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ABSTRACT 

Though human beings comprehend, imbibe and subsequently 

generate syntactically and semantically correct languages, the 

manner in which they do so has hardly been understood or 

unearthed. Most of the current work to achieve the same is heavily 

dependent on statistical and probabilistic data retrieved from a 

large corpus coupled with a formal grammar catering to the 

concerned natural language. This paper attempts to portray a 

technique based on an analogy described by Jerne on how his 

theory of the Idiotypic Network could possibly explain the human 

language generation capability. Starting with a repertoire of 

unigrams (antibodies) weaned from a corpus available a priori, 

we show how these can be sequenced to generate higher order n-

grams that depict full or portions of correct sentences in that 

language. These sentences or their correct portions form a 

network similar to the Idiotypic Network that in turn aid in the 

generation of sentences or portions thereof which are new to the 

corpus signifying the learning of new and correct sequences. The 

network is built based on a modified version of the dynamics 

suggested by Farmer et. al. The paper describes the related 

dynamics of the network along with the results obtained from a 

corpus. 

Categories and Subject Descriptors 
I. 2.7 [Natural Language Processing]: Language generation and 

Language models. 

General Terms 

Algorithms, Experimentation, Languages 

Keywords 

Sentence generation; Idiotypic network; Immune; Language 

processing 

1. INTRODUCTION 
The problem of processing natural language has been attacked 

from several frontiers. The earlier techniques used aformal 

grammar [1, 2, 3, 4] to start with and analysed whether the 

incoming sentences conformed to the rules of the grammar 

embedded a priori. A Context Free Grammar for instance, is 

defined by a vocabulary containing a set of non-terminals and a 

set of productions or transition rules. First an initial non-terminal 

is considered and is replaced by a set of productions. The 

productions are applied repeatedly until a terminal sequence of 

words is generated. 

However, natural language with its rich set of virtually countless 

grammar rules cannot be accommodated by such methods. This 

forced researchers to try out corpus based statistical methods [2]. 

Statistical information derived from a large corpus of the language 

was used to find measures based on probability of the next word 

in a sequence. Most of these techniques use the term n-grams 

[1,2] where n is a non-zero positive integer and the gram 

represents a token or a word in the corpus. The n-gram model 

concentrates on local dependencies and also encodes linguistic 

information [1] like syntax, semantics, etc.The n-gram model is 

locally dependent because it takes the window size of n and 

predicts only by taking the context of (n-1) words. Further the 

model is trained using a corpus and because a corpus is always 

finite, some acceptable n-grams are bound to be omitted. Addition 

of smoothing techniques [5] to add non-zero probabilities to zero 

probability bigrams eases the issue to some extent.Although the 

empirical based language models [6] are capable of generating 

sentences, the complexity of a natural language makes it 

infeasible to generate all the rules within. 
In this paper, we propose an immuno-inspired language 

processing model, a paradigm shift from the conventional 

techniques of language processing that, when given a set of 

correct sentences generates a network which in turn can emit new 

and correct ones. This technique does not suffer from data 

sparseness and there is no requirement of a grammar base or a 

large annotated or tagged corpus. The model opens up the 

possibility of understanding the working of the biological 

generative grammar [7]. 

2. LANGUAGE GENERATION IN HUMAN 

BEINGS 
The manner of the origin and evolution of language and how 

human beings have over several thousands of years seamlessly 

conveyed their thought processes through language still remains 

unraveled. The works carried out by Knight, Studdert-Kennedy 

and Hurford [8], Hurford, Studdert-Kennedy and Knight [9], 

Harnard andSteklis[10] are notable. According to them, language 

has evolved in human beings due to their genetic traits. Two 

distinct schools of thought – one biological and the other based on 

cultural evolution – exist, which seek the answer to the origin of a 

language.  The first school of thought proposes that human 

language originated due to biological evolution. Numerous 

experiments have been carried out by researchers on apes and 
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monkeys to make them learn a language but with hardly any 

success. On the contrary a human child of around five years of 

age or even less is capable of acquiring a language from its 

environment [11] with great ease. This observation led Chomsky 

[12] to argue that human beings are possibly innately equipped 

with a set of language rules that aid in the production of 

sentences.He defines a Universal grammar (UG) which is a formal 

system within the being and is capable of aligning words (or 

morphemes) into a pattern which could be grammatically correct 

or at least acceptable. According to Chomsky these grammatical 

rules are sort of hard-wired in the human brain. This theory of the 

existence of a UG is widely accepted by the research community 

[13,14]. Bickerton [15] describes of the possible existence of a 

protolanguage that exhibits a limited grammar without many of 

the features of modern day human languages. According to him, 

the emergence of a fully developed language is due to a sudden 

and discontinuous ‘macro-mutation’ of this protolanguage. Pinker 

and Bloom [16] reason that language evolution was a gradual 

process which possibly took a longperiod of time.  Elman [17] 

questions the innateness of language and concludes that although 

language is innate the grammar is not encoded in the genomes but 

has resulted due to many interactions between the genes.  Kirby 

[18] argues that cultural processes may have played a more 

significant role in the evolution of languages than as the result of 

evolution due to genes. According to him, languages are passed 

from one generation to the next resulting in the development of 

innately possible grammars. Cavalli-Sforza and Feldman [19] 

have also attempted to develop a general theory for the same, 

based on cultural evolution.  

N. Jerne [7] advocated Chomsky’s innateness of generative 

grammar and drew parallels between language and immunology. 

Jerne’s theory states that the immune system is governed by a set 

of grammatical rules that allow the formation of new sentences (or 

antibodies). These antibodies form an interconnected lattice-work. 

Based on such a network, Jerne draws an analogy with 

Chomsky’s theory of generative grammar that is innate and 

equally capable of generating new sentences that are recognized 

by a native speaker. Chomsky’s generative grammar results in an 

“open-ended” number of sentences which Jerne correlates to the 

“completeness” of the antibody repertoire. Chomsky and Jerne, 

both believed [7, 12] that grammatical rules of a human language 

are carried forward by genomes from one generation to the next.  

It is well known that a person fluent in a certain language can wax 

eloquently in that language. This proficiency makes it extremely 

difficult for the person to generate ill-formed sentences in the 

same language, spontaneously. One may thus infer that the person 

possibly generates a language-based Idiotypic network that 

impedes the generation of any incorrect language pathogens. With 

prolonged exposure to a language, a person seems to prototype an 

in-built immune network capable of distinguishing well-formed 

sentences and preventing or suppressing the generation of ill-

formed ones. It is also interesting to note that grammar by itself is 

never taught in the initial phases of language learning by a human 

being. In many a case a person may speak a language fluently 

without having an iota of knowledge about its grammar.  A child, 

for instance picks up a language very well, oblivious of the 

associated grammar. It is thus obvious that a collection of 

sentences, that constitute a corpus, is formed initially within the 

child. Subsequent sentence generation largely depends on the 

combinations of the words within this corpus and the inherent 

grammatical structures contained therein. 

3. IMMUNO-INSPIRED LANGUAGE 

PROCESSING  
The existing language models are based on the framework of 

linguistic rules and statistical methods. While the former rule-based 

language processing [21] relies heavily on grammatical rules the latter 

suffers from data sparseness [20]. A sizeable corpus is always 

necessary while applying the above two techniques of language 

processing.The immune inspired algorithms have found their use in 

diverse areas, a few of the notable areas being intrusion detection, 

pattern recognition and optimization [22]. Immune algorithms have 

been rarely used in language processing. Kumar and Nair [23] have 

used the negative selection algorithm [24] to check grammatical 

errors in English sentences. They treat grammatical errors as 

pathogens and try to build antibodies that can detect such errors. One 

of the drawbacks in this approach is the requirement of a large 

annotated corpus. Others have skirted this area by formulating spam 

filters by combining language with immune algorithm based 

classifiers [25]. 

This paper proposes a paradigm shift in the manner of language 

processing by working out an Idiotypic Language Networkthat, when 

provided with n-grams can eventually emit new and correct sentences.  
 

4. OVERVIEW OF IDIOTYPIC NETWORK 
In an immune system the primary role of antibodies is to eliminate 

the antigens, which constitute foreign substances like the virus, 

bacteria, etc., from the body. An antibody contains a paratope 

which allows itself to attach onto the epitope of an antigen.  

According to the Idiotypic network theory postulated by Jerne [7], 

antibodies communicate with different antibodies to form a large 

scale network even in the absence of antigens [26]. An antibody 

has its specific antigenic determinant called an idiotope through 

which it binds to the paratope of another antibody.The schematic 

diagram representing Jerne’s idiotypic network [7] is shown 

below as Figure 1. 
 

 
Figure 1. Jerne’s Idiotypic Network [7] 

The idiotopeId1 of antibody B1 binds to the paratopeP2 of 

antibody B2 and stimulates the latter. On the other hand, antibody 

B2 recognizes Id1 of antibody B1 as an antigen and therefore 

suppresses antibody B1. Stimulations and suppressions between 
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the antibodies, constitute the formation of an idiotypic network 

even in the absence of an antigen. 

4.1 Modeling the idiotypic network 
Farmer et. al[27] provide a mathematical model for the Idiotypic 

network which closely approximates its biological counterpart. 

The dynamics of the model consists of a set of differential 

equations that changes the concentration of the antibodies w.r.t 

stimulations and suppressions. The natural death of antibodies is 

also taken into account. The mathematical equation to calculate 

the concentration of ith antibody is given by 

.  (1) 

whereN is the number of antibodies andxi(or xj) is the 

concentration of antibody i(or j). The affinity between antibody j 

and antibody i is denoted by Mjiand the affinitybetween antibody 

iand the detected antigen is represented by Mi. The first and 

second terms on the R.H.S of the equation (1) denote the 

stimulations and suppressions from other antibodies while the 

third term represents the stimulation from the antigen. The fourth 

specifies the natural death of the antibody. 

Jos´e Pacheco et. al [28] have proposed an Abstract Immune 

Systemalgorithm inspired by the  Jerne’s idiotypic network model 

and clonal selection wherein he ignores the antigens which results 

in a modified version of Farmer’s equation given below – 

.  (2) 

Researchers have employed various techniques to calculate the 

affinity values Mjiand Mi, depending on the problem at hand and 

the representation of entities viz. antibodies and antigens in 

immune algorithms. They have represented entities within, using 

binary strings, strings over finite set of alphabet (other than 

binary), real-valued vectors and even hybrid representations 

which contain continuous and categorical data [29].The 

concentrations of antibodies have been calculated using a non-

linear differential equation [30]. Affinity which is the distance 

between two antibodies has been calculated using different 

algorithms such as Weighted kappa [31] and Kendall’s Tau [32, 

33].  Ishiguro et al. [34] have proposed a decentralized consensus-

making system using Farmer’s equation to calculate the 

concentration of affinities. The affinity values or degree of 

disallowance are calculated by using the following two equations. 

Mji=    (3) 

Mij=    (4) 

where and denote the number of times penalty and reward 

signals were received when antibody Abj was selected. The 

denominator denotes the number of times when both Abjand 

Abireact with their specific antigens. 

5. IDIOTYPIC LANGUAGE NETWORK 

(ILN) 

5.1 A Typical ILN 
In order to make the explanation simpler and lucid, we illustrate 

an ILN using an example. To start with, assume that a small child 

has heard and gathered a lexicon containing the following words 

as shown in Table 1. Using these words as a base, the child 

generates combinations that are subsequently uttered during a 

phase termed the training phase. The different combinations of 

words generated from these words could be looked upon as 

candidate antibodies (from the immunological perspective) and 

have been depicted in Figure 2. 

Table 1. A small lexicon of words generated by the child 
Sl. No. Words learnt by the child 

1 went 

2 I 

3 home 

4 all 

5 alone 

 

 

Figure 2. Randomly generated antibodies 

During the training phase, the child picks antibodies randomly and 

utters them in some sequence. A human listener, assumed to be 

the tutor, verifies it and provides a reward or a penalty based on 

whether the sequence is correct or incorrect. 

Let us now consider that the child uttered the following sequence 

of antibodies in the order - antibody#II followed by antibody# IV. 

The sequence that is generated is – 

“went home Iall alone”. 

The tutor in turn informs that antibody#II is incorrect but 

antibody#IV is correct. The peers of antibody#II are I and III 

since they all contain the same words but in different orders. Since 

antibody#II is incorrect, it will be suppressed by I and III. This 

will ensure that amongst antibodies I, II and III, antibody#II will 

be selected more infrequently in subsequent times. Figure 3 

represents the stimulations and suppressions that occur between 

the set of antibodies. 

 

Figure 3. The stimulations and suppressions of antibodies 

In Figure 3, the green coloured arrows represent the stimulations 

while the red ones indicate suppressions. The antibody#II is 

suppressed by both its peer antibodies numbered I and III as 

antibody#IIwas found to be incorrect. On the other hand, 

antibody#II stimulates both the antibodies numbered I and III. As 

a result, antibody#II will not be selected in the subsequent 

iteration as it is being suppressed and thus has effectively a lower 

concentration. The thick black arrow between antibody#IV and 

antibody#II with the arrow pointing to the latter indicates the 

suppression of the sequence viz. –<“went home I”> followed by 

<“all alone”>. 

Since a part of the sentence is wrong, the child once again 

attempts to correct the incorrect portion. If it chooses antibody# I  
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to generate the following sequence: The sequence would then be 

expressed as - 

I, IV I went homeall alone 

The tutor verifies and rewards the correct antibodies. This new 

information causes a change in the above network (Figure 3) of 

antibodies which is reflected in Figure 4. Here a new set of 

stimulations and suppressions are generated between antibodies I 

and III. Also since antibodies I and IV are correct, they stimulate 

one another which are shown by bidirectional arrows. This 

however means that “I went home all alone” and “allalone I went 

home” are correct at the moment. However, the latter will be 

rejected due to suppressions that will appear at a later stage when 

this incorrect sentence is generated. 

 

Figure 4.Addition of more stimulation and suppression links 

between the antibodies 

At the end of the training phase, we find that an antibody network 

is established as a result of interactions between the antibodies. 

With the arrival of new antibodies which are randomly selected 

and created from the given lexicon, more such suppressions and 

stimulations will appear. It may be noted that over a period of 

time antibodies II, III and V will disappear since they will either 

be suppressed greatly (reduced concentration) or possibly because 

they will never be used (activated). Thus only antibodies I and IV 

will survive to generate two sentences viz. in the present stage of 

learning: 

I went home. 

I went home all alone. 

This has been illustrated graphically in Figure 5 as an idiotope-

paratope linkage between two antibodies. 

 

Figure 5. Two segments (antibodies)forming an idiotope-

paratope linkage 

With more words in the lexicon, the network would cater to the 

generation of more combinations and eventually retain only the 

correct ones. If we imagine the network in this manner where an 

antibody forms part of a sentence (a correct sequence of words) 

then antibodies could concatenate or adhere to parts of another 

antibody (idiotope-paratope like linkage) to make a complete and 

correct sentence. Thus a more complex set of sentences could be 

viewed as shown in Figure 6. 

 

Figure 6. A complex ILN (Each alphabet designates a unique 

antibody viz. a word or a sequence of words) 

In this figure, the green portions act as joinersor bonds or 

idiotope-paratopelinkagesthat fuse together two or more 

antibodies. Assuming the lowercase alphabet are actually valid 

words in the lexicon (or a sequence of words or n-grams), there 

could be many valid sentences that could now be generated from 

such a network; for e.g. abq, abefghij, klmnij, klmofghijand so on. 

The subsequent section deals with the dynamics that drive the 

formation and evolution of the ILN. 

5.2 ILN Generation and Dynamics 
The basic flow in the generation of an ILN is shown in Figure 7. 

Each of the components within has been described separately 

inthe following sections. 

 

Figure 7. Architecture of the sentence generation model 

a) Pre-processing: From a given corpus, unigrams are initially 

extracted along with their frequencies. The collection of all 

unigrams along with their frequencies forms the initial population 

of candidate antibodies and their respective concentrations. 

100



b) Random selection of unigram antibodies: A set of random 

unigram antibodies are selected from the initial population. This 

random selection was done only to ensure that the processing time 

is not too high. It may be noted however that the entire population 

could be taken in. We thus start off by building a small ILN with 

this initial sub-population and eventually add more candidate 

antibodies to scale the derived ILN. 

c) Permutation and Combination: The candidate antibodies stored in 

the selected population are permuted and combined in all possible 

ways to generate all probable n-gram antibodies where n>1. Some 

of the probable n-gram antibodies may not be correct. The user 

verifies the same and is appropriately marked at this stage of 

processing. The marked n-gram antibodies (both correct as well as 

incorrect ones) are preserved. The incorrect ones are preserved 

along with the correct ones because the correct n-grams fetch 

rewards whereas incorrect n-grams fetch penalties which are 

required for calculating the affinity values. 

d) Affinity: The binding of an antibody to an antigen (or antibody) is 

known as affinity. The mutual affinity values of every marked bigram 

antibody with another in the same set are found. As a candidate 

bigram antibody is composed of two individual units i.e. unigram 

antibodies, each of the unigram antibodies are either rewarded or 

penalizedbased on their correctness. By using the reward and penalty 

parameters, the affinity between the antibodies is calculated. For our 

convenience, we have assumed that reward and penalty parameters 

will be represented using positive numerical values. Initially, both the 

reward and penalty parameters are initialized to 0. If an antibody 

receives a reward, the reward parameter is set to 2 otherwise the 

penalty parameter is set to 1. The same method is applied to calculate 

the affinity values for higher-order n-gram antibodies in the 

subsequent steps of the iteration. The equations (3) and (4) mentioned 

in sub-section 4.1 were tailored to calculate the mutual affinity values. 

The denominators in R.H.S. of the equations (3) and (4) term in the 

present context denote the degree of the strength of juxtaposition. If 

either antibody Abifollowed by antibody Abjor antibody Abjfollowed 

by antibody Abiyield a correct bigram antibody, then the  =1. If 

these pairs of antibodies (Abi,Abj)followed by (Abj, Abi)generates a 

correct tetragram then the value of the denominator is taken to be less 

than unity in order to increase their mutual stimulations between the 

antibodies. Let us consider two randomly selected 

candidateantibodies viz. Ab1=a:12 and Ab2=lion:7 where Ab1 and Ab2 

are the symbolic representations of the antibodies. The R.H.S terms 

are the actual unigram values along with their respective frequencies 

(concentrations). After permutation and combination, we get four 

bigram pairs namely (Ab1, Ab1), (Ab1, Ab2), (Ab2, Ab1) and (Ab2, Ab2). 

The pair (Ab1, Ab2) i.e. a lion is the only pair that is correct while the 

remaining three pairs are incorrect. Thus, for the pair (Ab1, Ab2), we 

have =0, =1, =0 and =1.By substituting the values in 

equations(3) and (4), we get the following affinity values M21 =1 and 

M12 =1. Also, we have M11 =1 and M22 =1. 

e) Concentration: The affinity values are substituted in Farmer’s 

equation to calculate the new concentration values of antibodies. 

The old concentration values of the antibodies are regularly updated 

with new ones.  To make things clear, we take the same example as 

mentioned in sub-section 5.2 (d).By using Farmer’s equation (1), 

the concentration values of antibodies Ab1 and Ab2 respectively can 

now be calculated. We have Ab1 = 12, Ab2 =7, M12=1, M21=1, Mi=0 

and yi=0 (due to absence of antigen), α1 = α2 =0.1, N=2, n=0. If an 

antibody does not interact with any of the antibodies for a longer 

period of time, then its concentration value is decreased by using the 

death rate factor i.e. α2. Otherwise, α2 is ignored during the initial 

stages of calculation of concentrations.By replacing the values in 

the above equation (1), we have 

151.2 and  152.4. 

f) Generation of valid n-gram antibodies: A valid n-gram antibody 

is generated only when the probable bigram or higher-order n-gram 

antibodies are marked as correct and the individual units of the n-

gram have concentration values higher than the pre-specified 

threshold. In sub-section 5.2 (e), we have seen that the new 

concentration values of Ab1 and Ab2 is 151.2 and 152.4 respectively. 

As the bigram pair (Ab1, Ab2) is correct and the concentration values 

of both the antibodies have increased, a new n-gram (bigram) 

antibody is generated viz. Ab3= “a lion”. The initial concentration 

value of the newly generated antibody Ab3 is set to 1. It is likely 

that when Ab3 interacts with other antibodies in future, its 

concentration value will increase. A copy of the newly generated n-

gram antibody is added to the selected population of candidate 

antibodies. As a result the number of antibodies in the selected 

population increases. It now contains a mixture of unigrams and n-

gram antibodies where n>1. After the completion of each iteration, 

again a single random antibody is selected from the initial 

population of the candidate antibodies and inducted into the selected 

population of mixed candidate antibodies. This is to introduce 

diversity in the selected population of candidate antibodies. Prior to 

induction of a new antibody, the older version of selected 

population of candidate antibodies has already participated in the 

training and has formed an ILN. The iteration continues until all the 

candidate antibodies in the initial population are exhausted or when 

the user terminates further generation. 

g) Generation of New Sentences: In sub-section 5.2 (f),we have 

shown the process of generating new n-gram antibodies. An n-gram 

antibody is said to be valid if it is a syntactically and grammatically 

acceptable sentence or part thereof. This feature of finding valid n-

grams is left to the user who verifies it manually. Only the 

grammatically n-gram antibodies where n>2 are stored separately 

and the collection of these n-grams forms the set of partial or 

complete sentences. The first and second term of Farmer’s equation 

(1) represent the stimulations and suppressions from other 

antibodies. In section 5.2 (e), we have used Farmer’s equation first 

to calculate the stimulation and suppression values between the 

antibodies and finally found the new concentration values of the 

antibodies. An ILN is thus formed due to the stimulations and 

suppressions. The ILN becomes a part of a larger network when 

more number ofantibodiesare introducedinto the system. Due to this 

reason the antibody population grows rapidly. To control the growth 

of the antibody population, measures are initiated to eliminate 

specific antibodies depending on a pre-specified threshold 

concentration value τ. The choice of value for τ plays a significant 

role. If τ is low, the rate of elimination of some candidate antibodies 

decreasesresulting in an increase inantibody population. A higher 

value ofτ increases the rate of elimination of antibodies resultingin 

the loss ofsome candidate antibodies that could have contributed to 

the construction of higher order n-gram antibodies. The choice of τ 

should be done judiciously and may requireseveral trials.The 

antibodies with concentration values greater than τ survive and 

become part of ILN.The ones having concentration values less than 

τ die and are thus flushed out from the network. In each of the 

iterations, we keep introducing a fresh supply of antibodies to the 

system. The existing antibodies that are part of the ILN, interact 

(based on the stimulations and suppressions) with these incoming 

antibodies. The incoming antibodies get stimulated and suppressed 

from other antibodies and as a result the existing ILN gets modified 

over the iterations. 
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6. RESULTS AND DISCUSSIONS 
We have portrayed herein the results of the experiments based on 

an initial population of 80 unigram antibodies extracted from a 

small untagged corpus whose contents are shown in Table 2. The 

initial values of the parameters α1 andα2 wereset to 0.1.Since an 

antigen is absent in this case the value of yiwas set to 0. 

Table 2. The contents of the corpus 

Once upon a time there lived a lion in a forest. One day after a 

heavy meal, it was sleeping under a tree. After a while, there 

came a mouse and it started to play on the lion. Suddenly the 

lion got up with anger and looked for those who disturbed its 

nice sleep. Then it saw a small mouse standing trembling with 

fear. The lion jumped on it and started to kill it. The mouse 

requested the lion to forgive it. The lion felt pity and left it. 

The mouse ran away. On another day, the lion was caught in a 

net by a hunter. The mouse came there and cut the net. Thus it 

escaped. Thereafter, the mouse and the lion became friends. 

They lived happily in the forest afterwards. 

Moral: A friend in need is a friend indeed. 

The list of nine randomly selected unigram antibodies along with 

their initial and new concentration values after six iterations of the 

training, are listed in Table 3. These nine antibodies comprise the 

selected population of candidate antibodies. 

Table 3. The unigram antibodies and concentrations 

Unigram 

antibodies 

Initial concentrations 

(frequencies)  

New concentrations 

calculated using 

equation 1 

a 

lion 

in 

there 

lived 

time 

forest 

upon 

once 

12 

7 

4 

4 

2 

1 

1 

1 

1 

7948.674 

146117.08125 

129472.252 

60.8 

39.5 

22.85 

22.85 

14.75 

20839.359 

The statistics of the number of valid n-grams generated at the end 

of the trainingare shown in Table 4. It is to be noted that these 

valid n-grams are added to the initially selected population of 

candidate antibodies. Thus, the updated selected population of 

candidate antibodies now contains a diverse population of 

antibodies (different types of n-grams). 

Table 4. Statistics of n-gramantibodies generated after six 

iterations 

Valid n-gram antibodies generated Count 

bigram antibodies  

trigram antibodies  

quadrigram antibodies  

pentagram antibodies  

hexagram antibodies  

heptagram antibodies  

octagram antibodies 

n-gram (where N=9) antibodies  

n-gram (where N=10) antibodies  

n-gram (where N=11) antibodies 

33 

30 

11 

9 

5 

3 

2 

0 

1 

11 

The partial listof correct and incorrect sentences that are generated 

after the training is shown in Table 5 and Table 6 respectively.  

Table 5. Partial list of correct sentences generated after the 

training 

Sl. No Partial list of generated sentences which were 

correct 

1 once upon a time there lived a lion in a forest 

2 once in a forest there lived a lion 

3 there lived a lion in a forest 

4 there lived a lion 

5 a lion lived in a forest 

6 in a forest there lived a lion 

 

Table 6. Partial list of incorrect sentences that are generated 

after the training 

Sl. No Partial list of generated sentences or portions 

thereof which were incorrect 

1 a forest lived a lion 

2 lion lived once in  forest 

3 there lived a forest 

4 once in time a lion 

5 once there forest lived a lion 

When six numbersof sentences were generated from the 

updated selected population of candidate antibodies, a new 

unigram antibody was randomly selected from the initial 

population of candidate antibodies and added to the selected 

population of candidate antibodies. Table 7 and Table 8 show 

the list of correct and incorrect sentences generated after the 

addition of new unigram antibodies viz. “was”and 

“sleeping”with initial concentration values (frequencies) of 2 

and 1 respectively.  

Table 7. Partial list of correct sentences generated with the 

inclusion of new unigram antibodies “was” and “sleeping” 

Sl. 

No 

New unigram 

antibody 

with its 

initial 

concentration 

Partial list of generated sentences 

which are correct 

1 

was:2 

there was a lion 

2 there was a forest 

3 there was a lion in a forest 

4 in a forest there was a lion 

5 once upon a time there was a forest 

6 sleeping:1 a lion was sleeping  
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Table 8. Partial list of incorrect sentences generated with the 

inclusion of new unigram antibodies “was” and “sleeping” 

Sl. 

No 

New unigram 

antibody 

with its 

initial 

concentration 

Partial list of generated sentences 

which are incorrect 

1 

was:2 

there lived a lion was in a forest 

2 forest was a lion 

3 once upon a time was a lion 

4 once upon a time was a forest 

5 

sleeping:1 

there lived a lion was sleeping in a 

forest 

6 forest was sleeping 

 lion in a forest was sleeping 

Figure 8 shows a portion of the ILN when the whole of the corpus 

presented in Table 2 was used. The green bonds facilitate a 

change or jumping of tracks along the black lines while reading 

out the sentences contained in the network. The ILN is obviously 

yet to saturate since it carries a few incorrect sentences. By tracing 

out the paths of the ILN in Figure 8, we are able to generate the 

following sentences which are listed separately in Table 9. 

 

Figure 8. A portion of the ILN formed from the corpus in 

Table 2 

Table 9. Partial list of generated sentences which were correct 

obtained from the ILN of Figure 8. 

Sl. No Partial list of generated sentences which were 

correct obtained from the ILN of Figure 8 

1 once upon a time there lived a lion in a forest 

2 a lion lived in a forest 

3 a lion was sleeping 

4 a lion was sleeping under a tree 

5 once upon a time there was a tree 

 

7. CONCLUSIONS  
Using an existing corpus of words,we have been able to generate 

anIdiotypicLanguage network (ILN) from initially disconnected 

n-grams that form metaphors for the antibodies.With this network, 

new correct sentences or parts thereof were generated. With more 

interaction or effective addition of new uni- or n-grams the 

network strengthens itself and generates newer sentences. The 

generation of the ILN throws light on the possible mechanism of 

the biologicalequivalent of the generative grammar. The 

verification process is currently being done by the human user 

who in turn delivers the reward and penalty. To make the system 

autonomously generate the ILN, a larger and correct corpus could 

be used for such verification. The generated sentences or parts 

thereof could be verified for their correctness if they exist within 

this larger corpus. This would be analogous to how a child who 

continuously reads several books (the larger and correct corpus) 

gains in his/her sentence generation capability.In future, we intend 

to emulate and use this immuno-inspired approach in a distributed 

manner as described in [35] to enable the system to learn and 

converge faster. 
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