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ABSTRACT

In the last decade, there has been a growing interest in multi-
objective evolutionary algorithms that use performance indi-
cators to guide the search. A simple and effective one is the
S-Metric Selection Evolutionary Multi-Objective Algorithm
(SMS-EMOA), which is based on the hypervolume indicator.
Even though the maximization of the hypervolume is equi-
valent to achieving Pareto optimality, its computational cost
increases exponentially with the number of objectives, which
severely limits its applicability to many-objective optimiza-
tion problems. In this paper, we present a parallel version of
SMS-EMOA, where the execution time is reduced through
the asynchronous island model with micro-populations, and
diversity is preserved by external archives that are pruned
to a fixed size employing a recently created technique based
on a Parallel-Coordinates graph. The proposed approach,
called S-PAMICRO (PArallel MICRo Optimizer based on
the S metric), is compared with an state-of-the-art algo-
rithm (HypE) on the WFG test problems. Preliminary ex-
perimental results show that S-PAMICRO is a promising
alternative that can solve many-objective optimization pro-
blems at an affordable computational cost.

1. INTRODUCTION

We are interested in solving Multi-objective Optimization
Problems (MOPs), which have the following form:

Minimize ~F (~x) := (f1(~x), f2(~x), . . . , fm(~x)) (1)

subject to ~x ∈ S, (2)

where ~x is the vector of decision variables, S ⊂ IRn is the
feasible region set and ~F (~x) is the vector of m (≥ 2) objective
functions (fi : IRn → IR). The aim is to seek from among
the set of all values which satisfy the constraint functions
defined in equation (2) the particular set ~x ∗ which yields
the optimum values of all the objective functions.

Multi-objective Evolutionary Algorithms (MOEAs) are
stochastic, population-based, search techniques which are
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well-suited for solving a wide variety of complex MOPs. In
the last decades, several MOEAs have been proposed [4],
with the vast majority relying on two concepts: Pareto do-

minance1 as their primary selection mechanism, followed by
a density estimator.2 The former favors non-dominated so-
lutions over dominated ones, whereas the latter induces a
total order of incomparable solutions, preserving diversity3

at the same time.
One of the main concerns is that several of these MOEAs

face difficulties to reach the Pareto optimal front4 when dea-
ling with many-objective optimization problems (m ≥ 4)
[12]. This is due to the fact that most or all solutions in
the population quickly become non-dominated with respect
to the rest, and the best individuals are identified only by
the density estimator. Thus, in some cases good locally
non-dominated solutions in terms of convergence might be
discarded at the expense of keeping good solutions in terms
of diversity, in spite of the fact that they may be distant
from the Pareto optimal front [1]. To address this issue, a
new trend is the incorporation of performance indicators5

into the selection mechanism of a MOEA [2, 5, 8]. The hy-

pervolume indicator [15] is, with no doubt, a natural choice,
since it is the only unary indicator that is known to be Pareto
compliant. Also, it has been proven that maximizing the hy-
pervolume is equivalent to reaching the Pareto optimal set
[6]. However, its main drawback is its computational cost,
which increases exponentially with the number of objectives
[3], making it prohibitive for many-objective optimization
problems.

In this work, we focus on the S-Metric Selection Evolu-
tionary Multi-Objective Algorithm (SMS-EMOA) [5], due
to its simplicity and superiority over other algorithms [14].
This optimizer is a steady state genetic algorithm that ranks
individuals according to Pareto dominance and uses the hy-
pervolume as its density estimator. The computational com-
plexity of SMS-EMOA is of order O(|P |m), where |P | de-
notes the population size. Parallelizing SMS-EMOA arises

1A solution ~x ∈ S dominates a solution ~y ∈ S (~x ≺ ~y), if and
only if ∀i ∈ {1, . . . ,m}, fi(~x) ≤ fi(~y) and ∃j ∈ {1, . . . ,m},
fj(~x) < fj(~y).
2A density estimator measures the similarity degree among
individuals in the population.
3Diversity refers to achieving a uniform distribution of so-
lutions covering all regions of the objective space.
4POF := {~F (~x) ∈ IRm : ~x ∈ S, 6 ∃~y ∈ S, ~y ≺ ~x}.
5A performance indicator, defined as I : IRm → IR, measures
the quality of an approximation set (the final population of
a MOEA).
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Figure 1: Average execution time of SMS-EMOA

varying objective functions and population size.

as a possible way to reduce its computational cost, where at
least two strategies are possible [13]: (1) parallelization of
the computations, in which the operations applied to an in-
dividual are performed in parallel, and (2) parallelization of
the population, in which the population is partitioned and
each part evolves in semi-isolation (individuals can be ex-
changed between subpopulations). Klinkenberg et al. [10]
and Lopez et al. [11] have studied the first approach. In
[10], a variation of SMS-EMOA parallelized the evaluations
of individuals using a surrogate model, whose purpose was to
approximate the function values. In [11], the exact hypervo-
lume contributions of SMS-EMOA were parallelized through
the use of Graphics Processing Units (GPUs). To the best
of our knowledge, our work is the first attempt to incor-
porate the second sort of approach (parallelization of the
population) into SMS-EMOA.

In order to grasp the variability of the execution times
of SMS-EMOA, we sampled several points on DTLZ1 [4],
varying the number of objective functions and the popula-
tion size on a PC Intel(R) Core(TM) i7 CPU 950 @ 3.07
GHz × 8 with 3.8 GB of RAM, using the same parame-
ters in all experiments [5]. The average resulting surface of
30 runs is shown in Figure 1. An interesting observation is
that, regardless of the number of objectives, time was al-
most negligible when using small populations (less than 12
individuals). This fact is considered in our proposal, where
we improve diversity using the parallel asynchronous island
model [4] and external archives for each micro-population.
Furthermore, these external archives are kept to a constant
size by a recently proposed density estimator based on the
visualization technique of Parallel Coordinates [7], which is
scalable in the objective space.

The remainder of this paper is organized as follows. Sec-
tion 2 is devoted to the description of our proposed parallel
MOEA. In Section 3 we present our experimental results
using the Walking-Fish-Group (WFG) [4] benchmark. Fi-
nally, Section 4 provides our preliminary conclusions and
some possible potential lines of future research.

2. OUR PROPOSED APPROACH

The PArallel MICRo Optimizer based on the S metric (S-
PAMICRO) draws ideas from the island model, where the
overall population is split into l micro-populations, called is-

lands, containing less than 12 individuals each. Every island
evolves independently a serial SMS-EMOA with an external
archive of size l|P |. In this approach, the islands are con-
nected in a logical unidirectional ring, exchanging nmig so-

lutions occasionally6 in an asynchronous fashion. The goal
of S-PAMICRO is to reduce the execution time of SMS-
EMOA, hopefully also improving the quality of solutions in
high dimensional spaces.

Algorithm 1 Outline of an island in S-PAMICRO

Input: MOP, stopping criterion, island identification i,
number of islands l, number of migrants nmig, and fre-
quency of migration fmig.

Output: Final sub-population A
1: A← ∅
2: n← l|P | {archive size limit}
3: Initialize micro-population P at random
4: while the stopping criterion is not satisfied do

5: P ← SMS-EMOA(MOP, fmig, P ) {execute during
fmig evaluations of the objective vector}

6: R ← Check the arrival of migrants from (l + i − 1)
(mod l) island

7: A← A ∪ P ∪R
8: if |A| > n then

9: A← Pruning(A,n)
10: S ←Uniform Random Selection(A)
11: Send copies of S to the (i+ 1) (mod l) island
12: P ← Elitist Ranking Replacement(P ∪R)
13: return A

In Algorithm 1, we present the pseudocode of an island
in S-PAMICRO. First, the external archive A and its ma-
ximum size are specified. Next, the micro-population P is
initialized at random. In line 5, SMS-EMOA is executed
during fmig function evaluations. Then, an island receives,
without blocking, the immigrants R from the source island,
according to the adopted topology. In line 7, the exter-
nal archive is updated, adding the current micro-population
as well as the immigrants. In lines 8 and 9, the external
archive is truncated if it exceeds its limits, using the tech-
nique described in the next paragraph. In the following two
lines, the candidates to be migrated are selected by using the
policy of uniform-random migration [4], in which nmig ran-
dom individuals are selected from the archive and a copy of
them is sent to the destination island. In line 12, the micro-
population is updated, replacing some individuals with the
immigrants. Here, we employed elitist-ranking replacement
[4], where immigrants are combined with the current popu-
lation, and then they are ranked using Pareto dominance,
and the worst solutions are removed. This elitist mechanism
preserves the currently best solutions for the next iteration,
assuring proximity to the Pareto optimal front. At the end,
the final sub-populations of all islands i ∈ {0, 1, . . . , l − 1}
are collected and adjusted to the size l|P |, using the same
pruning technique.

Our pruning technique is explained in Algorithm 2. First
the population is ranked using the well-known non-domina-
ted sorting procedure [4]. In line 2, the population is nor-
malized in the objective space by means of two reference
points: zmin, composed of the best objective values found
so far, and zmax, formed with those vectors parallel to the
axes with the lowest L2 norm. Next, individuals are re-
moved from the worst current front. If the size of this front
is less or equal than the number of individuals to be removed,
then the whole front is discarded (lines 4-6). Otherwise, the

6This is known as migration.
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most densely populated members are eliminated from the
current front (lines 8-11). The density estimator, originally
proposed by the authors of this paper in [7], is based on a
visualization technique, called Parallel Coordinates.7 The
core idea is to create a digital image8 containing the Paral-
lel Coordinates of each distinct pair of objective functions.
These m(m− 1)/2 digital images are attached next to each
other and only normalized individuals are considered. Such
images are represented as a 2D matrix, whose dimension
depends on the number of objectives (m), the population
size |P | and a resolution parameter (γ). An element of this
matrix identifies the level of overlapping line segments and
those individuals covering a wide area of the image have a
lower density estimator. Interested readers are referred to
[7] for more details.

Algorithm 2 Pruning

Input: Population P , desired size n
Output: Reduced population P
1: {F1, . . . , Fk} ← Rank population P in fronts according

to Pareto dominance.
2: Normalize population P
3: while |P | > n do

4: if |Fk| ≤ |P | − n then

5: r ← Fk

6: k ← k − 1
7: else

8: D ← Calculate pop. density of P
9: r ← argmax~p∈Fk

D[p]
10: Fk ← Fk \ {r}
11: P ← P \ {r}
12: return P

S-PAMICRO was developed in the EMO Project, our frame-
work for Evolutionary Multi-Objective Optimization. This
software is implemented in C language and MPICH9.

3. EXPERIMENTAL RESULTS

In order to illustrate the efficiency of S-PAMICRO in
many-objective optimization problems, we focus on WFG1
[4] (the complete study is available at [9]), which is a well-
known difficult, separable and unimodal test problem with
mixed geometry. The decision variables (n) of this MOP
were set to {24, 24, 47, 105} and the position-related para-
meter (k) were set to {4, 4, 8, 18} for {2, 3, 5, 10} objectives,
respectively. We compared the results of our proposed al-
gorithm with respect to SMS-EMOA, S-PAMICRO without
external archives (pSMS-EMOA), and the Hypervolume Es-
timation Algorithm (HypE) [2]. This latter MOEA ranks
the population by means of Pareto dominance and its se-
condary selection criterion is based on the estimation of the
hypervolume contributions using Monte Carlo sampling (for
2 and 3 objectives, the exact value is computed).
7This graph is built in the 2-dimensional plane, where m
copies of the real line IR are placed perpendicular to the x-
axis and a point in IRm is represented by a series of connected
line segments with vertices on the parallel axes.
8The term digital image refers to a two-dimensional light
intensity function g(a, b) where a and b denote spatial coor-
dinates and the value of g at any point (a, b) is proportional
to the gray level of the image at that point; where a, b, and
g take discrete values.
9https://www.mpich.org
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Figure 2: Average execution time on WFG1.

The total number of function evaluations was set to 40,000,
50,000 and 80,000 for 2D, 3-5D and 10D, respectively; limi-
ting the execution time to no more than two hours for each
run. In the sequential algorithms, the population size of
SMS-EMOA and HypE was set to 100, 120, 198 and 275
for 2D, 3D, 5D and 10D, respectively. In the case of pSMS-
EMOA and S-PAMICRO the micro-populations were set to
10 for two and three objectives, and to 11 for five and ten
dimensions. The number of islands (processors) were 10, 12,
18 and 25 for 2D, 3D, 5D and 10D, respectively.

Experiments were carried on a Cluster of 10 PCs Intel(R)
Core(TM) i7 CPU 950 @ 3.07 GHz × 8 with 3.8 GB of RAM.
The frequency of migration, fmig, was set to 80 function
evaluations and the number of migrants nmig was set to
2. All the MOEAs were implemented in the EMO Project,
using real-numbers encoding. For fair comparisons, the pa-
rameters were similar in the sequential and parallel cases.
The crossover and mutation rate were set to 0.9 and 1/n,
respectively. For HypE, the number of sampling points was
fixed to 20,000. The resolution parameter of S-PAMICRO
(γ) was set to 3 for 2D and 2 for higher dimensions [7].

We performed 30 independent runs for all scenarios. For
comparing results, we adopted the hypervolume indicator,
bounded by the reference point (2.2, 4.2, 6.2, . . .). We ap-
plied the Wilcoxon rank sum test (one-tailed) to the mean
hypervolume indicator values, in order to determine wheter
if S-PAMICRO performed better than the other MOEAs at
the significance level of 5%.

The resulting execution time, using a logarithmic scale for
the y-axis, is shown in Figure 2. As it can be observed, S-
PAMICRO spent considerably less time than SMS-EMOA
and HypE. Even in low dimensionality, our algorithm could
reduce run time a little bit. Moreover, the overhead of han-
dling the external archive in S-PAMICRO is relatively low.

But much more important are our results with respect
to the quality of the solutions. In Table 1, we present the
hypervolume indicator values of all the experiments. The
best values are shown in gray scale. An arrow pointing
upwards (↑) means that our algorithm outperformed in a
significantly better way, the other MOEAs compared. Con-
versely, an arrow pointing downwards (↓) means that our
algorithm was significantly beaten. For 2, 5 and 10 objec-
tives S-PAMICRO obtained the best results, outperforming
SMS-EMOA, HypE and pSMS-EMOA. While in 3D, our
proposal surpassed pSMS-EMOA and SMS-EMOA.
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Table 1: Median and standard deviation of the hy-

pervolume indicator on the WFG1.

m HypE SMS-EMOA pSMS-EMOA S-PAMICRO

10
4.19e+09 ↑ 1.88e+09 ↑ 5.28e+09 ↑ 5.87e+09

(1.81e+8) (2.62e+8) (5.76e+7) (2.33e+8)

5
2.82e+03 ↑ 3.18e+03 ↑ 3.91e+03 ↑ 5.16e+03

(1.17e+2) (7.20e+1) (4.83e+1) (3.88e+2)

3
5.66e+01 ↓ 5.28e+01 ↑ 4.23e+01 ↑ 5.56e+01

(1.62e+0) (2.50e+0) (3.08e+0) (3.71e+0)

2
5.17e+00 ↑ 4.45e+00 ↑ 3.66e+00 ↑ 6.61e+00

(4.11e-1) (3.63e-1) (2.59e-1) (9.65e-1)

In summary, we observed that S-PAMICRO could achieve
much better results than SMS-EMOA and HypE in high di-
mensionality, spending much less computational time. For
this reason, we believe that our proposed approach is a pro-
mising alternative for solving many-objective optimization
problems.

4. CONCLUSIONS AND FUTURE WORK

This paper presented a parallel version of the S-Metric
Selection Evolutionary Multi-Objective Algorithm (SMS-E-
MOA). The new approach, called PArallel MICRo Opti-
mizer based on the S metric (S-PAMICRO), draws ideas
from the asynchronous island model with relatively small
populations. Diversity is preserved through external archives
that are pruned to a limit size, using a recently proposed
technique that is based on automatic image analysis. We
compared our proposal with respect to HypE (Hypervolume
Estimation Algorithm), and with respect to the serial ver-
sion of SMS-EMOA and another parallel version of it. We
observed that S-PAMICRO is a viable alternative for sol-
ving many-objective optimization problems at an affordable
computational time. Further studies are required using more
benchmarks. We are also interested in studying the effects of
the additional parameters related to the migration operator.
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