
A Clustering-Based Model-Building EA for Optimization
Problems with Binary and Real-Valued Variables

Krzysztof L. Sadowski
Department of Computer

Science
Utrecht University
P.O. Box 80089
3508 TB Utrecht
The Netherlands

k.l.sadowski@uu.nl

Peter A.N. Bosman
Centrum Wiskunde &

Informatica (CWI)
P.O. Box 94079

1090 GB Amsterdam
The Netherlands

peter.bosman@cwi.nl

Dirk Thierens
Department of Computer

Science
Utrecht University
P.O. Box 80089
3508 TB Utrecht
The Netherlands

d.thierens@uu.nl

ABSTRACT
We propose a novel clustering-based model-building evo-
lutionary algorithm to tackle optimization problems that
have both binary and real-valued variables. The search
space is clustered every generation using a distance met-
ric that considers binary and real-valued variables jointly
in order to capture and exploit dependencies between vari-
ables of different types. After clustering, linkage learning
takes place within each cluster to capture and exploit de-
pendencies between variables of the same type. We compare
this with a model-building approach that only considers de-
pendencies between variables of the same type. Addition-
ally, since many real-world problems have constraints, we
examine the use of different well-known approaches to han-
dling constraints: constraint domination, dynamic penalty
and global competitive ranking. We experimentally analyze
the performance of the proposed algorithms on various un-
constrained problems as well as a selection of well-known
MINLP benchmark problems that all have constraints, and
compare our results with the Mixed-Integer Evolution Strat-
egy (MIES). We find that our approach to clustering that is
aimed at the processing of dependencies between binary and
real-valued variables can significantly improve performance
in terms of required population size and function evaluations
when solving problems that exhibit properties such as mul-
tiple optima, strong mixed dependencies and constraints.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; Mixed discrete-continuous optimization;

Keywords
Genetic algorithms, Multiple solutions/ Niching, Empirical
study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11–15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754740

1. INTRODUCTION
Research in Evolutionary Computation often focuses on

either discrete or continuous optimization. However, many
academic and industrial problems are known where discrete
and continuous variables are present simultaneously. Addi-
tionally, many such problems, especially in the real-world,
are accompanied by a set of constraints, which limit the fea-
sibility of the solutions in the search space.

In a black-box setting little is known about the problem
landscape. The presence of both discrete and continuous
variables in this setting introduces many challenges. Vari-
able dependencies may exist within the discrete and con-
tinuous sub-domains, as well as across both domains. Con-
straints limit the feasibility of the solution space, and multi-
modality of a landscape may create deceptive attractors to-
wards local optima.

Model-based Evolutionary Algorithms (EAs) have been
successful in solving black-box optimization problems for
both discrete and continuous domains. EAs can build mod-
els by either learning linkage between variables in the dis-
crete domain, or estimating probability distributions in the
continuous domain, which leads to identifying search space
regions with high quality solutions. The Linkage Tree Ge-
netic Algorithm (LTGA) and Incremental Adapted Maxi-
mum Likelihood Gaussian Model Iterated Density Estima-
tion Evolutionary Algorithm (iAMaLGaM)1 are state-of-
the-art model-building EAs for discrete and continuous prob-
lems respectively [9] [1]. A recently introduced approach
extends the use of these model-based EAs from the individ-
ual respective domains to the mixed discrete-continuous do-
mains, by combining and interleaving their model-building
mechanisms. Results indicate that integrating those two
algorithms can produce an efficient optimization algorithm
for various unconstrained mixed discrete-continuous prob-
lems [8]. This promising approach is still limited however,
as it only considers the continuous and discrete domains in-
dependently. By doing so, possible dependencies between
discrete and continuous variables are ignored. We aim to
improve this approach by adjusting the variable sampling
mechanism and by integrating a clustering mechanism to
process mixed dependencies.

Clustering the solution space provides the means for focus-
ing the optimization process on multiple important regions

1LTGA and iAMaLGaM code is available at
http://homepages.cwi.nl/∼bosman/

911



of the search space simultaneously. This ability has the po-
tential to explore problems with multiple optima efficiently,
as well as model and exploit dependencies present in a prob-
lem due to existing constraints or inter-variable interactions.
We consider different ways of clustering the search space by
treating the discrete and continuous variables jointly or in-
dependently. Our goal is examining our novel clustering
mechanism’s ability to improve performance on problems
that exhibit dependencies, constraints or consist of multiple
optima.

Recent work on Mixed-Integer optimization include Evo-
lution Strategies [6] as well as Bayesian Optimization ap-
proaches [5]. We consider different types of constraint-
handling mechanisms and compare the results of our clus-
tering based EA with the Mixed-Integer Evolution Strategy
(MIES) on constrained problem benchmarks provided in [6].

2. BACKGROUND
The clustering-based model-building EA we introduce in

this paper is based on two known model-building Evolu-
tionary Algorithms: LTGA and iAMaLGaM, whose models
are carefully interleaved to sample discrete and continuous
variables respectively. The performance of the algorithm
is tested on unconstrained benchmarks which are designed
based on existing discrete and continuous problems, as well
as a Mixed-Integer Nonlinear Programming (MINLP) set of
constrained problems [4].

2.1 Model-Building EAs
The Linkage Tree Genetic Algorithm (LTGA) is a state-

of-the-art model building GA designed for solving discrete
problems [9] [10]. Variable dependences are learned in ev-
ery generation with a hierarchical clustering algorithm and
represented in a linkage tree. Every node of this linkage
tree is a subset containing between one and ld − 1 problem
variables. These nodes represent linkage subsets which are
important for the solution. LTGA iterates over all solutions
in the population and attempts to improve them: for each
solution, the linkage tree is traversed and each subset of the
tree is used as a crossover mask between a donor and the
parent solution. A random donor from the population is se-
lected for every subset mask. A result of each such crossover
is immediately evaluated. If the resulting offspring solution
is better or equal than its parent, it replaces the parent.
Otherwise, the offspring is discarded.

The Incremental Adapted Maximum-Likelihood Gaussian
Model Iterated Density Estimation Evolutionary Algorithm
(iAMaLGaM) is a state-of-the-art EDA for real-valued black-
box optimization (BBO) [3]. Following the general EDA
paradigm, iAMaLGaM estimates a Gaussian distribution
every generation from the selected solutions and generates
new solutions by sampling the estimated distribution. The
mean vector and covariance matrix are estimated incremen-
tally using intergenerational memory decay on maximum-
likelihood estimates. A mechanism which scales up the co-
variance matrix when needed is used to counteract the risk of
premature convergence. Finally, the intergenerational An-
ticipated Mean Shift procedure improves the behavior of iA-
MaLGaM in slope-like regions of the search space.

2.2 GAMBIT: Integrated LTGA-iAMaLGaM
A novel mechanism for solving unconstrained

mixed-integer problems which relies on interleaving the

model-building capabilities of LTGA and iAMaLGaM is in-
troduced in [8]. This integrated approach builds models in
the discrete and continuous space independently. An im-
portant aspect of this mechanism is maintaining a proper
balance between sampling the discrete and continuous mod-
els. Sampling or updating one of the models too often can
lead to premature convergence, or unnecessary exploration
of the search space. In standalone iAMaLGaM, each solu-
tion is sampled once within a single generation. Standalone
LTGA updates each solution up to 2ld − 1 times, once for
every mask in the linkage tree within a generation. Because
of this difference, the individual models cannot be updated
at the same time in the integrated version of the two al-
gorithms. To achieve effective sampling rates, every mask
evaluation of LTGA for a given solution is followed by sam-
pling the continuous space for the same solution from the
iAMaLGaM model. Once all solutions have been sampled
the continuous model is updated. The discrete model is
only updated after all the masks have been tried on all so-
lutions. This way, the continuous and discrete variables of
a given solution are sampled consecutively, however the re-
building of discrete and continuous models takes place at
different times, following the specifications of the individual
algorithms.

Sampling of discrete and continuous variables to create
new solutions follows mechanisms of LTGA and iAMaL-
GaM. The continuous model is learned from the top τ = 0.35
fraction of the population, following iAMaLGaM. When con-
tinuous variables are sampled, they are accepted without
any restrictions. The discrete model is built from the entire
population. To generate selection pressure, when a mask is
applied, the resulting solution is only accepted if it improves,
or is equal to the solution following LTGA.

This integrated LTGA-iAMaLGaM algorithm has not yet
been referenced under a specific name. From now on, we
will refer to it as the Genetic Algorithm for Model-Based
mixed-Integer opTimization, or GAMBIT.

2.3 MIES
In addition to analyzing the performance of our novel

clustering-based EA, we take a closer look at results ac-
quired with the Mixed-Integer Evolution Strategy (MIES).
MIES extends (µ+λ)-ES for continuous problems to mixed-
integer search spaces. After a uniformly distributed initial
population is created, new solutions are generated by the fol-
lowing procedure. Two solutions are randomly chosen from
the current population P (t) to act as parent solutions. A re-
combination operator is applied to parent solutions, followed
by a mutation operator. Those operators are defined differ-
ently for continuous, nominal discrete and integer problem
variables. This procedure repeats until λ offspring solutions
are created. The best µ solutions from the union of the µ
parent solutions and the λ offspring are selected and carried
over into the population P (t+ 1) [6].

3. BENCHMARK PROBLEMS
To study the behavior of our algorithm we first consider a

set of unconstrained problems. In these problems constraint-
handling mechanisms are not needed, which helps in acquir-
ing better insight and understanding of the algorithm be-
havior. We designed mixed-integer benchmarks based on
well-known discrete and continuous problems, which exhibit
different problem characteristics. A specification of the in-

912



dividual functions can be found in Table 1. Table 2 summa-
rizes how these functions are used together to create uncon-
strained mixed discrete-continuous benchmarks. Initializa-
tion range for all the unconstrained problems is [-5,5].

The first mixed benchmark F1 is the Onemax-Sphere func-
tion. It is a concatenation of two problems where all the vari-
ables are completely independent. DT5-R.Ellipse, or F2, is
a problem where discrete variables are strongly dependent
on each other because of the Deceptive Trap Function be-
havior, while the continuous variables are strongly depen-
dent on each other due to parameter rotation of 45 degrees.
However, no dependence between the discrete and contin-
uous domains exist. Cross-Dependent function F3 includes
dependencies between both domains as well as mixed depen-
dencies between the variables. It is a specific combination
of the previously defined FDT5 function with the rotated
ellipsoid. It is additively decomposable and consists of sub-
functions pertaining to blocks of k discrete and k continuous
variables. For a trap function with k = 5, there are 2k = 32
different binary combinations per block. A differently trans-
lated and rotated ellipsoid function corresponds with each of
those combinations. The continuous function which is being
optimized depends on the binary counterpart, introducing
dependencies between the discrete and continuous variables
that pertain to the same subset. In the function definition,
Dblock

i is a block of five discrete variables. Cblock are the
corresponding five real-valued variables. The D block vari-
ables determine which of the 2k different rotated ellipsoid
functions are being optimized, while C block provides the
values of the ellipsoid function variables. In this benchmark
the number of discrete variables is the same as the continu-
ous variables: ld = lc = l/2. Finally, Twomax-Cos, or F4, is
a symmetry-breaking problem with three local optima and
one global optimum. This function is a combination of the
cosine(xc) function with the Twomax(xd) function. There
are four symmetric optima - two from the cosine function
and two from Twomax, however only one is the global opti-
mum.

Table 1: Continuous and Discrete functions used to
define our unconstrained mixed benchmarks

Functions

FSphere(xc) =
∑lc−1

i=0 c2i
FR.Ellip.(xc) = FEllip.(R ∗ xc) , where

FEllip.(xc) =
∑lc−1

i=0 106∗i/(lc−1) ∗ c2i
FOnemax(xd) =

∑ld−1
i=0 di

FDT5(xd) =
∑ld/k−1

i=0 fsub
Trap−k(

∑ki+k−1
j=ki dj) ,

where

fsub
Trap−k(u) =

{
0 : if u = k
1− (k − 1− u)/k : otherwise

FTwomax(xd) = max(FOnemax, FZeromax)

Table 2: Unconstrained Problems
ID Definition

F1 F1(xd,xc) = FOnemax(xd) + FSphere(xc)
F2 F2(xd,xc) = FDT5(xd) + FR.Ellip.(xc)

F3 F3(xd,xc) =

∑0.5l/k−1
i=0 (1 + 10af trap

sub (
∑ki+k−1

j=ki dj))

∗(1 + fsub
Ellipse(Dblock

i , Cblock
i ))

F4 F4(xd,xc) = FTwomax(xd) + FCOS(xc)

Many industrial mixed continuous-discrete problems in-
clude constraints. Very often, it is the constraints, not the
function itself that makes the problem much more difficult
to solve. We consider a set of Mixed-Integer problems from
the MINLP Benchmark Library [4]. Specification of the ob-
jective function, constraints and parameters ranges can be
found in Table 3. Minimization is assumed for both uncon-
strained and constrained problems.

4. CLUSTERING-BASED MIXED DEPEN-
DENCY MODELING

4.1 Motivation
Understanding the underlying problem structure can be

key in effectively optimizing a black-box mixed-integer prob-
lem. GAMBIT is a promising recent approach which joins
the model building capabilities of LTGA and iAMaLGaM.
Variable dependencies are thereby still independently mod-
eled for each domain, while the frequency of sampling so-
lutions and model updates is carefully balanced [8]. Con-
sidering dependencies between different types of variables
(i.e. discrete and continuous) could be a very important
step in solving difficult problems more efficiently. We study
if integrating a clustering-based approach with GAMBIT
improves performance on problems that exhibit variable de-
pendencies, constraints or contain multiple optima.

Similar to LTGA, one could arguably consider explicitly
modeling mixed dependencies on a variable level by means
of calculating mutual information between discrete and con-
tinuous variables. This information could then be used to
learn important mixed linkage subsets in a similar fashion
to how LTGA generates and samples from a linkage tree of
discrete subsets. To process dependencies for such mixed
masks, clustering could be used, for instance to model the
distribution in the continuous space conditionally on a clus-
tering of the discrete space. However, mixed mask config-
urations acquired this way may differ in subsequent gener-
ations, resulting in intrinsically different ways of clustering
the search space and learning the parameters of the Gaus-
sian distributions in iAMaLGaM. This invalidates the use
of the intergenerational mechanisms of iAMaLGaM as they
are currently defined. It is not straightforward to change
these mechanisms accordingly.

This does not completely invalidate the use of cluster-
ing, however. Clustering on the solution level allows the
preservation of these crucial intergenerational mechanism,
as models created in the previous generation can be mapped
to models resulting from the clustering in the current gener-
ation. Furthermore, clustering has the capacity to partition
the search space into regions representing different optima
if they exist within a problem space. This feature is likely
to also improve performance of GAMBIT and further moti-
vates the use of a cluster-based mechanism.

4.2 Implementation
The overview of this clustering-based mechanism is as fol-

lows. A constant number k of clusters is predetermined.
A population is generated randomly with n solutions that
are evaluated. From this population k equally-sized (n/k)
clusters which exert some level of similarity in accordance
with the chosen distance metric are selected. Details on how
the clusters are determined is explained later in this sec-
tion. It is possible for the same solution to exist in multiple

913



Table 3: Specifications of the MINLP selected constrained benchmark problems
Name Function Constrains Range

F5 2r1 + d1 −r21 − d21 ≤ −1.5, r1 + d1 ≤ 1.6
r1 ∈ [0, 1.6]
d1 ∈ {0, 1}

F6 2r1 + 3r2 + 1.5d1 + 2d2 − 0.5d3

r21 + d1 = 1.25, r1.52 + 1.5d2 = 3
r1 + d1 ≤ 1.6, 1.333r2 + d2 ≤ 3

−d1 − d2 + d3 ≤ 0

r1,2 ∈ [0, 10]
d1,2,3 ∈ {0, 1}

F7 0.8 + 5(r1 − 0.5)2 − 0.7d1
−exp(r1 − 0.2)− r2 ≤ 0

r2 + 1.1d1 ≤ −1, r1 − 1.2d1 ≤ 0

r1 ∈ [0.2, 1]
r2 ∈ [0.22554,−1]

d1 ∈ {0, 1}

F8

6 + (r1 − 1)2 + (r2 − 2)2

+(r3 − 3)2 − d1 − 3d2 − d3
−0.693147180559945d4

r1 + r2 + r3 + d1 + d2 + d3 ≤ 5
r21 + r22 + r23 + d3 ≤ 5.5

r1 + d1 ≤ 1.2, r2 + d2 ≤ 1.8
r3 + d3 ≤ 2.5, r1 + d4 ≤ 1.2
r22 + d2 ≤ 1.64, r23 + d3 ≤ 4.25

r23 + d2 ≤ 4.64

r1,2,3 ∈ [0, 10]
d1,2,3,4 ∈ {0, 1}

F9 −5r1 + 3r2

8r1 − 2r0.51 r2 + 11r2 + 2r22 − 2r0.52 ≤ 39
r1 − r2 ≤ 3, 3r1 + 2r2 ≤ 24

r2 − d1 − 2d2 − 4d3 = 1, d2 + d3 ≤ 1

r1 ∈ [1, 10]
r1 ∈ [1, 6]

d1,2,3 ∈ {0, 1}

F10

(r4 − 1)2 + (r5 − 2)2 + (r6 − 1)2

−log(1 + r7) + (r1 − 1)2

+(r2 − 2)2 + (r3 − 3)2

r1 + r2 + r3 + d1 + d2 + d3 ≤ 5
r26 + r21 + r22 + r23 ≤ 5.5, r1 + d1 ≤ 1.2

r2 + d2 ≤ 1.8, r3 + d3 ≤ 2.5, r1 + d4 ≤ 1.2
r25 + r22 ≤ 1.64, r26 + r23 ≤ 4.25

r25 + r23 ≤ 4.64
r4 − d1 = 0, r5 − d2 = 0
r6 − d3 = 0, r7 − d4 = 0

r1,2,3 ∈ [1, 10]
r4,5,6,7 ∈ [0, 1]
d1,2,3,4 ∈ {0, 1}

clusters. A separate continuous-discrete model is associated
with one cluster of solutions. Within each cluster, the vari-
able linkages and Gaussian parameters for the discrete and
continuous variables are learned respectively. Based on the
learned information, each model instance generates n/k new
solutions, which are added into the main population. The
clustering process begins anew for every generation. After
clustering takes place, the model instances from previous
generation are matched with the newly created clusters us-
ing a well-known distance-minimizing Hungarian method,
where the cluster distance is the sum of all pairwise dis-
tances between solutions. The distance between individual
solutions is the same as the one used for clustering. By doing
so, the intergenerational mechanisms needed by iAMaLGaM
are preserved. The clustering process is shown in Figure 1.

The clustering process itself takes place at the beginning
of every generation. Depending on the number of clusters k,
cluster leaders are selected. The best solution available in
the population is always selected as a cluster center. Other
centers are solutions with the furthest distance from all al-
ready chosen centers. Once the centers are determined, n/k
solutions closest to the chosen centers are added to the clus-
ters in accordance with the chosen distance metric. This
cluster selection process is based on a similar approach used
for Multi-Objective optimization in [2].

4.3 Distance Measures
By clustering the current solution space we attempt to

identify groups of solutions within the entire population that
represent common properties or dependencies. In order to
perform such clustering, a distance measure is required. We
want to compare the performance of our algorithm when
the clustering process takes into account discrete and con-
tinuous variables together and when only one sub-domain

Clustering-Based Model-Building EA
for i ∈ {0, 1, . . . , n− 1} do
Pi ← CreateRandomSolution()
EvaluateFitness(Pi)

while ¬TerminationCriterionSatisfied do
C ← PopulateClusters(P)
for j ∈ {0, 1, . . . , C} do
Pi ← IntegratedAlgorithm(Ci)

C ← MatchClusters

Figure 1: Pseudo-Code overview of the Clustering-
based mechanism

is used. To accomplish this we consider four different dis-
tance measures. Two of them perform clustering using a dis-
tance measure which considers the discrete and continuous
domains independently, while the remaining two attempt to
process the discrete and real-valued domains jointly.

Independent distance measures consider either the dis-
crete or continuous domain only. For the discrete measure,
clustering is done only on the discrete variables with the
use of the Hamming distance between two solutions. In the
continuous variant, Euclidean distance is calculated.

In order to consider both discrete and continuous variables
together, a joint distance metric is required. One option is
to consider all variables as discrete. For this, the continuous
domain is discretized. Each continuous variable is converted
into a binary one, depending on if it lies above or below
the median value of the current population for this variable.
This is a very crude discretization, as each continuous vari-
able is represented only by one bit. Once all variables are
processed, the distance between different solutions is cal-
culated using the Hamming distance which considers the

914



Integrated Model Sampling
for i ∈ {0, 1, . . . , n− 1} do
Pi ← CreateRandomSolution()
EvaluateFitness(Pi)

while ¬TerminationCriterionSatisfied do
LearnDiscreteModel(P)
for i ∈ {0, 1, . . . , (2ld − 1 + 2lc − 1)} do

if sampleType(i) = continuous then
S ← TruncationSelection(P, τ)
LearnContinuousModel(S)
for j ∈ {0, 1, . . . , n− 1} do
Xi ← GenerateContinuousPart(Pi)

else
for j ∈ {0, 1, . . . , n− 1} do
Xi ← GenerateDiscretePart(j,Xi,P)

P ← X
GenerateContinuousPart(Pi)
Xc ← SampleContinuousModel()
X ← Xc ∪ Pid

EvaluateFitness(X )
return X

GenerateDiscretePart(j,Xi,P)
Xprev ← Xi

donor ← GetRandomSol(P)
Xd ← CopySubset (j, donor,Xi)
X ← Xic ∪ Xd

EvaluateFitness(X )
if fitness(X ) ≥ fitness(Xprev) then

return X
else

return Xprev

Figure 2: Pseudo-code for generating solutions with
GAMBITs Learning Models.

discretized continuous variables and the discrete variables
together. Encoding continuous variables with more than
one bit would unbalance calculating the Hamming distance,
giving the continuous variables more weight.

Another way of modeling mixed similarities is to consider
discrete and continuous variables together in the continuous
domain. The continuous variables are normalized and scaled
down to a 0-1 range where the current largest value in the
population takes on the value of one, and the smallest zero.
Binary variables are then treated as real values. This way
Euclidean distances can be computed between two solutions
using discrete and continuous variables together.

4.4 Generating Offspring
In the first generation k continuous-discrete models are

created. Each cluster of solutions is assigned to one model.
In this phase, each model uses solutions provided by the clus-
tering mechanism to learn variable dependencies and update
the discrete and continuous models. With this new infor-
mation, new solutions are generated from every model. We
make a significant change to the sampling mechanism of the
continuous-discrete model. The algorithm proposed in [8]
achieves a good balance between sampling the discrete and
continuous models by sampling the entire continuous space
every time a discrete mask is sampled. The downside of this
approach is that the rate of sampling the continuous space
relies on the number of discrete masks only. This means that
continuous evaluations will happen every time discrete ones
do. This is not necessarily desired behavior, as we might

want to increase the number of times continuous domain is
sampled when the ratio of continuous to discrete variables
is large, and lower it when this ratio is small. We remedy
this by including the number of continuous variables as a
factor in determining how many continuous evaluations will
take place every generation. More specifically, the number
of sampled discrete masks is 2ld − 1, as specified by LTGA.
Instead of basing the continuous sampling on this number as
well, we now sample the continuous space 2lc−1 times. Ad-
ditionally, instead of a discrete sampling always preceding
a continuous one, sampling happens in a randomized order.
These changes allow GAMBIT to allocate additional pro-
cessing to continuous variables when they make up a large
portion of the total problem size, and saves on unnecessary
evaluations in the continuous space when real-valued vari-
ables make up a small part of the problem. Integrated model
building and solution generation done by GAMBIT is sum-
marized in Figure 2.

In experiments on constrained problems we consider dif-
ferent constraint-handling techniques with our clustering-
based algorithm. Constraint violation checking takes place
every time a new solution is introduced to the population.

5. CONSTRAINT HANDLING
A constrained mixed discrete-continuous problems can be

defined as follows:

min f(xd,xc)

s.t. h(xd,xc) = 0, g(xd,xc) ≤ 0

Where x represents the solution

x = xdxc = d0...dld−1 c0...clc−1

where di ∈ {0, 1}, ci ∈ R and xd, xc are the sets of all dis-
crete and continuous variables, respectively. f is the objec-
tive function. h and g are the sets of equality and inequality
constraint functions respectively.

Mixed discrete-continuous problems are often accompa-
nied by constraints. No matter how good the objective
function value of a certain solution is, if any of the con-
straints is violated, the solution is considered infeasible. A
set of equality and inequality constraints may exist simul-
taneously within a problem. Within a black-box setting,
we cannot make assumptions about the number or type of
constraints that may be present. The only feedback we may
hope to have is an indication of how much the constraints are
violated. We obtain this indicator by computing a squared
sum of all constraint violations for a given solution. This
constraint violation value indicates the relative strength of
constraint violation. A constraint violation value of 0 in-
dicates a feasible solution. Because of precision issues, in
our experiments a solution with a constraint value less than
10−10 is considered feasible.

We consider three prominent constraint handling tech-
niques: Constraint Domination, Global Competitive Rank-
ing and the Dynamic Penalty Function [7]. Constraint
domination strongly favors feasible solutions. A feasible so-
lutions is always better than an infeasible one. A better
function value determines which solutions are better when
solutions are feasible. Infeasible solutions are ranked by
their constraint violation value. Constraint Domination can

915



quickly converge on high function value solutions in the fea-
sible space, but avoids exploration of infeasible regions when
possible.

Global competitive ranking maintains two independent
rankings. All solutions (feasible and unfeasible) are ordered
by their objective function as well as their constraint vio-
lation values independently. The final ranking is generated
based on a combination of the objective function and con-
straint violation rankings. This approach finds a balance
between solutions in the feasible and infeasible space. In-
feasible solutions of high objective function values are kept
in the population, which could potentially allow for good
feasible regions nearby them to be explored.

We also consider the Dynamic Penalty Method for con-
straint handling. In this method the fitness value of a solu-
tion is diminished by a penalty factor if the solution is not
feasible. The penalty factor is proportional to the constraint
violation value. Additionally, this penalty factor is propor-
tional to the number of generations which already passed. If
a solution cannot reach feasible values, over time the penalty
factor becomes stronger. With this method promising in-
feasible regions can be explored, however as time passes,
feasible solutions become increasingly favorable. In our im-
plementation the penalty function value is the square of the
total constraint violation value multiplied by the number of
generations which had already passed.

6. RESULTS
Experiments are performed on a set of unconstrained as

well as constrained benchmarks. Bisection was performed
for all problems to determine the population size for which
the number of evaluations is minimal, while the optimum is
reached at least 19 out of 20 runs. The maximum population
size used was 2500.

6.1 Unconstrained Problems
As specified in the previous section we consider two ap-

proaches that cluster the population using only information
from one domain (either discrete or continuous domain) or
from both domains jointly. Figure 3 shows representative
results of our experiments with different clustering distance
measures. ”Discrete” and ”Continuous” labels refer to the
distance measures considering only the discrete and real-
valued domains independently. ”Mixed (D)” and ”Mixed
(C)” refer to the clustering mechanism using joint infor-
mation, by discretization of the continuous variables, or by
treating discrete variables as continuous respectively. The
results are presented on the F4 benchmark that exhibits
symmetries or large, prominent multi-modalities with a clus-
ter setting k = 2. The presented results are representative
of the behavior with larger cluster sizes.

From 3 we can see that the ”Mixed”configurations perform
significantly better in terms of minimally required popula-
tion size to solve the problem, as well the number of eval-
uations. This indicates that by clustering on the solution
level when considering both discrete and continuous vari-
ables together, the clustering mechanism is capable of cap-
turing some mixed dependencies, which allow GAMBIT to
exploit the search space more efficiently.

Out of the two configurations which consider mixed vari-
able dependencies, ”Mixed (C)” performs slightly better.
This could be attributed to the fact that discretizing contin-
uous variables with ”Mixed (D)”may result in significant loss

Figure 3: Effects of clustering on Discrete and Con-
tinuous variables independently vs. jointly on F4

of information in comparison with the ”Mixed (C) ” config-
uration. This loss of information effect is not as strong with
”Mixed (C)” where the continuous variables are normalized
instead.

Further experiments on the unconstrained benchmarks are
conducted with different cluster sizes k and summarized in
Figure 4. In all graphs in this figure the mixed distance
measure is used. ”NoCluster” refers to the original inte-
grated algorithms as presented in [8]. ”k = 1” represents
our new implementation of the algorithm with cluster size of
1. The results show that our new implementation with k=1
is always more efficient than the old approach. The results
presented show problem instances with the same number of
continuous and discrete variables. The ”k=1” configuration
was also tested on functions with f = 0.25 and f = 0.75 frac-
tion of continuous variables and still always outperformed
the ”NoCluster” configuration.

When k is increased, the behavior changes depending on
the type of the benchmark. F1 is the simplest benchmark
in the set. All variables are completely independent, and
the search space is not deceptive. A single cluster has no
difficulty solving this problem efficiently. F2 contains strong
dependencies in the continuous and discrete domains, but
no cross-dependencies. Here a single cluster configuration
is also favorable, as the underlying models of GAMBIT are
very efficient in dealing with dependencies contained within
each domain, without any need to partition the space and
process mixed dependencies. Because of this, larger clus-
ters also solve these problems, but are less efficient. The
results change when the benchmarks become more difficult.
F3 consists of cross-dependencies in addition to discrete and
continuous dependencies. Allowing the clustering mecha-
nism to process the mixed dependencies results in signifi-
cantly better performance in terms of population size and
evaluations needed with k = 2 than with k = 1. F4 is a
symmetry-breaking problem with multiple optima. Thanks
to the processing and clustering the solution space k = 2 and
k = 4 perform much better than a non-clustering approach.

6.2 Constrained Problems
We have tested a selection of MINLP Benchmarks with

the Clustering-based Model-Building EA corresponding with
the benchmarks used in [6]. Results are presented for two
settings of the clustering size: k = 1 and k = 10. Similarly
to the unconstrained problem analysis, we consider differ-
ent approaches to clustering : ”Discrete” and ”Continuous”
cluster the population based on the continuous and discrete
variables respectively only. ”Mixed (D)” and ”Mixed (C)”

916



Figure 4: Performance of the clustering mechanism
with changing cluster sizes on unconstrained func-
tions

use the discrete and continuous variables together (either
in Discrete space or Continuous space). In order to handle
constraints, we test each algorithm configuration with dif-
ferent constraint handling techniques: constraint domina-
tion (CD), global competitive ranking (GCR) and dynamic
penalty function (DPF). Success criteria is defined as reach-
ing the optimal value to a precision of 10−5.

Table 4 summarizes the experiments. It shows that the
only consistently successful configurations are Mixed with
k=10. This confirms our previous observations and further
implies that the clustering algorithm which uses both dis-
crete and continuous variables on which the clustering is
performed, is able to successfully process certain dependen-
cies and features of the constrained landscape. For simpler

problems, such as F6, additional clustering is not needed,
and a configuration with k = 1 can successfully find the
optimum. However, in many problems with stronger depen-
dencies and constraints k = 1 is not sufficient. Similarly to
results from the previous section, ”Mixed (C)” outperforms
the ”Mixed (D)” configuration.

Additionally we observe that constraint-handling
techniques have a strong effect on the performance of any
configuration of the clustering algorithm. While constraint
domination and global competitive ranking perform simi-
larly, the dynamic penalty method is more successful. Per-
formance of MIES on the same benchmarks set is presented
in [7] and summarized here in Table 5 which shows the
median evaluations needed to reach near-optimal values, as
well as the standard deviation of the results. Direct compar-
ison is difficult, as the reported MIES performance does not
indicate the success rate. Additionally, our implementation
considers different population sizes while MIES does not.
MIES however allows for parameterization of its constraint
handling method, while we do not. Despite these differences,
the results indicate that the clustering algorithm is compet-
itive with MIES in terms of evaluations needed to reach the
optimum on most of the tested benchmarks.

Table 5: Median number of evaluations and S.Dev.
of MIES

Function Evals SD

F5 7000 1.9870 ∗ 10−13

F6 21700 3.5616 ∗ 10−15

F7 22400 3.6293 ∗ 10−15

F8 23800 1.5132 ∗ 10−13

F9 20300 2.3570 ∗ 10−1

F10 131600 6.0510 ∗ 10−1

7. CONCLUSIONS AND SUMMARY
In this paper we studied the added value of clustering in

a previously introduced model-building EA named the Ge-
netic Algorithm for Model-Based mixed-Integer opTimiza-
tion (GAMBIT). Using a distance metric that considers dis-
crete and continuous variables jointly, this clustering mecha-
nism partitions the search space based on mixed continuous-
discrete variables on the solution level, and learns discrete
variable linkage and continuous covariance independently
within each cluster. Our results showed that through in-
tegration of the clustering mechanism and a more balanced
integration of sampling discrete and contentious variables,
we significantly improve the performance of GAMBIT for
problems exhibiting features such as variable dependencies
or multiple optima in a black-box environment. Analysis of
performance on unconstrained benchmarks showed that if
such features exist in the problem, generating clusters with
the consideration of both variable types together performs
significantly better than considering the continuous and dis-
crete domains only independently, or not clustering in the
solution space at all.

Some drawbacks still exist. This clustering procedure is
sensitive to the number of clusters k. If the problem does not
exert strong mixed dependencies or multi modality, a high
setting for k may lead to unnecessary overhead in terms of
minimal required population sizes and number of evalua-
tions.

917



Table 4: Performance of different variants of the clustering-based algorithms with different constraint handling
techniques. Best results are bold. Equal statistical significance (T-test) is annotated with *.

CD GCR DPF
Problem k Clustering Pop Evals Success Pop Evals Success Pop Evals Success

F5 1 - 40 1104 1 40 1104 1 40 897* 1
F5 10 Discrete 100 1271 1 100 1271 1 200 970 1
F5 10 Real 100 1473 1 100 1473 1 100 1402 1
F5 10 Mixed (D) 100 1350 1 100 1350 1 100 1101 1
f5 10 Mixed (C) 100 1112 1 100 1112 1 100 910* 1

F6 1 - 2500 - 0 2500 - 0 2500 0 0
F6 10 Discrete 480 19014 1 240 19014 1 240 6308 1
F6 10 Real 2500 39014 0.1 2500 - 0 2500 45665 0.3
F6 10 Mixed (D) 160 7402 1 180 7812 1 140 6304 1
F6 10 Mixed (C) 160 6867 1 180 7114 1 120 4001 1

F7 1 - 70 11627 0.95 70 11104 1 300 30886 1
F7 10 Discrete 100 3551 1 100 4211 1 400 20422 1
F7 10 Real 100 6788 1 100 6537 1 500 28995 1
F7 10 Mixed (D) 100 5330 1 100 6151 1 400 18664 1
F7 10 Mixed (C) 100 7133 1 100 7715 1 400 19910 1

F8 1 - 2500 - 0 2500 - 0 2500 - 0
F8 10 Discrete 1000 146332 0.95 1100 167554 1 900 50885 0.95
F8 10 Real 2500 - 0 2500 - 0 2500 - 0
F8 10 Mixed (D) 900 79664 0.95 900 85244 1 600 56744 1
F8 10 Mixed (C) 800 49774 1 800 52274 1 400 20155 1

F9 1 - 60 4919 1 70 5067 1 40 2996* 1
F9 10 Discrete 100 6446 1 100 6223 1 100 4359 1
F9 10 Real 100 6674 1 100 6530 1 100 4102 1
F9 10 Mixed (D) 100 7350 1 100 7004 1 100 6412 1
F9 10 Mixed (C) 100 4789 1 100 4951 1 100 3084* 1

F10 1 - 2500 - 0 2500 - 0 2500 - 0
F10 10 Discrete 2500 545633 0.35 2500 545633 0.35 2500 454855 0.35
F10 10 Real 2500 - 0 2500 - 0 2500 - 0
F10 10 Mixed (D) 2500 534428 0.4 2500 534428 0.4 2500 387765 0.5
F10 10 Mixed (C) 2500 527754 0.6 2500 527754 0.6 2000 232445 0.95

Our results extend to constrained MINLP problems. Com-
parison with MIES on selected benchmark problems shows
that the clustering-based EA approach can be competitive,
and often outperforms MIES in terms of evaluations needed.
Different types of constraint-handling methods show a strong
impact on optimization efficiency. In the benchmarks tested
the dynamic penalty method generated best results in most
of the cases, while the constraint domination and global
competitive ranking method performed similarly to each other.

8. REFERENCES
[1] P. Bosman, J. Grahl, and D. Thierens. Benchmarking

Parameter-Free AMaLGaM on Functions With and
Without Noise. Evolutionary Computation, 21(3):445–469,
Sept 2013.

[2] P. A. N. Bosman. The Anticipated Mean Shift and Cluster
Registration in Mixture-based EDAs for Multi-Objective
Optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-2010,
pages 351–358, New York, NY, USA, 2010. ACM.

[3] P. A. N. Bosman, J. Grahl, and D. Thierens. Enhancing the
Performance of Maximum-Likelihood Gaussian EDAs
Using Anticipated Mean Shift. In Parallel Problem Solving
from Nature – PPSN X, LNCS, pages 133–143, 2008.

[4] M. Bussieck and A. Pruessner. Mixed-integer Nonlinear
Programming. SIAG/OPT Viewsand-News, 14(1):19–22,
2003.

[5] M. T. Emmerich, R. Li, A. Zhang, I. Flesch, and P. Lucas.
Mixed-Integer Bayesian Optimization Utilizing A-Priori
Knowledge on Parameter Dependences. In Proceedings of
the 20th Belgium–Netherlands Conference on Artificial
Intelligence (BNAIC), pages 65–72, 2008.

[6] R. Li, M. T. M. Emmerich, J. Eggermont, T. Bäck,
M. Schütz, J. Dijkstra, and J. H. C. Reiber. Mixed Integer
Evolution Strategies for Parameter Optimization.
Evolutionary Computation, 21(1):29–64, 2013.

[7] T. Runarsson and X. Yao. Constrained evolutionary
optimization. In Evolutionary Optimization, volume 48 of
International Series in Operations Research and
Management Science, pages 87–113. Springer US, 2002.

[8] K. L. Sadowski, D. Thierens, and P. A. N. Bosman.
Combining Model-Based EAs for Mixed-Integer Problems.
In Parallel Problem Solving from Nature — PPSN XIII,
LNCS, pages 342–351. Springer, 2014.

[9] D. Thierens. The linkage tree genetic algorithm. In Parallel
Problem Solving from Nature — PPSN XI, LNCS, pages
264–273, Berlin, 2010. Springer–Verlag.

[10] D. Thierens and P. A. N. Bosman. Optimal mixing
evolutionary algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’11, pages
617–624, New York, NY, USA, 2011. ACM.

918




