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ABSTRACT
Texture classification aims at categorising instances that
have a similar repetitive pattern. In computer vision, tex-
ture classification represents a fundamental element in a
wide variety of applications, which can be performed by de-
tecting texture primitives of the different classes. Using im-
age descriptors to detect prominent features has been widely
adopted in computer vision. Building an effective descriptor
becomes more challenging when there are only a few labelled
instances. This paper proposes a new Genetic Programming
(GP) representation for evolving an image descriptor that
operates directly on the raw pixel values and uses only two
instances per class. The new method synthesises a set of
mathematical formulas that are used to generate the fea-
ture vector, and the classification is then performed using
a simple instance-based classifier. Determining the length
of the feature vector is automatically handled by the new
method. Two GP and nine well-known non-GP methods
are compared on two texture image data sets for texture
classification in order to test the effectiveness of the pro-
posed method. The proposed method is also compared to
three hand-crafted descriptors namely domain-independent
features, local binary patterns, and Haralick texture fea-
tures. The results show that the proposed method has su-
perior performance over the competitive methods.

CCS Concepts
•Computing methodologies→Genetic programming;
Interest point and salient region detections; Matching; Fea-
ture selection;

Keywords
Genetic Programming, Multiclass classification, Textures

1. INTRODUCTION
Texture analysis can be divided into at least four cate-

gories that each aim at investigating a specific task [25]. In
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texture synthesis, the aim is to build a model that can be
used to construct the texture. Texture segmentation aims
at dividing an image into a number of homogeneous regions
based on their texture properties. In texture classification,
the goal is to assign different class labels for instances of
different classes. Finally, shape extraction from texture aims
at exploiting texture information to construct a 3D surface
projection from the 2D surface geometry.

A large number of methods for texture analysis have been
proposed over the past few decades. Tuceryan and Jain
[25] divided these methods into four approaches: (1) struc-
tural; (2) statistical; (3) transform; and (4) model-based.
The methods in each of these four approaches perform tex-
ture analysis differently. For example, structural methods
attempt to understand the underlying texture relying on
well-known primitives and their arrangements; whereas sta-
tistical methods rely on the distribution of the gray levels
to indirectly represent the texture using non-deterministic
properties. More details can be found in [25].

Genetic Programming (GP) is a biologically inspired evo-
lutionary computation technique that replicates the Dar-
winian principles of natural selection and survival of the
fittest [10]. GP starts from a population of randomly gen-
erated programs, each of which represents a solution, then
gradually evolves these solutions over a number of gener-
ations via using genetic operators to explore the solution
space [20].

Over the past few decades, utilising GP for image related
problems has attracted increasing interest [19, 1]. Two GP
methods have been developed by Song et al. [21] for multi-
class texture classification by utilising the Static Range Se-
lection (SRS) [22, 30] and Dynamic Range Selection (DRS)
[13] techniques. In [24] a GP methodology to detect interest
points on images by synthesising low-level image operators
has been described. In [18], Olague et al. extended the work
of [24] by presenting an innovative GP method for evolving
an interest points detector. Synthesising mathematical for-
mulas using GP as a preprocessing step to improve the per-
formance of the Scale-invariant Feature Transform (SIFT)
descriptor [14] is proposed in [19]. On the contrary, Hind-
marsh et al. [7] used GP as a postprocessing step to select
a subset of the features detected by SIFT for object recog-
nition. Recently, Albukhanajer et al. [1] adopted a multi-
objective approach in conjunction with the trace transform
to extract image features that are robust to noise and in-
variant to different geometric deformations.

Most of the aforementioned methods require either a large
number of instances to evolve a model, and/or human inter-
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vention (mostly domain experts) to design and extract a
good set of features.

Conventionally, a program evolved by GP for binary clas-
sification produces a single value from the root node for each
instance, which is then translated to a class label using the
zero value to divide the real number line into two intervals
[20]. Thus, the instance being evaluated is considered as be-
longing to one class (e.g. foreground) if the value resulting
from the root node is negative; and belonging to the other
class (e.g. background) if it is positive or zero.

Utilising GP for multiclass classification can be divided
into at least four groups. Output translation is the first
group, where the real number line is split into intervals each
of which corresponds to one class, and the output of the
evolved program is translated to a class label based on the
interval it falls in [30]. Wrapper-based methods represent
the second group, where a classifier is used with the program
evolved by GP to predict the class label [29]. In the wrapper
approach, the evolved program performs feature selection or
extraction and those features are fed into the wrapped clas-
sifier to perform classification. Methods of the third group
aim at producing multiple values from the evolved program,
which require modifying the program representation [32]. In
the fourth group, the problem of multiclass classification is
decomposed into a number of binary classification tasks [13].
The second approach, i.e., wrapper, is adopted in this study
where a simple instances-based classifier is used namely, k-
Nearest-Neighbour (kNN) with k is set to 1 (1NN).

Goals
This paper aims at developing a new GP method for tex-
ture primitives detection. The new method performs two
essential tasks. Firstly, automatically evolving a descriptor
that is capable of detecting and extracting texture features.
Secondly, performing multiclass texture classification using
the features generated by the evolved descriptor and a sim-
ple classifier (1NN). Precisely, this paper aims at addressing
the following research objectives:

• develop an appropriate individual representation and
fitness function that allows GP to automatically detect
and extract image features;

• investigate whether the proposed method is capable of
outperforming other GP-based methods that are de-
signed to operate on raw pixel values for multiclass
texture classification; and

• investigate whether the evolved descriptor can com-
pete with well-known descriptors that are designed by
domain experts using nine widely used classifiers.

The rest of the paper is organised as follows. Three image
feature extraction methods are briefly discussed in Section
2. Section 3 describes the proposed GP approach for evolv-
ing feature descriptors. The experimental setup, parameter
settings, data sets, and baseline methods are presented in
Section 4. Section 5 presents and discusses the results along
with two evolved descriptors. Section 6 concludes this paper
and highlights some future work directions.

2. RELATED WORK
This section describes two descriptors, namely local binary

patterns [17] and Haralick texture features [6], and a domain-
independent image feature extraction method [31].

Figure 1: Examples demonstrate different settings
of LBP by changing the value of n and r. From left
to right, LBP4,1, LBP8,1, LBP8,2, and LBP16,2.

Figure 2: Example shows the required steps to gen-
erate a binary code, then convert the generated code
to decimal value.

2.1 Local Binary Patterns
In 1994, Ojala et al. [17] proposed a new texture image

descriptor called Local Binary Patterns (LBP). The main
aim of LBP is to generate a binary code at each pixel rely-
ing on the values of the neighbouring pixels, and then use
the generated codes to compute a histogram (i.e. feature
vector). The process of computing the histogram consists
of four steps. Firstly, a histogram of size 2L bins is con-
structed and initialised, where L is the length of the binary
code. The length of the binary code is defined based on two
parameters: (1) the number of neighbouring pixels n; and
(2) the distance between the central pixel and each of the
neighbouring pixels, denoted as the radius r. LBP and these
two parameters are denoted as LBPn,r. Figure 1 shows dif-
ferent settings of n and r. Originally, LBP operated using a
sliding window of size 3 × 3 pixels (LBP8,1). Secondly, the
image is scanned in a pixel-by-pixel fashion and each of the
neighbouring pixels surrounding the current central pixel of
the sliding window is set to 0 if its value is less than that
of the central pixel; otherwise, it is set to 1 (as presented in
Figure 2). Thirdly, these values are used to form a binary
code, and then multiplied by powers of 2 in an anticlock-
wise direction to convert the binary code to a decimal value.
Fourthly, the bin corresponding to the generated decimal
value in the third step is incremented by 1.

2.2 Domain Independent Features (DIFs)
Zhang et al. [31] proposed three domain-independent ter-

minal sets to extract image features: (1) rectilinear features;
(2) circular features; and (3) pixel features. These methods
use statistical properties, i.e., mean and standard deviation,
of predefined image regions to extract the feature vector.
Figure 3 highlights the regions of these three methods.

The rectilinear method is used in this study as a compet-
itive method for feature extraction. A feature vector gener-
ated by the rectilinear method consists of 20 features that
are extracted from 10 regions as listed in Table 1. This
method combines both global (i.e. the entire image) and lo-
cal (i.e. regions of the image) features, which has been shown
to be more powerful than use only one of them [12].

2.3 Haralick Texture Features
Haralick Texture Features [6] is a statistical texture anal-

ysis method that uses the Gray-Level Co-occurrence Matrix
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(a) (b) (c)

Figure 3: The regions of the (a) rectilinear, (b) cir-
cular, and (c) pixels features [31].

Table 1: Pixel statistics of the rectilinear method.
Features

Regions of interest
Features

Regions of interest
µ σ µ σ

F1 F2 Square A1B1C1D1 F11 F12 Square A2B2C2D2

F3 F4 Quadrant A1E1OH1 F13 F14 Horizontal line H1F1

F5 F6 Quadrant E1B1F1O F15 F16 Horizontal line H2F2

F7 F8 Quadrant H1OG1D1 F17 F18 Vertical line E1G1

F9 F10 Quadrant OF1C1G1 F19 F20 Vertical line E2G2

(GLCM) to extract texture features [25]. The process of ex-
tracting features from an image starts by generating a set of
co-occurrence matrices each of which is generated by count-
ing the number of adjacent pixels of a predefined offset and
direction (i.e. angle). Then a number of features are calcu-
lated from each matrix to form the feature vector.

In this study, for each instance, four matrices are gener-
ated using a single pixel offset and the directions 0◦, 45◦,
90◦, and 135◦. The feature vector is then generated by cal-
culating from each of the matrices the Homogeneity (in-
verse difference), Dissimilarity (absolute value), Contrast
(inertia), Energy (angular second moment), Entropy, and
Correlation that are formally defined as:

Homogeneity =

H∑
i=1

W∑
j=1

p (i, j)

1 + |i− j|
(1)

Dissimilarity =

H∑
i=1

W∑
j=1

|i− j| p (i, j) (2)

Contrast =
H∑
i=1

W∑
j=1

(i− j)2 p (i, j) (3)

Energy =

H∑
i=1

W∑
j=1

p (i, j)2 (4)

Entropy =
H∑
i=1

W∑
j=1

p (i, j) [− log2 p (i, j)] (5)

Correlation =

H∑
i=1

W∑
j=1

(i− µi) (j − µj) p (i, j)
σiσj

(6)

whereH andW are, respectively, the height and width of the
matrix, p (i, j) is the value at the ith row and jth column,
and |·| returns the absolute value of the argument. The
µi, µj , σi and σj are, respectively, the mean and standard
deviation of the ith row and jth column.

3. THE NEW METHOD
This section discusses the evaluation procedure, program

representation, feature vector extraction, and fitness func-
tion of the proposed Evolutionary Image Descriptor (EID).

Figure 4: Flowchart shows the evaluation procedure.

Figure 5: Converting a window of size 5×5 pixels to
a 1D vector.

3.1 The Evaluation Procedure
The evaluation procedure of EID consists of the typical

machine learning training and testing phases. As presented
in Figure 4, the process starts by dividing the content of
the data set equally between the training and test sets. The
system randomly selects only two instances per class from
the training set and feeds them to the GP process. The GP
process runs until a stopping criterion is met. The results of
the GP process are: (1) the best evolved program; and (2) a
set of representative vectors denoted as R. The system then
uses the evolved program to generate the feature vectors of
the test set instances, and uses R as the knowledge base for
a 1NN classifier to predict the class label of each instance.
These steps are discussed more in the following subsections.

Only two instances of each class are randomly selected
from the training set to evolve a program. Using different
instances can give different results. Thus, the process de-
picted in Figure 4, apart from the step of dividing the data
set into training and test sets, has been further repeated 30
times.

3.2 Program Representation
In this paper, the tree-based GP [10] program structure

is used to represent an individual evolved by the proposed
method. Moreover, Strongly-typed GP (STGP) is used to
define constraints on the order of the different nodes in the
program tree and to preserve the closure property [16].

The terminal set consists of the raw pixel values of a slid-
ing window with a predefined size. In our experiment, the
window size is set to 5 × 5 pixels. The pixels of each win-
dow are converted to a 1D vector as demonstrated in Figure
5. Thus, the terminal nodes are randomly selected from
{P0, P1, . . . , P24}. The windows that exceed the boundaries
of the instance being evaluated are discarded. The pixel
with the coordinates (0, 0) represents the upper left corner
of the image; whereas the pixel at the lower right corner of
the image has the coordinates (M − 1, N − 1) where M and
N are, respectively, the width and height of the image.
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Figure 6: The steps required to generate the feature
vector.

Figure 7: The steps to remove the unwanted bins
from the extracted vectors v0 , v1 , v2 , and v3 .

The function set is made up of the four standard arith-
metic operators +, −, ×, and ÷, in addition to the Switch
and Expand nodes as shown in Figure 6. Each of the four
mathematical operators has its regular meaning that applies
the corresponding operation on two arguments and returns
a single floating-point value. However, the ÷ operator re-
turns 0 if the divisor is zero. The input and output of these
four operators are of the same type; thus, they can be used
to form a chain of operators. The Switch node takes only
one argument and returns 0 if the input is negative, and
1 otherwise. Each Switch node represents a single bit of
the code generated at each position of the sliding window
(more details in the following subsection). Meanwhile, the
Expand node takes two arguments, each of which can be
Switch or Expand nodes; the Expand node is used to allow
GP to evolve trees of different sizes.

3.3 Extracting the Feature Vector
The process of extracting the feature vector from an in-

stance requires to iterate over the pixel values of the instance
using a sliding window of a predefined size. The process
starts by generating an empty vector of length 2b, where
b is the total number of Switch nodes in the tree. Then at
each position of the sliding window, the system performs two
steps as shown in Figure 6. Firstly, the system feeds the val-
ues of the current window to the terminal nodes, performs
the arithmetic operations, and generates a binary code us-
ing the values returned by the Switch nodes. Secondly, the
generated code is converted to decimal and the bin at the
corresponding index of the vector is incremented by 1.

The resulting vectors can be too long due to having a
large number of Switch nodes. Reserving large chunks of the
machine memory can result in occupying the entire memory,
which will lead to immediate termination. To prevent this
situation, a simple analysis of the resulted vectors has been
performed and show that many of these bins have zeros.
Thus, these bins that have 0 across all vectors have been
removed and reported as unwanted as shown in Figure 7.

3.4 Generating the Representative Vectors
The proposed method generates a single vector per class

using the extracted feature vectors from the training set in-

Figure 8: Generating the representative vectors of
classes c0 and c1 .

stances. The representative vector of a class is generated
by averaging the values of each bin across all feature vec-
tors of that class as presented in Figure 8. The generated
representative vectors are stored in a set denoted as R that
is used to perform two tasks, firstly, to help measure the
fitness value (more details in the following subsection), and
secondly, to serve as the knowledge base to classify the in-
stances of the unseen data (i.e. test set). For each of the
unseen instances, the system generates the feature vector,
removes the previously indicated unwanted bins, calculates
the distance between the instance being evaluated and every
representative vector (Equation (10)), and returns the class
label of the closest representative vector (1NN).

3.5 Fitness Function
Operating directly on the raw pixel values and using only

two instances per class, are two essential components of EID.
Thus, relying on the typical standard accuracy of the train-
ing set is inadequate due to having a large feature space
and a few training instances. A compound fitness function
is used in order to tackle both of these issues as shown in
Equation (7).

Fitness = 1−
(
Accuracy +Distanceµ

2

)
(7)

Here, Accuracy has its regular meaning, that is the propor-
tion of correctly classified instances (Ncorrect) to the total
number of instances (Ntotal) as in Equation (8).

Accuracy =
Ncorrect

Ntotal
(8)

The accuracy measures the ability of the evolved program
to correctly classify the instances of the training set. To
calculate the accuracy, the system iterates over the instances
of the training set and for each, the class label is predicted
using the representative vectors as the knowledge base with
1NN. Then a hit is returned if the predicted label matches
the actual label; otherwise, a miss is returned.

The proposed method also aims to generate a distinctive
feature vector for instances in the same class compared to
those instances of the other classes, which is handled by the
second component of the fitness function, i.e., Distanceµ.
The Distanceµ component is the average distance between
each representative vector of one class and the closest rep-
resentative vector of other classes as presented in Equation
(9).

Distanceµ =
1

C

∑
v∈R

argmin
{u∈R\v}

D (v,u) (9)

Here, C is the total number of classes, R is the set of rep-
resentative vectors, and v and u are two vectors in R. The
D (·, ·) function measures the distance between two vectors,
which is calculated using Czekanowski Coefficient [2] that is
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(a) (b)

Figure 9: Samples of (a) DS-Brodatz that are from
left to right and top to bottom D1, D3, D4, D5,
D6, D9, D11, D14, D15, D16, D17, D18, D20, D21,
D24, D34, D37, D46, D47, and D49; and (b) DS-
Kylberg that are from left to right and top to bottom
blanket1, blanket2, ceiling1, ceiling2, floor1, floor2,
lentils1, pearl-sugar1, rice1, rice2, scraf1, scarf2,
screen1, seat1, seat2, stone1, stone2, stone3, stone-
slab1, and wall1.

formally defined as:

D (v,u) = 1−

2
(∑

v∈v,u∈u min (v , u)
)

∑
v∈v v +

∑
u∈u u

 (10)

where v and u are two corresponding elements in the vec-
tors v and u respectively. Meanwhile, the min (·, ·) function
returns the minimum value of the two arguments.

4. EXPERIMENT SETUP
The data sets, instance preparation, baseline methods,

and evolutionary parameters are outlined in this section.

4.1 Data Sets and Preparation
Two widely used, texture based, gray-scale data sets are

used in this study to test the proposed method. The in-
stances of the first data set are selected from the Brodatz
Texture data set [3], and denoted as DS-Brodatz in this
study. The original Brodatz data set consists of 112 classes,
each consists of a single instance with size 640× 640 pixels.
Only 20 out of the 112 classes have been randomly drawn
to form DS-Brodatz. Figure 9(a) shows samples and names
of the selected classes.

The second data set (DS-Kylberg) is formed using 20 ran-
domly selected classes of the Kylberg Texture data set [11] as
shown in Figure 9(b). The Kylberg data set consists of 28
classes that each comes in with and without rotation. Only
the latter type is considered in this study as extending the
proposed method to handle the rotation variant will be in-
vestigated in the future. Each class of this group consists of
160 instances, each with size 576× 576 pixels.

The instances of the DS-Kylberg data set have been re-
sized to be of size 115× 115 pixels each, in order to reduce
the computation costs. Meanwhile, the single instance in
each class of DS-Brodatz has been re-sampled by dividing
the image into 100 sub-images with size 64× 64 pixels each.
The total number of instances has been equally split into
training and test sets. Thus, each of the training and test
sets of DS-Brodatz consists of 1, 000 instances (50 instances
× 20 classes); whereas each of the training and test sets of
DS-Kylberg is made up of 1, 600 instances (80 instances ×

20 classes). Only two instances of each class are randomly
selected to form the training set and the rest of the available
pool is discarded; while the test set is kept identical in the
entire experiment. The instances of both DS-Brodatz and
DS-Kylberg have been standardised and normalised as pre-
processing steps in order to eliminate or reduce the effect of
illumination variation. Equation (11) is used for standardis-
ation. The resulting instance after standardisation has zero
mean and unit standard deviation. Then to normalise the
standardised instance, Equation (12) is used. The pixel val-
ues after normalisation are in the interval [0, 255].

x′ =
x− x̄
s

(11)

x′ =

(
x− xmin

xmax − xmin

)
× 255 (12)

Here, x′ and x are, respectively, the new and old pixel values.
The mean and standard deviation are denoted by x̄ and s,
and xmin and xmax are the minimum and maximum values
respectively.

4.2 Methods for Comparison
The proposed method is compared to 11 classifiers of dif-

ferent types. The competitive methods can be categorised
into two groups: (1) GP-based; and (2) non-GP. The for-
mer group consists of the SRS and DRS methods, whilst
the latter group consists of Näıve Bayes (NB), Support Vec-
tor Machines (SVM), Decision Trees (J48), hybridised Näıve
Bayes/Decision Trees (NBTree), K∗ (KStar), Non-nested
generalised (NNge), Adaptive Boosting M1 (ABM1), Multi-
layer Perceptron (MLP), and Random Forest (RF). We have
reimplemented both of the SRS and DRS methods as in [21]
using the platform provided by the Evolutionary Compu-
tation Java-based (ECJ) package [15]. Meanwhile, the im-
plementation of the other methods have been taken from
the Waikato Environment for Knowledge Analysis (WEKA)
package [5] that is discussed in detail in [28].

4.3 Parameter Settings
The parameter settings of both GP and non-GP methods

are highlighted here.

4.3.1 GP Evolutionary Parameters
The parameters of the three GP methods, i.e., SRS, DRS,

and EID, are summarised in Table 2 and kept identical in the
experiment to make fair comparisons. These parameters are
based on previous work in the literature. The population of
200 individuals is generated using the ramped-half-and-half
method [10]. The probabilities of the elitism, mutation, and
crossover operators are, respectively, 0.01, 0.19, and 0.80.
Selecting individuals to participate in generating the subse-
quent generation uses the tournament method with size 7.
The minimum tree depth is set to 2, whereas the maximum
depth is set to 10 to allow GP to evolve large trees, but not
too large in order to avoid the code bloating problem [26].
The GP process is terminated after 50 generations if no ideal
solution is found.

4.3.2 Non-GP Parameters
Some optimisation and parameter tuning have been ap-

plied to the non-GP methods. The number of neighbours
in all instance-based methods such as NNge and KStar has
been set to 1 due to having only two instances per class.
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Table 2: The GP evolutionary parameters

Parameter Value Parameter Value

Elitism Rate 0.01 Generations 50
Mutation Rate 0.19 Population Size 200
Crossover Rate 0.80 Selection Type Tournament
Minimum Depth 2 Tournament size 7
Maximum Depth 10 Initial Population Half-and-half

The structure of the MLP classification method has been
set based on the guidelines proposed by Trenn [23], where
the number of hidden neurons (Nhidden) is calculated as:

Nhidden =

⌈
Nin + Nout

2

⌉
(13)

where Nin and Nout are, respectively, the number of neurons
in the input and output layers.

A study by Keerthi and Lin [9] showed that SVM with
a non-linear kernel has the potential to achieve compara-
ble or better performance than that with a linear kernel.
Therefore, SVM is used in this study with a Gaussian ker-
nel instead of the default linear kernel of WEKA. Different
classifiers have been tested with ABM1, and the best results
have been achieved when LADTree [8] is used.

5. RESULTS AND DISCUSSIONS
The results obtained from the experiments are presented

and discussed in this section.

5.1 Overall Results
The aim of the conducted experiments is to examine the

performance of the proposed EID method. To this end, an
experiment has been designed using the DS-Brodatz and DS-
Kylberg data sets. The results of the experiment on each
data set are presented in a table that vertically consists of
two parts. The results of the three GP methods (SRS, DRS
and EID) occupy the first (upper) part, whereas non-GP
methods occupy the second (lower) part. Moreover, the sec-
ond part horizontally is made up of three columns that each
presents the performances of different classifiers using the
features extracted by DIF, LBP, and GLCM. The Wilcoxon
signed-ranks test [27, 4] with a significance level of 5% is
used to identify whether the performance of EID is signif-
icantly different than that of the other methods, which is
indicated using a “∗” symbol.

Table 3 presents the results obtained on the DS-Brodatz
data set. The proposed method has significantly outper-
formed both of the GP baseline methods. Compared to
non-GP methods with three sets of hand-crafted features,
EID has achieved significantly better performance.

The results on the DS-Kylberg data set are presented
in Table 4. Similar to DS-Brodatz, the significance test
shows that the gap between the performance of the proposed
method and that of SRS and DRS is significant. Moreover,
non-GP methods have performed significantly worse than
the proposed method on this data set.

5.2 Further Discussion
In order to get better understanding of the structure of the

program evolved by EID, one of the best programs evolved
on each data set is selected for further discussion.

Figure 10 depicts the tree representation of a program
evolved by EID on the DS-Brodatz data set. This program

Table 3: The accuracies (%) on the test set for DS-
Brodatz (x̄± σ).

SRS DRS EID

4.88 ± 0.14∗ 10.23 ± 0.61∗ 95.39 ± 0.90

DIF LBP GLCM

NB 25.36 ± 5.86 ∗ 67.22 ± 6.17 ∗ 62.40 ± 8.18 ∗

SVM 39.58 ± 4.07 ∗ 71.66 ± 4.93 ∗ 75.94 ± 3.39 ∗

NBTree 42.77 ± 4.35 ∗ 77.66 ± 4.38 ∗ 64.33 ± 5.45 ∗

KStar 45.32 ± 3.19 ∗ 79.26 ± 2.38 ∗ 76.62 ± 4.97 ∗

NNge 41.60 ± 4.13 ∗ 80.40 ± 3.48 ∗ 78.71 ± 4.89 ∗

MLP 40.88 ± 2.73 ∗ 84.10 ± 2.69 ∗ 80.97 ± 4.59 ∗

ABM1 17.63 ± 4.64 ∗ 56.00 ± 15.0 ∗ 22.52 ± 6.27 ∗

J48 33.96 ± 5.09 ∗ 32.41 ± 6.47 ∗ 47.33 ± 8.11 ∗

RF 41.90 ± 3.00 ∗ 63.99 ± 1.21 ∗ 65.40 ± 3.80 ∗

Table 4: The accuracies (%) on the test set for DS-
Kylberg (x̄± σ).

SRS DRS EID

5.09 ± 0.18∗ 8.83 ± 0.53∗ 92.01 ± 1.02

DIF LBP GLCM

NB 24.96 ± 4.76 ∗ 76.22 ± 6.74 ∗ 63.58 ± 5.61 ∗

SVM 27.54 ± 2.74 ∗ 77.72 ± 4.51 ∗ 79.80 ± 4.55 ∗

NBTree 30.14 ± 4.10 ∗ 77.71 ± 5.93 ∗ 65.96 ± 5.34 ∗

KStar 24.81 ± 2.17 ∗ 87.09 ± 2.14 ∗ 80.50 ± 5.39 ∗

NNge 34.40 ± 3.24 ∗ 87.80 ± 2.54 ∗ 80.32 ± 5.34 ∗

MLP 29.29 ± 2.83 ∗ 85.83 ± 2.63 ∗ 81.46 ± 4.55 ∗

ABM1 15.69 ± 4.24 ∗ 54.91 ± 10.4 ∗ 22.64 ± 5.32 ∗

J48 35.27 ± 4.41 ∗ 35.89 ± 4.34 ∗ 50.75 ± 5.22 ∗

RF 29.19 ± 1.81 ∗ 68.48 ± 1.77 ∗ 66.85 ± 3.89 ∗

has achieved 95.80% accuracy on the unseen data. The pro-
gram generates a feature vector of length 26 bins (assum-
ing no unwanted bins need to be removed) due to having 6
Switch nodes. Thus, a binary code consists of 6 bits is gen-
erated for each position of the sliding window. Four out of
those 6 bits are generated by simply subtracting the values
of the arguments, whilst the other two require an additional
operator to be applied. This reflects the simplicity and low-
cost of the evolved program, and more importantly, it can
be used for online applications. The use of the subtraction
operator more than the other operators was expected due
to the influence of this operator on flipping the sign of the
resulting value (i.e. 0 to 1 and vice versa).

The tree representation of a program evolved by the pro-
posed method on DS-Kylberg is depicted in Figure 11. On
the unseen data, this program showed 96.94% accuracy. A
closer inspection reveals that the feature vector generated
for an instance by this program is of length 25 bins. More-
over, at most 4 operators are required to calculate the value
of each bit of the binary code generated at each window
position. Similarly, the subtraction operator appears more
frequently than the other operators.

5.3 Discussion on Number of Instances
Another experiment is conducted in this study in order to

investigate the effect of having a larger training set on the
performance of the baseline methods. Thus, all the instances
of the training set are used to train or evolve a model instead
of selecting only two instances per class.

The results of the two GP baseline methods are presented
in Table 5, which show that increasing the number of in-
stances has improved the performance of SRS and DRS.
However, these two methods still show very poor perfor-
mances compared to that of EID using only two instances
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Figure 10: A program evolved on DS-Brodatz.

Figure 11: A program evolved on DS-Kylberg.

per class. Although SRS and DRS have been designed to
tackle the multiclass classification problem and have been
shown to achieve a high level of performance in [21], it re-
quires further investigation to identify whether the number
of classes or the size of those instances (e.g. Song et al. [21]
used instances of size 16 × 16 pixels; whilst we are using
instances with is 64× 64 pixels) affects the performance.

Table 6 presents the results of all non-GP methods on
the two data sets using the entire training set. The de-
terministic methods have been executed only one time and
the achieved performance on the unseen data is reported in
the table. Meanwhile, the average performance over 30 in-
dependent runs is reported for the non-deterministic meth-
ods (e.g. MLP). The obtained results show that increasing
the number of training instances has the potential to im-
prove the performances. Clearly, using all the instances in
the training set increases the performances of all these com-
monly used machine learning methods over using only two
instances per class. However, the new EID method using
only two instances per class still achieved better (or compa-
rable) results than most of these commonly used machine
learning methods using a large number of instances in the
training set. In the future, we will investigate why EID can
perform so well using only two instances per class.

Table 5: The accuracies (%) of the GP baseline
methods on the test set (x̄± σ).

DS-Brodatz DS-Kylberg

SRS DRS SRS DRS

6.73 ± 1.31 11.58 ± 1.21 7.35 ± 1.07 9.60 ± 0.74

Table 6: The accuracies (%) of the non-GP baseline
methods on the test set.

DS-Brodatz DS-Kylberg

DIF LBP GLCM DIF LBP GLCM

NB 72.20 92.70 88.40 70.75 95.63 91.00
SVM 50.00 67.00 77.20 38.81 76.63 85.13
NBTree 60.20 84.00 86.30 60.06 92.19 89.00
KStar 68.50 95.90 95.60 45.00 98.44 97.94
NNge 64.90 87.40 92.00 58.38 94.63 93.13
MLP 68.57 97.27 97.76 62.78 95.57 97.49
ABM1 41.80 92.80 33.10 44.69 53.63 63.69
J48 63.30 85.00 85.40 64.06 89.75 89.75
RF 68.65 94.25 91.28 65.55 95.77 94.38

6. CONCLUSIONS
The overall aim of this paper was to utilise GP for evolv-

ing a program that operates on the raw pixel values and
capable of detecting texture primitives using only two in-
stances per class. This goal has been successfully achieved
as the program evolved by the proposed system generates
the feature vector from the instance being evaluated using
a sliding window, and predicts the class label relying on a
knowledge base formed using the instances of the training
set. Unlike hand-crafted image descriptors, the developed
system automatically selects the length of the feature vec-
tor and the required formulas to generate this vector. To
investigate the effectiveness of the proposed method, an ex-
periment has been designed using two well-known and pub-
licly available data sets namely, Brodatz Texture and Kylberg
Texture. The experiment aims at investigating the ability of
the developed system to discriminate between instances of
different textures. The performance of the new method has
been compared to two GP and nine non-GP widely used
methods namely, NB, SVM, NBTree, KStar, NNge, MLP,
ABM1, J48, and RF using three well-known hand-crafted
feature extraction methods. The results suggest that the
new method has significantly outperformed all comparative
methods in terms of classification performance on both data
sets and over the use of hand-crafted features.

The robustness of the proposed method to different distor-
tions such as rotation, scale, and translation is an important
direction that we will investigate in the future. Another di-
rection is to analyse the complexity of the evolved descriptor
and adopt a multi-objective approach to evolve a low-cost
and high-performance descriptor. The effect of the features
extracted by the proposed method on the performance of
different classifiers will be investigated in the future.
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