(m + O(W )). All three update mechanism in Step
13 exhibit a computational complexity of O(N). There-
fore, the overall effort of a single ESPEA iteration lies in
O(N2(m + O(W ))). This circumstance makes the electro-
static energy approach computationally tractable in higher
dimensions.

4. SIMULATION RESULTS
The computational analysis is split into two parts. In

the first part, we assume no specific preferences, in order to
benchmark the three archive update mechanisms presented
in the previous section. We analyze how well each mecha-
nism is suited to attain the energy minimum on a given set
of widely used test problems. Thereafter, we compare ES-
PEA with state-of-the-art multi-objective evolutionary al-
gorithms. The second part consists of the presentation of
various representative example runs using the scalarization
techniques presented in Section 2.

We implemented the ESPEA algorithm in the jMetal frame-
work [15]. The code is publicly available and hosted as stan-
dalone project3. The following setup was used for perform-
ing the quantitative study. ESPEA employed SBX crossover
[9] using a distribution index of 20 and a crossover probabil-
ity of 0.9 in combination with binary tournament selection
based on energy values if the archive had not reached its
maximum size, yet. This way, we achieve an early selection
bias towards the most promising solutions. Such a strategy
was already successfully applied in the AMGA2 algorithm
[31] in conjunction with the crowding distance metric. When
the archive has reached its maximum size, we switch the
crossover mechanism to differential evolution and select the

3http://sourceforge.net/projects/jmetalbymarlonso/
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parents randomly. In recent years, differential evolution has
proven to be one of the most competitive selection mecha-
nisms [7]. In order to prevent an early genetic drift, when
the archive is still small, we first utilize SBX. Parents are
chosen randomly for the differential evolution, so that each
solution on the Pareto front is given equal weight. We ac-
knowledge, however, that there might exist better parent
selection schemes that will be investigated in future studies.
Polynomial mutation [10] using a distribution index of 20
and a mutation probability of one by the number of decision
variables was used in all stages of the algorithm. We also
used adaptive normalization in calculating Euclidean dis-
tances to mitigate the effect of different scales of individual
objectives.

Reference points on the Pareto front were computed for
each test problem of the study that served as approximate
energy minima for a given population size. The final popula-
tions obtained by ESPEA using the different update mecha-
nisms were compared against these reference points to assess
ESPEA’s performances. The reference points were created
in the following way: We first obtained analytical function
representations of the Pareto fronts of the test problems.
Then, equidistant decision variables were used as starting
points in conjunction with the MATLAB optimization tool-
box, as they serve as good estimate for the energy minimum.
The reference fronts and the code for generating them are
contained in the online repository.

Using the approach outlined in the paragraph above lim-
ited our selection of test instances to continuous problems,
whose analytical description of the Pareto front is known.
Still, our final selection of eleven problems constitutes a
representative sample of differing challenges. These are com-
posed of convex and concave fronts, shallow and pronounced
curvatures and Pareto fronts exhibiting multiple bulges. We
employed a maximum archive size of 50 for two-dimensional
problems, while three-dimensional problems were solved us-
ing an archive size of 100. Each ESPEA configuration was
run 100 times on each test problem to provide a represen-
tative sample. 10,000 function evaluations were used on the
2D and 20,000 function evaluations on the 3D problems.
The following tests suites were used in this study: DEB2DK,
DO2DK [4], DTLZ [14], ZDT [34] and an instance of a Lamé
hypersphere [16] with a curvature of 0.5.

Table 1: Median and IQR of IGD to minimum en-
ergy distribution.

ESPEA BFP ESPEA WIA ESPEA LED

DEB2DK k1 2.45e − 35.3e−4 1.63e − 33.3e−4 1.59e − 33.3e−4
DEB2DK k3 5.02e − 32.8e−3 1.54e − 32.8e−4 1.62e − 32.4e−4
DO2DK k2 s1 7.41e − 42.7e−3 3.17e − 41.1e−5 3.18e − 41.2e−5
DO2DK k4 s1 6.57e − 42.6e−4 3.35e − 41.5e−5 3.34e − 41.3e−5
ZDT1 1.12e − 21.9e−2 1.62e − 33.3e−4 1.63e − 32.7e−4
ZDT2 7.62e − 22.6e−2 1.22e − 33.6e−4 1.27e − 33.3e−4
DTLZ1 1.16e − 25.8e−3 3.93e − 35.2e−4 3.99e − 35.0e−4
DTLZ2 9.37e − 31.8e−3 5.47e − 32.3e−4 5.53e − 33.2e−4
DTLZ3 3.91e − 13.6e−1 4.22e − 13.9e−1 4.34e − 13.5e−1
DTLZ4 9.44e − 35.9e−2 6.11e − 36.2e−2 1.22e − 26.2e−2
Lame 0.5 3.58e − 32.9e−4 2.56e − 31.7e−4 2.57e − 31.8e−4

Table 1 lists medians and inter-quartile ranges of the in-
verted generational distance (IGD) metric [33]. Dark/light
gray colored cells hint at the best/second-best result, respec-
tively. The IGD metric reveals how close the final archive
is to the reference set that constitutes the energy minimum.

All archive update mechanisms are very capable of obtain-
ing a close approximation to the energy minimum. DTLZ3
is the only problem, for which the inverted generational dis-
tance stays above the 10e − 2 threshold. We observe that
WIA and LED exhibit a very similar performance, whereas
BFP is outclassed on most problems. Interestingly, BFP ob-
tains very good results on the problems DTLZ3 and DTLZ4,
which are known to be difficult to solve.

Table 2: IGD. p-values of a multiple comparison
of mean column ranks using Bonferroni adjusted p-
values.

ESPEA WIA ESPEA LED

ESPEA BFP 0.0019 0.2642
ESPEA WIA 0.2642

We conducted a Friedman test in conjunction with Bon-
ferroni correction to assess, whether the performance dif-
ferences observed are significant across all tested problems.
Table 2 lists the results. Only WIA’s performance differs sig-
nificantly from BFP. We would like to note, however, that
the Bonferroni correction is very conservative and does only
utilize ranks instead of absolute differences.

The distance between approximation and the ideal distri-
bution of points is not the only performance indicator that
should be considered in this context. Any approximation to
the Pareto front exhibiting a small overall energy naturally
constitutes a desirable result. Of course, such an approx-
imation is required to have the full number of solution as
requested by the user. The solutions retrieved should also
be closely located to the Pareto front. We have already re-
solved the latter issue by showing that the approximations
retrieved by ESPEA are close to the ideal distributions of
points. Regarding the former issue, all three mechanisms
were able to obtain the full number of solutions on all prob-
lems besides DTLZ3 in their median runs. However, even
on DTLZ3, WIA and LED still obtained a median number
of solutions of 97.5 and 92, respectively. BFP was only able
to retrieve 69 solutions.

Table 3: Median and IQR of total energy values.
ESPEA BFP ESPEA WIA ESPEA LED

DEB2DK k1 7.17e + 35.7e+2 5.68e + 32.8e+1 5.67e + 31.8e+1
DEB2DK k3 8.27e + 39.3e+2 5.82e + 32.4e+1 5.82e + 32.2e+1
DO2DK k2 s1 7.27e + 39.0e+2 5.03e + 33.4e+1 5.03e + 33.2e+1
DO2DK k4 s1 7.39e + 36.7e+2 5.11e + 33.8e+1 5.11e + 33.5e+1
ZDT1 7.39e + 35.7e+2 5.81e + 33.1e+1 5.81e + 33.1e+1
ZDT2 1.08e + 44.1e+3 5.78e + 32.7e+1 5.78e + 32.4e+1
DTLZ1 1.96e + 45.5e+3 1.12e + 42.3e+1 1.12e + 42.8e+1
DTLZ2 4.82e + 48.6e+4 9.07e + 35.4e+1 9.06e + 34.6e+1
DTLZ3 6.74e + 45.3e+5 1.38e + 42.3e+4 1.40e + 41.3e+4
DTLZ4 4.69e + 4NaN 9.22e + 31.6e+4 9.21e + 31.6e+4
Lame 0.5 1.68e + 41.1e+3 1.38e + 44.2e+1 1.37e + 45.4e+1

Table 3 lists medians and IQRs for the electrostatic poten-
tial energy values. BFP is clearly outperformed on all test
instances. LED obtains the overall best results across all
problems, however the actual performance difference com-
pared to WIA is only marginal. In order to provide a com-
plete picture, we also list the energy values of the optimal
distributions calculated using the MATLAB software in Ta-
ble 4. We observe that the approximations ESPEA pro-
duces come very close to the energy minima. On some test
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problems the approximations even attain a smaller energy
value. This does not necessarily imply, however, that the
optimal distributions obtained using MATLAB are approxi-
mated too roughly. Since the solutions generated by ESPEA
may not reside exactly on the Pareto front, smaller energies
may be attained, as energy is mainly a dispersion metric.

Table 4: Smallest known energy values for popula-
tion sizes N = 50 on 2D and N = 100 on 3D problems.

Minimum

DEB2DK k1 5.63e + 3
DEB2DK k3 5.78e + 3
DO2DK k2 s1 5.30e + 3
DO2DK k4 s1 5.37e + 3
ZDT1 5.75e + 3
ZDT2 5.75e + 3
DTLZ1 1.23e + 4
DTLZ2 9.05e + 3
DTLZ3 9.05e + 3
DTLZ4 9.05e + 3
Lame 0.5 1.38e + 4

A Friedman test was conducted to assess, whether the ob-
served performance differences are significant. The results
are listed in Table 5. We observe that WIA and LED out-
perform BFP with high confidence. Based on these results,
WIA and LED both appear as eligible options, whereas the
use of BFP is discouraged. For the remainder of our study,
we employed the WIA update strategy.

Table 5: ENERGY. p-values of a multiple compari-
son of mean column ranks using Bonferroni adjusted
p-values.

ESPEA WIA ESPEA LED

ESPEA BFP 0.0017 0.0001
ESPEA WIA 1.0000

We opted to compare the performance of ESPEA to three
state-of-the-art multi-objective evolutionary algorithms that
also aim to obtain a predefined optimal distribution of points
in a separate experiment. SMS-EMOA [3], MOEA/D [21]
and NSGA-III [12] were chosen for this study. The first two
algorithms are readily available in the jMetal framework,
whereas NSGA-III was implemented from scratch. Algo-
rithm configurations were taken from the respective original
publications. MOEA/D weight vectors were obtained from
the University of Essex homepage4. We employed 105 ref-
erence points for NSGA-III generated by the method sug-
gested in [12]. ESPEA retained its configuration from the
previous experiment. The same test problems as for the
benchmark study were employed, since NSGA-III is recom-
mended to be used with adaptive reference points on non-
continuous Pareto fronts or constrained problems. Adaptive
reference points, however, no longer prescribe an optimal
distribution of points, which contradicts the approach of this
study. We used a population size of 100 and 20,000 function
evaluations on all problems.

4http://dces.essex.ac.uk/staff/qzhang/MOEAcompetition/
CEC09final/code/ZhangMOEADcode/moead030510.rar

Table 6: Median IGD.
ESPEA SMS-EMOA MOEA/D NSGA-III

DEB2DK k1 4.71e − 5 4.88e − 5 3.43e − 4 1.27e − 4
DEB2DK k3 4.68e − 5 4.91e − 5 3.65e − 4 1.33e − 4
DO2DK k2 s1 5.36e − 5 6.04e − 5 4.43e − 4 4.03e − 4
DO2DK k4 s1 5.43e − 5 7.55e − 5 4.33e − 4 2.99e − 4
ZDT1 4.56e − 5 4.30e − 5 3.35e − 4 1.22e − 4
ZDT2 4.43e − 5 5.76e − 5 4.24e − 4 1.28e − 4
DTLZ1 6.97e − 4 4.41e − 4 6.28e − 4 7.00e − 4
DTLZ2 6.91e − 4 8.33e − 4 7.71e − 4 5.95e − 4
DTLZ3 5.02e − 2 4.34e − 2 1.69e − 2 5.74e − 2
DTLZ4 6.97e − 4 8.56e − 4 1.00e − 3 6.05e − 4
Lame 0.5 2.64e − 4 1.70e − 4 2.92e − 4 2.50e − 4

Table 6 lists median results for the IGD metric. IQR
values were omitted for space limitations, but are readily
available upon request. The reference fronts of DEB2DK
and DO2DK were created by sampling 10,000 equidistant
points and are contained in the online repository. Other
reference fronts were obtained from the jMetal homepage5.
The results clearly show that ESPEA excels on all test prob-
lems. ESPEA is among the top two performers on all but
three test problems and scores five first places, the best value
among all algorithms. It is noteworthy that the performance
gap between ESPEA and the well established MOEA/D and
NSGA-III becomes quite large on DEB2DK, DO2DK and
the ZDT suite.

In the final part of this section, we present representative
example runs of ESPEA on numerous test problems using
the four scalarization techniques presented in Section 2. A
population size of 50 and 100 were employed for 2D and 3D
problems, respectively. The number of function evaluations
corresponds to population size times 200.

Figure 1: ESPEA example run on DEB3DK with
k = 2 using the sum of objectives.

Figure 1 shows two example runs on the problem DEB3DK
for k = 2 [4]. DEB3DK was omitted from our quantitative
study, because its Pareto front features two distinct holes
that prevent NSGA-III and MOEA/D from finding mean-
ingful approximations without resorting to adaptive weight
vectors/reference points. In order to demonstrate the ef-
fect of the sum of objectives charges, we also provide an
ESPEA run using no preference information. We can ob-
serve that if no scalarization function is specified, solutions
are distributed equally on the entire front. The sum of ob-
jectives introduces a strong focus on convex valleys. The

5http://jmetal.sourceforge.net/
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Pareto front of DEB3DK features many convex and concave
bulges. It is interesting to note that ESPEA using sum of
objectives charges also captures points in concave regions,
where the weighted sum method would fail.

Figure 2: ESPEA example run on DTLZ4 using
Chebyshev’s method.

Chebyshev’s method is illustrated in Figure 2 on DTLZ4.
If no preferences are specified, solutions are equally dis-
tributed on the Pareto front. The Chebyshev technique
retains the scope of the entire front, however we can spot
a distinct intersection of three lines in the center of the fig-
ure. These three lines constitute exactly those points that
minimize Chebyshev’s scalarization function.

Figure 3: ESPEA example run on DO2DK with
k = 2, s = 1 and α = 1.1 using the Nash bargain-
ing solution.

We choose DO2DK to illustrate the performance of ES-
PEA using the Nash bargaining solution. The current pop-
ulation was used to attain an estimate of the Nadir point
and the minimum and maximum of (2). Figure 3 shows an
ESPEA run on DO2DK and also the scalarization values for
every point of the Pareto front. There is a stark focus of
solutions on the barycenter of the curve as this region pos-
sesses the smallest scalarization values. Very few points are
located on the near horizontal/vertical sections close to the
boundary solutions. The Nash bargaining solution naturally
avoids extreme points making these regions highly undesir-
able as indicated by the scalarization values.

Figure 4: ESPEA example run on DEB2DK with
k = 1 using proper utility.

Figure 4 illustrates the effect if proper utility values are
set as charges. ESPEA places a heavy focus on the most
favorable regions that are located at the convex valley in
the center and at the boundary of the Pareto front. Utility
values exhibit a sharp peak close to the global optimum,
which is why ESPEA practically neglects these regions.

The search results presented in Figure 1 to 4 all present
the decision maker with multiple solutions that are highly
desirable with respect to his preferences. At the same time,
a focus on the entire Pareto front is retained enabling him
to make a comparison of his preferred solutions to other
available options.

5. SUMMARY AND OUTLOOK
This paper has presented a new concept for defining an op-

timal distribution of points on the Pareto front. The optimal
distribution can be biased towards preferred regions using
scalarized preference information. We have presented the
ESPEA algorithm, which implements aforementioned con-
cept. A thorough computational study has revealed that ES-
PEA succeeds in obtaining these optimal distributions and
compares well against state-of-the-art algorithms in finding
an equidistant approximation to the Pareto front.

The electrostatic energy optimization concept offers many
research questions that could be explored in subsequent stud-
ies. It would be especially of interest to formulate a coher-
ent proof for Conjecture 1. In this light, it would make
sense to further assess the evolutionary stability of ESPEA
for arbitrary scalarization functions. Exact algorithms [17]
for minimizing U(S) could also be investigated. For this,
set-based gradient of the U(S) function needs to be com-
puted [30]. Subsequent studies could also analyze ESPEA’s
performance on many-objective problems. Although one of
ESPEA’s great advantages is that it is parameter-free, it
could make sense to employ a user-supplied parameter to
strengthen or weaken the bias induced by the scalarized
preference value. Apart from these, testing on real-world
applications (such as [1]) is also intended.
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