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ABSTRACT
The brain is an intrinsically nonlinear system, yet the domi-
nant methods used to generate network models of functional
connectivity from fMRI data use linear methods. Although
these approaches have been used successfully, they are lim-
ited in that they can find only linear relations within a sys-
tem we know to be nonlinear.

This study employs a highly specialized genetic program-
ming system which incorporates multiple enhancements to
perform symbolic regression, a type of regression analysis
that searches for declarative mathematical expressions to
describe relationships in observed data.

Publicly available fMRI data from the Human Connec-
tome Project were segmented into meaningful regions of
interest and highly nonlinear mathematical expressions de-
scribing functional connectivity were generated. These non-
linear expressions exceed the explanatory power of tradi-
tional linear models and allow for more accurate investiga-
tion of the underlying physiological connectivities.
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1. INTRODUCTION
Literature in the field of neuroscience explicitly acknowl-

edges the existence of nonlinear relationships in brain func-
tion [1, 3], but it is common to treat them as a footnote or
ignore them altogether [2, 3]. Linear tools, such as the Gen-
eral Linear Model (GLM) or the Pearson product-moment
coefficient are used, almost exclusively, to model functional
magnetic resonance imaging (fMRI) time series. Despite
this, neuroscientific studies are able to make contributions
with limited linear model [1]; however, it would ultimately
be improper to use linear methods to observe what we know
to be nonlinear phenomenon as it lacks the power to truly
model the underlying processes. It is not surprising that the
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Figure 1: Snapshot of a brain segmented into the 30 ROIs.
Each color represents a different region.

nonlinear relationships are ignored; discovering underlying
nonlinearities is an exceptionally non-trivial task, especially
when working with large amounts of high-dimensional data.

In this work Genetic Programming (GP) is implemented
to automate the discovery of minimal and interpretable net-
work relationships in the behavior of a system for which we
can observe only time series derived from a network’s nodes:
task based fMRI time series data. No prior knowledge or as-
sumptions are applied to the system, such as linearity or how
the system interacts with itself.

2. EXPERIMENTAL METHODS
The task based fMRI time series data selected was of a

Motor task and was obtained from the Human Connectome
Project, WU-Minn Consortium1. This four-dimensional data
(three-dimensional brain over time) was collected into 30
spatial regions of interest (ROIs) (Figure 1) for the time
series of 284 time points, and can be represented as a two-
dimensional matrix of 30 columns with 284 rows.

This specific GP implementation is motivated by Schmidt
et al.’s work [6], is extremely specialized for symbolic regres-
sion, and incorporates modular improvements which signifi-
cantly increase performance. These improvements including
parallel evolution of subpopulations, fitness predictors [5],
and an acyclic graph representation [4].

For symbolic regression, it was required to have some value
over the time series that evolved expressions fits to. For the
purpose of this motor task, ROI 21 was selected for the
left hand side of the equation as it is the ROI that contains
the primary motor cortex. 100 models for all 507 subjects
available were generated.

1http://www.humanconnectome.org/
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Figure 2: Time series of ROI 21’s signal compared to the generated nonlinear and linear models.
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Figure 3: Relationships between ROIs for a single generated
nonlinear model. Red represents nonlinear relationships be-
tween ROIs, blue represents nonlinear and linear relation-
ships, and black is strictly linear. This particular exam-
ple corresponds to the equation: R21 = R12 − sin(11.97 ∗
(18.30−R12))−(0.42∗|(R12−R18)∗R27|)/(R6−tan(R2)).

3. RESULTS AND CONCLUSIONS
With Pearson product-moment correlation and false dis-

covery rate (FDR) thresholding (typical linear methods),
almost every ROI is linearly related to ROI 21 (on average,
28 ROIs were related to ROI 21 per subject). Performing
linear regression with this many ROIs generates models with
high degrees of freedom that fit the data well, but provide
minimal insight and are difficult to interpret.

Figure 2 shows a time series of one subject’s recorded sig-
nal alongside two models describing the signal — one found
with the nonlinear tool (Figure 3), the other with linear re-
gression after thresholding ROIs with a 95% FDR. The mean
absolute error over the time series for the top nonlinear mod-
els and the thresholded linear models were averaged over all
subject. These values were roughly 16.68 (sd = 3.51 ) and
11.79 (sd = 1.11 ) respectively. Although both models fit
the data well, a Mann-Whitney U test (U-test) provides a
p-value of 3.08 ∗ 10−133, which demonstrates that the linear
models fit the recorded signal better.

On average, a nonlinear model contained fewer than 4
ROIs (3 when excluding ROI 21). The mean absolute time
series error of the linear models generated with the top 4
correlated ROIs — which were typically the same ROIs as
those found with GP — was calculated to be approximately
19.16 (sd = 5.08 ). A U-test comparing the 4 ROIs models
provided a p-value of 8.56∗10−19 ; the nonlinear models were
significantly better. In fact, it was not until the linear models
were given the top 8 ROIs that there was no more statistical
difference. Linear models only performed better than the

nonlinear models with 4 ROIs once they received 10 or more
ROIs (U-test p-value of 1.34∗10−3); it took at least 10 ROIs
for a linear model to fit the recorded signal better than a
nonlinear model containing only 4.

When compared to linear models generated with all ROIs
available after a typical thresholding technique, nonlinear
models, although close, could not fit the signal as well. How-
ever, these linear models would typically contain more than
28 ROIs and would be difficult to interpret and provide min-
imal insight into understanding the underlying processes.
Nonlinear models, in contrast, were more succinct and de-
scribe nonlinear relationships that would otherwise not be
discovered with conventional tools. On average, with just 4
ROIs, a nonlinear model could fit the recorded signals bet-
ter than linear models using 8; even with more information
(ROIs), linear models could not describe the data as clearly.
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