
Asynchronous Steady State Particle Swarm   

Carlos M. Fernandes 
LARSyS: Laboratory for Robotics and 
Systems in Engineering and Science, 
University of Lisbon, Lisbon, Portugal 

cfernandes@laseeb.org 

Juan Julián Merelo 
Department of Computer 

Architecture 
University of Granada, Granada, 

Spain 
jmerelo@geneura.ugr.es 

 

Agostinho C. Rosa 
LARSyS: Laboratory for Robotics 
and Systems in Engineering and 

Science, University, Lisbon, 
Portugal 

acrosa@laseeb.org 

ABSTRACT 
We propose an asynchronous and steady state update strategy for 
the Particle Swarm Optimization inspired by the Bak-Sneppen 
model of co-evolution between interacting species: only the worst 
particle and its neighbors are updated and evaluated in each time-
step. The strategy improves the quality of results and convergence 
speed of PSO with Moore neighborhood.  
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PSO, Self-Organized Criticality. 

1. INTRODUCTION 
The standard Particle Swarm Optimization (PSO) algorithm [4]  is 
synchronous: the fitness of all particles is computed and only then 
the particles update their velocity. In 2001, Carlisle and Dozier [2] 
proposed the asynchronous PSO (A-PSO), a variant in which the 
velocity is updated immediately after computing the fitness. In 
this case, each particle is updated knowing the current best 
position found by half of its neighbors and the previous best found 
by the other half: the population of the A-PSO move with 
imperfect information about the global search.  

Asynchronous PSOs have been compared to the synchronous 
configuration (S-PSO) with contradictory results. While Carlisle 
and Dozier suggested that A-PSO yields better results than S-PSO, 
a study by Rada-Vilela et al. [6] reported that S-PSO is better than 
A-PSO in terms of the quality of the solutions and convergence 
speed.  

In this paper, we follow an alternative approach. The goal is to 
design an asynchronous strategy that, unlike A-PSO, significantly 
improves S-PSO in a wide range of problems. With that objective 
in mind, we propose the steady state PSO (SS-PSO). A system is 
said to be in steady state when some its parts do not change for a 
period of time. In the SS-PSO, only a fraction of the population is 
updated and evaluated in each iteration.  

The strategy is inspired by the Bak-Sneppen model of co-
evolution between interacting species [1]. In order to investigate 
the dynamics of species extinction and coupled selection, P. Bak 
and K. Sneppen arranged a set of random fitness values 
(representing species) in a ring structure. Then, they replaced the 
worst species and its neighbors by random values (extinction 
event), repeating the procedure during several iterations. After a 
long run, the system is driven to a critical state were most species 

have reached a fitness above a certain threshold and avalanches of 
extinction events produce non-equilibrium fluctuations in the 
configuration of the fitness values. The Bak-Sneppen model is an 
example of self-organized criticality (SOC). In the past, SOC and 
the Bak-Sneppen model inspired alternative strategies for PSO 
(see [3] and [5]). 

Like the Bak-Sneppen model, the population of PSO is structured 
by a network. With this likeness in mind, we devised an 
asynchronous and steady state update strategy for PSO in which 
only the least fit particle and its neighbors are updated and 
evaluated in each time step. The neighborhood is defined by the 
social structure: i.e., if the particles are connected by a lbest 
topology with ݇ = 3, then only the worst particle and its two 
nearest neighbors are updated and evaluated; if a 2-dimensional 
lattice with Moore neighborhood is used, then the least fit and its 
eight nearest neighbors are updated (݇ = 9). Please note that local 
synchronicity is used here: the fitness values of the worst and its 
neighbors are first computed and only then the particles update 
their velocity. The SS-PSO is summarized in Algorithm 1. 

 

1. Initialize velocity and position of each particle. 
2. for (each particle j): 

     2.1. Compute fitness. 

3. for (each particle j): 

         3.1. Compute pi and pg. 

4. For (each particle j): 

       4.1  if  j  is  the  least  fit particle, update velocity and position of  j and 
neighbors. 

4. Compute fitness of j and neighbors. 

5. If (stop criteria not met) return to 3; else, end. 

Algorithm 1: SS‐PSO 

2. RESULTS AND CONCLUSIONS 
The algorithm was tested on eight benchmark unimodal and 
multimodal functions: Sphere ( ଵ݂), Quadric ( ଶ݂), Hyperellipsoid 
( ଷ݂), Rastrigin ( ସ݂), Griewank ( ହ݂), Schaffer ( ݂), Weirstrass ( ݂) 
and Ackley (଼݂ ). The dimension of the search space is set to ܦ =30 (except f6, for which ܦ = 2). In order to construct square 
lattices with von Neumann and Moore neighborhood, the 
population size ߤ is set to 49, a value that lies within the typical 
range of PSO population size [4]. Following [6], the acceleration 
coefficients were set to 1.49618 and the inertia weight is 
 is defined as usual by the domain’s upper limit ݔܽ݉ܺ .0.729844
and ܸ݉ܽݔ	 =  A total of 50 runs for each experiment were .ݔܽ݉ܺ	
performed. Asymmetrical initialization is used. 
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Table 1. PSO and SS-PSO with Moore neighborhood. Best fitness 
values: mean, median and standard deviation. 

.  S‐PSOMoore  SS‐PSOMoore 

  mean  median  st.dev.  mean  median  st.dev. 

f1  3.36e‐42  1.03e‐41  1.01e‐41  0.00e00  0.00e00  0.00e00 

f2  1.38e‐29  5.88e‐31  6.36e‐29  1.40e‐46  0.00e00  9.90e‐46 

f3  1.09e‐42  1.40e‐43  2.86e‐42  0.00e00  0.00e00  0.00e00 

f4  6.36e+01  6.17e+01  1.73e+01  5.25e+01  5.12e+01  1.45e+01 

f5  5.86e‐03  1.08e‐19  7.22e‐03  1.28e‐02  9.86e‐03  2.06e‐02 

f6  1.94e‐04  0.00e00  1.37e‐03  0.00e00  0.00e00  0.00e00 

f7  1.94e‐01  2.27e‐02  5.27e‐01  1.73e‐02  2.86e‐05  8.17e‐02 

f8  1.01e‐15  8.88e‐16  2.01e‐16  1.07e‐15  8.88e‐16  2.20e‐16 

For assessing the quality of solutions and speed of convergence of 
the algorithms, two sets of experiments were conducted. In the 
first, the algorithms were run for a limited amount of iterations 
(3000 for ଵ݂, ଷ݂ and ݂, 20000 for the remaining) and the fitness 
of the best solution found was averaged over the 50 runs. In the 
second set of experiments the algorithms were all run for 20000 
iterations or until reaching a stop criterion. The number of 
iterations required to meet the criteria was recorded and averaged 
over the 50 runs. A success measure was defined as the number of 
runs in which an algorithm attains the fitness value established as 
the stop criterion (success rate).  

The objective of the experiments is to evaluate the impact of the 
proposed update strategy in the performance of standard PSOs. 
For that purpose, the steady state update strategy was 
implemented on PSOs with two different population structures: 
lbest (SS-PSOlbest) and 2-dimensional square lattices with Moore 
(SS-PSOMoore) neighborhood. While no improvement has been 
observed with lbest, the experiments demonstrated that the 
strategy improves the quality of results and convergence speed of 
PSO with Moore neighborhood. The numerical results of the 
algorithms with Moore structure are in Tables 1 (best fitness 
values) and 2 (evaluations required to meet the stop criterion and 
success rates).  

SS-PSO finds better solutions in the unimodal functions ( ଵ݂ − ଷ݂). 
In the set of multimodal problems, SS-PSO is better in functions 
f4, f6 and f7. (Results of Mann-Whitney U tests are significant at  ≤ 0.05 for functions ଵ݂, ଶ݂, ଷ݂, ସ݂, ݂ and ݂, i.e., the null 
hypothesis that that the two samples come from the same 
population is rejected.) In terms of function evaluations, SS-PSO 
is faster in the entire set of unimodal problems. In the multimodal 
problems, SS-PSO is faster in ହ݂, ݂, ݂ and ଼݂ . (Results of Mann-
Whitney U tests are significant at  ≤ 0.05 for functions ଵ݂, ଶ݂, ଷ݂, ହ݂, ݂ and ଼݂ .). The success rates (see Table 2) are similar, 
except for ݂, in which SS-PSO clearly outperforms the 
synchronous version.  

Since the experiments also demonstrated that S-PSOMoore is better 
than S-PSOlbest in most of the functions, ranking first in both 
quality of solutions and speed of convergence, we believe that 
these results validate the proposed steady state and asynchronous 
update strategy for particle swarms. However, further research is 
required in order to understand why the performance is not 
improved when using the lbest network. 

Table 2. Number of evaluations to reach the stop criteria (mean, 
median and standard deviation) and success rates.  

  S‐PSOMoore  SS‐PSOMoore 

  mean  median  st.dev.  SR  mean  median  st.dev.  SR

f1 20434.0  20433. 0 840.8  50  17241.3  17320.5  716.2  50

f2 168599.0  168119.0 12721.1  50  133140.6  135828.0 16854.2  50

f3 22987.9  22956.5  1075.4  50  19519.6  19561.5  788.0  50

f4 15635.0  13524.0  7771.5  49  15902.8  14256.0  8047.7  49

f5 18671.0  18595.5  986.8  50  16419.2  16060.5  1300.7  50

f6 11443.0  7105.0  9439.1  49  8049.0  6381.0  4852.6  50

f7 37272.7  36970.5  1590.1  24  33192.0  33340.5  1184.8  46

f8 21029.8  20923.0  1164.7  50  17723.6  17752.5  957.0  50
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