
Asynchronous Steady State Particle Swarm

Carlos M. Fernandes
LARSyS: Laboratory for Robotics and
Systems in Engineering and Science,
University of Lisbon, Lisbon, Portugal

cfernandes@laseeb.org

Juan Julián Merelo
Department of Computer

Architecture
University of Granada, Granada,

Spain
jmerelo@geneura.ugr.es

Agostinho C. Rosa
LARSyS: Laboratory for Robotics
and Systems in Engineering and

Science, University, Lisbon,
Portugal

acrosa@laseeb.org

ABSTRACT
We propose an asynchronous and steady state update strategy for
the Particle Swarm Optimization inspired by the Bak-Sneppen
model of co-evolution between interacting species: only the worst
particle and its neighbors are updated and evaluated in each time-
step. The strategy improves the quality of results and convergence
speed of PSO with Moore neighborhood.

Keywords: Particle Swarm Optimization, Asynchronous
PSO, Self-Organized Criticality.

1. INTRODUCTION
The standard Particle Swarm Optimization (PSO) algorithm [4] is
synchronous: the fitness of all particles is computed and only then
the particles update their velocity. In 2001, Carlisle and Dozier [2]
proposed the asynchronous PSO (A-PSO), a variant in which the
velocity is updated immediately after computing the fitness. In
this case, each particle is updated knowing the current best
position found by half of its neighbors and the previous best found
by the other half: the population of the A-PSO move with
imperfect information about the global search.

Asynchronous PSOs have been compared to the synchronous
configuration (S-PSO) with contradictory results. While Carlisle
and Dozier suggested that A-PSO yields better results than S-PSO,
a study by Rada-Vilela et al. [6] reported that S-PSO is better than
A-PSO in terms of the quality of the solutions and convergence
speed.

In this paper, we follow an alternative approach. The goal is to
design an asynchronous strategy that, unlike A-PSO, significantly
improves S-PSO in a wide range of problems. With that objective
in mind, we propose the steady state PSO (SS-PSO). A system is
said to be in steady state when some its parts do not change for a
period of time. In the SS-PSO, only a fraction of the population is
updated and evaluated in each iteration.

The strategy is inspired by the Bak-Sneppen model of co-
evolution between interacting species [1]. In order to investigate
the dynamics of species extinction and coupled selection, P. Bak
and K. Sneppen arranged a set of random fitness values
(representing species) in a ring structure. Then, they replaced the
worst species and its neighbors by random values (extinction
event), repeating the procedure during several iterations. After a
long run, the system is driven to a critical state were most species

have reached a fitness above a certain threshold and avalanches of
extinction events produce non-equilibrium fluctuations in the
configuration of the fitness values. The Bak-Sneppen model is an
example of self-organized criticality (SOC). In the past, SOC and
the Bak-Sneppen model inspired alternative strategies for PSO
(see [3] and [5]).

Like the Bak-Sneppen model, the population of PSO is structured
by a network. With this likeness in mind, we devised an
asynchronous and steady state update strategy for PSO in which
only the least fit particle and its neighbors are updated and
evaluated in each time step. The neighborhood is defined by the
social structure: i.e., if the particles are connected by a lbest
topology with ݇ = 3, then only the worst particle and its two
nearest neighbors are updated and evaluated; if a 2-dimensional
lattice with Moore neighborhood is used, then the least fit and its
eight nearest neighbors are updated (݇ = 9). Please note that local
synchronicity is used here: the fitness values of the worst and its
neighbors are first computed and only then the particles update
their velocity. The SS-PSO is summarized in Algorithm 1.

1. Initialize velocity and position of each particle.
2. for (each particle j):

 2.1. Compute fitness.

3. for (each particle j):

 3.1. Compute pi and pg.

4. For (each particle j):

 4.1 if j is the least fit particle, update velocity and position of j and
neighbors.

4. Compute fitness of j and neighbors.

5. If (stop criteria not met) return to 3; else, end.

Algorithm 1: SS‐PSO

2. RESULTS AND CONCLUSIONS
The algorithm was tested on eight benchmark unimodal and
multimodal functions: Sphere (ଵ݂), Quadric (ଶ݂), Hyperellipsoid
(ଷ݂), Rastrigin (ସ݂), Griewank (ହ݂), Schaffer (݂), Weirstrass (݂)
and Ackley (଼݂). The dimension of the search space is set to ܦ =30 (except f6, for which ܦ = 2). In order to construct square
lattices with von Neumann and Moore neighborhood, the
population size ߤ is set to 49, a value that lies within the typical
range of PSO population size [4]. Following [6], the acceleration
coefficients were set to 1.49618 and the inertia weight is
 is defined as usual by the domain’s upper limit ݔܽ݉ܺ .0.729844
and ܸ݉ܽݔ	 = A total of 50 runs for each experiment were .ݔܽ݉ܺ	
performed. Asymmetrical initialization is used.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author.
Copyright is held by the owner/author(s).
GECCO'16 Companion, July 20-24, 2016, Denver, CO, USA
ACM 978-1-4503-4323-7/16/07.
http://dx.doi.org/10.1145/2908961.2909035.

1

Table 1. PSO and SS-PSO with Moore neighborhood. Best fitness
values: mean, median and standard deviation.

. S‐PSOMoore SS‐PSOMoore

 mean median st.dev. mean median st.dev.

f1 3.36e‐42 1.03e‐41 1.01e‐41 0.00e00 0.00e00 0.00e00

f2 1.38e‐29 5.88e‐31 6.36e‐29 1.40e‐46 0.00e00 9.90e‐46

f3 1.09e‐42 1.40e‐43 2.86e‐42 0.00e00 0.00e00 0.00e00

f4 6.36e+01 6.17e+01 1.73e+01 5.25e+01 5.12e+01 1.45e+01

f5 5.86e‐03 1.08e‐19 7.22e‐03 1.28e‐02 9.86e‐03 2.06e‐02

f6 1.94e‐04 0.00e00 1.37e‐03 0.00e00 0.00e00 0.00e00

f7 1.94e‐01 2.27e‐02 5.27e‐01 1.73e‐02 2.86e‐05 8.17e‐02

f8 1.01e‐15 8.88e‐16 2.01e‐16 1.07e‐15 8.88e‐16 2.20e‐16

For assessing the quality of solutions and speed of convergence of
the algorithms, two sets of experiments were conducted. In the
first, the algorithms were run for a limited amount of iterations
(3000 for ଵ݂, ଷ݂ and ݂, 20000 for the remaining) and the fitness
of the best solution found was averaged over the 50 runs. In the
second set of experiments the algorithms were all run for 20000
iterations or until reaching a stop criterion. The number of
iterations required to meet the criteria was recorded and averaged
over the 50 runs. A success measure was defined as the number of
runs in which an algorithm attains the fitness value established as
the stop criterion (success rate).

The objective of the experiments is to evaluate the impact of the
proposed update strategy in the performance of standard PSOs.
For that purpose, the steady state update strategy was
implemented on PSOs with two different population structures:
lbest (SS-PSOlbest) and 2-dimensional square lattices with Moore
(SS-PSOMoore) neighborhood. While no improvement has been
observed with lbest, the experiments demonstrated that the
strategy improves the quality of results and convergence speed of
PSO with Moore neighborhood. The numerical results of the
algorithms with Moore structure are in Tables 1 (best fitness
values) and 2 (evaluations required to meet the stop criterion and
success rates).

SS-PSO finds better solutions in the unimodal functions (ଵ݂ − ଷ݂).
In the set of multimodal problems, SS-PSO is better in functions
f4, f6 and f7. (Results of Mann-Whitney U tests are significant at ≤ 0.05 for functions ଵ݂, ଶ݂, ଷ݂, ସ݂, ݂ and ݂, i.e., the null
hypothesis that that the two samples come from the same
population is rejected.) In terms of function evaluations, SS-PSO
is faster in the entire set of unimodal problems. In the multimodal
problems, SS-PSO is faster in ହ݂, ݂, ݂ and ଼݂ . (Results of Mann-
Whitney U tests are significant at ≤ 0.05 for functions ଵ݂, ଶ݂, ଷ݂, ହ݂, ݂ and ଼݂ .). The success rates (see Table 2) are similar,
except for ݂, in which SS-PSO clearly outperforms the
synchronous version.

Since the experiments also demonstrated that S-PSOMoore is better
than S-PSOlbest in most of the functions, ranking first in both
quality of solutions and speed of convergence, we believe that
these results validate the proposed steady state and asynchronous
update strategy for particle swarms. However, further research is
required in order to understand why the performance is not
improved when using the lbest network.

Table 2. Number of evaluations to reach the stop criteria (mean,
median and standard deviation) and success rates.

 S‐PSOMoore SS‐PSOMoore

 mean median st.dev. SR mean median st.dev. SR

f1 20434.0 20433. 0 840.8 50 17241.3 17320.5 716.2 50

f2 168599.0 168119.0 12721.1 50 133140.6 135828.0 16854.2 50

f3 22987.9 22956.5 1075.4 50 19519.6 19561.5 788.0 50

f4 15635.0 13524.0 7771.5 49 15902.8 14256.0 8047.7 49

f5 18671.0 18595.5 986.8 50 16419.2 16060.5 1300.7 50

f6 11443.0 7105.0 9439.1 49 8049.0 6381.0 4852.6 50

f7 37272.7 36970.5 1590.1 24 33192.0 33340.5 1184.8 46

f8 21029.8 20923.0 1164.7 50 17723.6 17752.5 957.0 50

ACKNOWLEDGEMENTS

The first author wishes to thank FCT, Ministério da Ciência e
Tecnologia, his Research Fellowship SFRH/BPD/66876/2009).
This work was supported by FCT PROJECT [PEst-
OE/EEI/LA0009/2013], EPHEMECH (TIN2014-56494-C4-3-P,
Spanish Ministry of Economy and Competitivity), PROY-
PP2015-06 (Plan Propio 2015 UGR), and project CEI2015-MP-
V17 of the Microprojects program 2015 from CEI BioTIC
Granada.

References
[1] Bak, P. and Sneppen. K. 1993. Punctuated equilibrium and

criticality in a simple model of evolution, Physical Review
Letters 71 (24), 4083–4086

[2] Carlisle, A. and Dozier, G. 2001. An off-the-shelf PSO.
Workshop on Particle Swarm Optimization.

[3] Fernandes, C.M., Merelo, J.J. and Rosa, A.C. 2012.
Controlling the Parameters of the Particle Swarm
Optimization with Self-Organized Criticality, Proc. of the
12th Parallel Problem Solving from Nature - PPSN XII,
LNCS 7492, 153-163.

[4] Kennedy, J. and Eberhart, R. 1995. Particle Swarm
Optimization, Proceedings of IEEE International Conference
on Neural Networks, Vol.4, 1942–1948.

[5] Løvbjerg, M. and Krink, T. 2002. Extending particle swarm
optimizers with self-organized criticality, Proceedings of the
2002 IEEE Congress on Evolutionary Computation, Vol. 2,
IEEE Computer Society, 1588–1593.

[6] Rada-Vilela, J., Zhang, M. and Seah, W. 2013. A
Performance Study on Synchronous and Asynchrounous
Updates in Particle Swarm, Soft Computing 17(6), 1019–
1030.

2

