
Evolution of Layer Based Neural Networks: Preliminary
Report

Edward R Pantridge
Hampshire College
Amherst, MA 01002

erp12@hampshire.edu

Lee Spector
School of Cognitive Science

Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

ABSTRACT
Modern applications of Artificial Neural Networks (ANNs)

largely feature networks organized into layers of nodes. Each
layer contains an arbitrary number of nodes, and these nodes
only share edges with nodes in certain other layers, as deter-
mined by the network’s topology. Topologies of ANNs are
frequently designed by human intuition, due to the lack of
a versatile method of determining the best topology for any
given problem. Previous attempts at creating a system to
automate the discovery of network topologies have utilized
evolutionary computing [15]. The evolution in these sys-
tems built networks on a node-by-node basis, limiting the
probability of larger, layered topologies. This paper pro-
vides on overview of Growth from Embryo of Layered Neural
Networks (GELNN), which attempts to evolve topologies of
neural networks in terms of layers, and inter-layer connec-
tions, instead of individual nodes and edges.

1. INTRODUCTION
Artificial neural networks are a method of machine learn-

ing that can be applied effectively to a wide variety of prob-
lems. One of the biggest determiners of a networks effective-
ness at solving a problem is its topology. A neural network
topology is defined by the number of nodes, and how the
nodes are organized and connected.

This paper briefly discusses the progress that has been
made in making them more versatile. Previous attempts at
automating the discovery of effective topologies with evo-
lution are considered, and a new method of searching for
effective topologies using evolution will be presented.

To fully understand how evolution was used to automate
the discovery of neural network topologies, a brief expla-
nation of Genetic Programming is provided. The Growth
from Embryo of Layered Neural Networks (GELNN) sys-
tem detailed in this paper specifically uses a Push genetic
programming system for a variety of reasons explained in
later sections.

An encoding of neural network topologies was created for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20 - 24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931664

the system described in this paper. This encoding was de-
signed to be easily generated by a Push genetic program-
ming system, and is distinct from many other neural net-
work encodings in that it represents the network’s topology
in terms of layers, each containing multiple nodes. This con-
trasts with many other network encodings which represent
networks in terms of either sets of nodes, sets of edges, or a
combination of both [15] [8].

The network topologies generated by the genetic program-
ming system are trained on classification problems using
backpropagation. Their training and generalization errors
after training are recorded and used during their evolution-
ary fitness evaluation.

Together, a neural network framework and a Push genetic
programming system are used to test the effectiveness of
Growth from Embryo of Layered Neural Networks (GELNN)
system, which aims to evolve network topologies on a layer-
by-layer basis.

2. BACKGROUND

2.1 Artificial Neural Networks
An Artificial Neural Network (ANN) performs computa-

tions by exchanging signals between artificial neurons in
a way that was largely inspired by biological nervous sys-
tems [3]. Despite many improvements in the training of
artificial neural networks, [4] less progress has been made
on how best to choose an effective network topology.

One current common practice is to attempt to design
smaller sub-networks that are trained to perform specific
parts of an overall computation. These trained sub-networks
are then included in a much larger neural network, and the
larger network is trained as a whole [5].

The question of how best to design a topology of a neural
network is still largely unanswered. The method described
in this paper, Growth from Embryo of Layered Neural Net-
works (GELNN) aims to address this issue.

2.2 Genetic Programming and PushGP
Genetic Programming (GP) is a method of generating

computer programs using an evolutionary algorithm, as dia-
gramed by Figure 1. GP begins with an initial population of
random programs. These programs are evaluated based on a
fitness function which determines how effective at complet-
ing the desired task each program is [2]. Programs with the
best fitness are then processed through various genetic op-
erators, such as mutation and crossover, to produce a new
generation of the population. Mutation operators take a

1015

single program from the population and randomly change
its genome. Crossover operations take two programs from
the population and merge their genomes in a way that is
inspired by gene crossover in biological DNA [11]. After cre-
ating a new generation, the GP algorithm returns to the
fitness evaluations and repeats the cycle until a program in
the population can perform the desired task [2].

PushGP is a genetic programming system that evolves
programs in the Push language. Push is a Turing complete,
stack based language that features a separate stack for each
data type, including code. Programs in Push systems are
expressed as lists of instructions and literals. Literals are
values that get placed on their corresponding stacks when
processed. Instructions pop values off the stacks, modify
them, and push them back on the appropriate stacks. The
list of instructions is run sequentially through an interpreter,
modifying the stacks, and the final state of the stacks is the
output of the program [13].

To illustrate the execution of a Push program, the follow-
ing Push program will be used as an example.

(3 "Foo" repeat-string)

In this Push program, there are two literals (3 and "Foo")
and one instruction (repeat-string). The repeat-string

instruction is defined as part of the Push interpreter as a
function that takes one string argument, s, and one integer
argument, i. The repeat-string pushes one string contain-
ing the string s repeated i times onto the string stack.

Below is a figure depicting the state of the push stacks
before the above program is run.


Integer




String




3

"Foo"

repeat-string

Exec


The Exec stack holds the list of instructions and literals

that have yet to be executed. The top value on the Exec

stack is popped off and processed. In this example, it is
the terminal 3. The terminal is pushed to its corresponding
stack. In this case, the integer stack.

 3

Integer




String


 "Foo"

repeat-string

Exec


The next value is then popped from Exec stack. The value

"Foo" is a string terminal, and is pushed to the string stack.

 3

Integer


 "Foo"

String


repeat-string

Exec


The next value on the Exec stack is the repeat-string in-

struction. Upon processing the repeat-string instruction,
the Push stacks would look as follows:


Integer


"FooFooFoo"

String




Exec


The Exec stack is now empty, and the state of Push stacks

is the output of the program.
Representing programs this way in a GP system has proven

very effective. Almost any combination of instructions is a
valid program. When an instruction takes inputs of a certain
type, and the corresponding stack is empty, the instruction
is ignored and the program can continue to be processed by
the interpreter.

For example, if the example Push program from above is
modified to be:

("Foo" repeat-string)

The Push stacks would reach the following state:
Integer


 "Foo"

String


repeat-string

Exec


The repeat-string instruction will then be processed by

the interpreter, but will have insufficient arguments due to
the fact the integer stack is empty. The repeat-string

instruction will be disregarded and the resulting state of the
Push stacks would be:

Integer


 "Foo"

String




Exec


This makes the implementation of a variety of genetic op-

erators trivial, as mutations and crossovers will never pro-
duce programs that cannot be run by the interpreter [13].
This project relies heavily on this property of PushGP to en-
sure only valid ANN topologies are produced by evolution.

Push genetic programming systems can be easily tailored
to tackle specific tasks through the addition of new push
instructions and stacks. To control the evolution of valid
neural network encodings, additional Push instructions were
written to incrementally build an encoding on a designated
auxiliary stack. These Push instructions are detailed in a
later section.

2.3 NEAT
One well known previous attempt at using evolutionary

computing to build neural network topologies is NeuralEvo-
lution of Augmenting Topologies (NEAT) [15]. NEAT is
a method of using a genetic algorithm to evolve a neural
network topology and the weights of the network’s edges.

Similar to the GELNN system proposed in this paper,
NEAT systems use evolutionary computing to produce a
network encoding. The NEAT method uses genetic encod-
ings to represent the evolved neural network. Genetic En-
codings consist of a list of connection genes and a separate
list of node genes. Each connection gene refers to two node
genes and stores the weight value of the connection between

1016

Figure 1: The evolutionary computing cycle used by genetic programming. The population consists of
programs. The evaluation stage runs the programs and examining their output to determine fitness.

the two nodes. When a genetic encoding is undergoing vari-
ation (ie. mutation or crossover) the operation must ensure
that each node gene referred to by the connection genes is
present in the resulting encoding. This restricts the possi-
ble changes to the genetic encoding through mutations and
crossovers.

As noted, NEAT attempts to evolve both the topology and
weights of the ANN. Methods of evolving both ANN weights
and topologies are called Topology and Weight Evolving Ar-
tificial Neural Networks (TWEANNs). In particular, NEAT
evolves weights using a specialized mutation operation, which
randomly ”perturbs” the weights in a random subset of con-
nection genes. In contrast with NEAT, GELNN systems are
designed to evolve networks made up of a larger number
of nodes and edges. For this reason, the network’s weights
are not optimized by evolution. Instead GELNN network
encodings represent topology only, and are translated into
neural networks with random weights and later trained using
Backpropagation [12].

NEAT systems start with a population of genetic encod-
ings that are as small as possible. Each generation of a
NEAT system incrementally grows the genetic encodings by
adding connections, adding nodes, or changes weights. To
evaluate the population at each generation, these genetic
encodings are directly translated into networks and their
performance is tested. In other words, the NEAT treats
the encodings produced by evolution as the genomes in the
evolutionary population as well.

GELNN systems take a distinctly different approach to
evolving neural networks, by using a genetic programming
(GP) system. GELNN systems use a GP system, such as
PushGP, to evolve programs. When executed, these pro-
grams produce a valid artificial neural network encoding.
These encodings are then decoded into a network, trained,
and tested.

GELNN system were designed to use GP system, as op-
posed to a genetic encoding to allow due to the increased
flexibility provided by GP. One way in which the use of a
GP system allows for more flexibility is that it is possible
for the programs evolved by GP to utilize loops and other
forms of modularity that could result in repeated topology
within the network.

Another benefit of using a GP system is the wider va-

riety of genetic operators that still produce valid network
encodings. NEAT systems had separate mutation opera-
tors to add nodes, add/remove connections, modify weights.
Nodes would only be removed from a genetic encoding if
no edge pointed to them. These specialized mutation op-
erators were created to ensure the genetic encoding always
expressed a valid network. In GELNN systems, the genetic
programming system can utilize any genetic operator which
produces a valid program, and the result of executing the
program will be a valid network encoding.

3. GROWTH FROM EMBRYO OF LAYERED
NEURAL NETWORKS (GELNN)

3.1 Network Encoding
Artificial Neural Networks are often thought of as graphs

of nodes and edges. In larger neural networks, it is common
to organize nodes into layers. ANNs tend to include an
input layer, output layer, and an arbitrary number of hidden
layers. Figure 2 depicts an ANN with 3 layers: 1 input layer,
1 hidden layer, and 1 output layer. As shown by the arrows
in Figure 2, the input layer is “fully connecte” to the hidden
layer. This means that every node in the input layer has
an edge leading to every node in the hidden layer. The
hidden layer is also “fully connected” to the output layer.
In larger ANNs it is common for some of the many layers
to be connected in ways other than “fully connected.” This
project does not explore the possibilities of determining the
best method of connecting layers through evolution, but this
is likely a valuable area of future research.

To encode the topology of the network in Figure 2, there
are a few properties that must be known: How many layers
there will be, how many nodes will be in each layer, which
layers are connected, and finally, how should the nodes in
connected layers share edges.

The number of layers in an encoded network is given by
a simple list of layer ids. The ids of I and O are required,
as every network requires an input and output layer. Every
other layer is given the id of Hx where H denotes a hidden
layer, and x is a unique integer value.

To encode the number of neurons in each layer, each id
described above is used as a key in a key-value data struc-

1017

Figure 2: A neural network consisting of an input
layer with 3 nodes, and output layer with 2 nodes,
and a single hidden layer with 4 nodes.

ture1. The corresponding values in the data structure for
each given id is another key-value data structure contain-
ing all information pertaining to the relevant layer. For the
scope of this project, there will be a single value: the num-
ber of nodes in the layer. This value can be any positive
integer.

Encoding which layers are connected to each other is done
through a simple list of connections. A connection is denoted
using a two element list containing the id of the layer the
connection is coming from and the id of the layer the con-
nection is leading to. The order of these ids is crucial, as
inter-layer connections are one directional.

Although it is necessary to know which nodes share edges
between connected layer, as mentioned earlier, we are mak-
ing the assumption that all connected layers are fully con-
nected.

The GELNN encoding for the artificial neural network in
Figure 2 would be as follows:

Figure 2 GELNN Encoding

Layers
I → {num-nodes = 3},
H1 → {num-nodes = 4},
O → {num-nodes = 2}

Layer Connections[
I ⇒ H1

]
,
[
H1 ⇒ O

]
The above technique of encoding ANNs will always create

a valid representation of a neural network given that the
number of nodes in each layer is greater than zero, and there
is exactly one input layer labeled I and exactly one output
layer labeled O.

One benefit of encoding the neural network this way is
that any additional information about a layer can easily be
added as an entry to the layers corresponding id in the
layers data structure. For example, additional features

1Such as a Python dictionary. In the experiments done for
this paper, the data structure was a Clojure map

that could be implemented include different layer connec-
tion types other than fully connected, and different transfer
functions for each layer.

This encoding of a neural network is also extremely easy
to simplify, or remove layers that will have no effect. For
example, if inside the layer-connections there is a connec-
tion from the output layer to a hidden layer, say [O, H3],
yet there is no connection [H3, L] where L is any layer id,
then it is clear that H3 will not affect the output or training
of the network, and can be eliminated to save on computing
time and memory during training. This functionality could
prove to be very beneficial when the network encoding is
the result of the evolutionary cycle, because it is very likely
that at many points through an evolutionary run, individu-
als in the population will contain useless topology that can
be removed.2

3.2 Building Network Encodings Using Push
Instructions

This project requires the use of a push interpreter with
specially made instructions, as well as the use of an auxil-

iary stack to hold the current state of the network encoding.
When a program of push instructions is processed by the

push interpreter, the auxiliary stack is first loaded with
an “embryo encoding.” This is the smallest valid network
applicable to the data-set or problem an effective topology
is being found for. To determine an optimal topology for
the same problem the network in Figure 2 is applied to, the
“embryo encoding” would be as follows:

Figure 2 GELNN “Embryo Encoding”

Layers
I → {num-nodes = 3},
O → {num-nodes = 2}

Layer Connections[
I ⇒ O

]
Note that the number of nodes in the input layer is three,

and the number of nodes in the output layer is two. This
restricts the neural network encoded here to problems which
provide three features as inputs, and attempt to predict two
output values.

The “embryo encoding” is the initial state of the auxil-

iary stack, and is modified incrementally by all other neural
network push instructions in the program to produce a full
network encoding.

All neural network push instructions made for this project
were designed with the assumption that there would be a
valid neural network encoding on the auxiliary stack. All
neural network push instructions modify the encoding on
the auxiliary in a way that always produces a valid neu-
ral network encoding, which replaces the previous network
encoding on the auxiliary stack.

The instructions made for this project were heavily in-
spired by the topology operators described by Sean Luke and
Lee Spector in Evolving Graphs and Networks with Edge En-
coding: Preliminary Report [8]. The reason GELNN systems
2It is important during evolution for these pieces of “useless”
topology to not be removed from the genome, but rather just
from the phenome which in this case is the network topology
encoding. Otherwise, important genetic information that
could result in better performance in future generations will
be lost.

1018

use these push instructions is to ensure any arrangement of
these instructions will produce a valid network. This con-
trasts with NEAT’s Genetic Encodings, which could only
undergo specialized mutation and crossover operations to
ensure that a valid network topology was being represented.

3.2.1 Connect Layers
The connect-layers in-

struction pops two integers,
i and j, off the integer stack.
The current state of the net-
work encoding is popped off
the auxiliary stack.

Both i and j are brought
between zero and the num-
ber of layers using a modulus
operation. The layers at the
indices i and j are selected
from the layers collection.
These layers can be denoted
as L1 and L2.

An inter-layer connection from L1 to L2 is created. It
can be denoted as C(L1, L2). This inter-layer connection is
added to the layer-connections collection in the network
encoding. The resulting network encoding is pushed onto
the auxiliary stack.

3.2.2 Bud
The bud instruction pops

one integer, i, off the in-
teger stack. The current
state of the network encod-
ing is popped off the auxil-

iary stack.
The inter-layer connec-

tion, in the list of layer-

connections at index i, de-
noted C(L1, L2), is selected.

A new layer, L3, is added
to the collection of layers, and given the id :Hx where x is
the next sequential natural number not yet included in the
id of a hidden layer. The number of nodes in layer L3 is set
to be equal to the number of nodes in L2.

An inter-layer connection C(L2, L3) is added to the collec-
tion of layer-connections. The resulting network encoding
is pushed onto the auxiliary stack.

3.2.3 Split
The split instruction

pops one integer, i, off the
integer stack. The current
state of the network en-
coding is popped off the
auxiliary stack.

The inter-layer connec-
tion in the list of layer-

connections at index i, de-
noted C(L1, L2), is selected.

A new layer, L3, is added
to the collection of layers, and given the id :Hx where x is
the next sequential natural number not yet included in the
id of a hidden layer. The number of nodes in layer L3 is set
to be equal to the number of nodes in L1.

The inter-layer connection C(L1, L2) is removed from the
collection of layer-connections. Two inter-layer connec-
tions, C(L1, L3) and C(L3, L2), are added to the collection
of layer-connections. The resulting network encoding is
pushed onto the auxiliary stack.

3.2.4 Loop
The loop instruction pops

one integer, i, off the integer
stack.

The inter-layer connec-
tion, C(L1, L2), in the list of
layer-connections at index
i is selected.

A new inter-layer connec-
tion, C(L2, L1), is added
to the collection of layer-

connections. The resulting
network encoding is pushed
onto the auxiliary stack.

3.2.5 Reverse
The reverse instruction pops

one integer, i, off the integer stack.
The inter-layer connec-

tion in the list of layer-

connections at index i, de-
noted C(L1, L2), is selected.

The inter-layer connection
C(L1, L2) is removed from
the collection of layer-

connections. A new inter-
layer connection, C(L2, L1),
is added to the collection
of layer-connections. The
resulting network encoding is
pushed onto the auxiliary stack.

3.2.6 Set Number of Nodes In Layer
The set-number-nodes-layer instruction pops two inte-

gers, i and j, off the integer stack. The current state of the
network encoding is popped off the auxiliary stack.

The layer at index i is selected. If this layer is the input
layer given by the id I, or the output node given by the id
O, the instruction is skipped and has no effect. This is to
prevent the resulting ANN encoding from becoming incom-
patible with the applied dataset or problem.h

If the selected layer is any hidden layer, the num-nodes

value is set to j. The resulting network encoding is pushed
onto the auxiliary stack..

3.3 Full GELNN Process
A Growth from Embryo of Layered Neural Networks (GELNN)

system consists of a push genetic programming framework
and an artificial neural network framework.

The push GP framework must be modified to have a dedi-
cated auxiliary stack to store the network encoding that is
being “grown,” and the previous detailed push instructions
must be added.

The neural network framework must be capable of de-
coding the network encodings described earlier in this pa-
per, and contain an implementation of the backpropagation
algorithm capable of training networks with an arbitrary

1019

number of hidden layers, each with any positive number of
nodes. The neural network framework must also be capable
of testing how well the network was trained.

As diagrammed in Figure 3, the process of discovering ef-
fective neural network topologies with GELNN starts with
the Push GP system generating a population of random
Push programs. These programs consist of the instructions
detailed in this paper.

The next stage of evolution is the fitness evaluations of ev-
ery individual in the population. In a GELNN system, the
first step to evaluating the fitness of the population is to pro-
cess all programs in the population through the push inter-
preter to produce valid network encodings. These encodings
are then passed to the ANN framework capable of construct-
ing connectivity matrix implementations from them. These
decoded neural networks are trained by the ANN framework
using backpropagation, and their errors on training, hybrid,
and generalization data-sets are given back to the PushGP
framework to be used as their fitness values.

The PushGP system continues on with the evolutionary
cycle by selecting parents and modifying the programs in
the population to produce the next generation. The genetic
operators used to select parents and perform mutations and
crossovers for the experiments performed for this project are
lexicase selection, alternation, and uniform mutation [14].

If at any point during evolution the generalization error of
one of the artificial neural networks is reported to be below
a given stopping threshold, evolution is interrupted and the
topology of that network is considered effective.

4. PRELIMINARY RESULTS

4.1 XOR
As an preliminary test of GELNN, an effective topology

for the XOR problem was evolved. This problem was chosen
due to the fact that the embryo encoding has been proven
to be incapable of learning a solution [9].

After only 30 generations of evolution, a solution to the
XOR problem was evolved. The program producing the best
topology for the XOR problem is as follows:

(integer-max exec-pop () integer-dec integer-mult

integer-pop nn-bud exec-rot (integer-mod integer-

stackdepth nn-split exec-yankdup exec-dorange

(integer-stackdepth) exec-dorange (exec-dotimes

(exec-yankdup exec-flush exec-dotimes (integer-

yankdup exec-dorange (integer-swap integer-dup exec-

dup (exec-yankdup) 2 integer-rot exec-yankdup) exec-

flush integer-shove exec-y (integer-rot) integer-

swap)))) () ())

The GELNN push instructions in the above figure are un-
derlined. All other instructions in this programs are instruc-
tions implemented in Clojush that manipulate the integer

and exec stacks. These instructions allow for loops and
other modular code in the programs evolved by Push [13].

Many instructions in the above programs have no effect
on the output of the overall program. This is due to a lack
of arguments to these instructions on the stacks. By remov-
ing the Push instructions that do not have an effect on the
output of the program, a more simplified program can be
produced. After simplification of the above program, the

same push program can be expressed using the following
instructions:

(integer-stackdepth nn-split)

The integer-stackdepth instruction pushes the the num-
ber of elements in the integer stack onto the integer stack.
In this case it pushes a 0. Then nn-split is processed as de-
scribed earlier in this paper. After processing this program
through a push interpreter, the following GELNN encoding
is left auxiliary stack.

XOR GELNN Encoding

Layers
I → {num-nodes = 2},
O → {num-nodes = 1},
H1 → {num-nodes = 2}

Layer Connections[
I ⇒ H1

]
,
[
H1 ⇒ O

]

After decoding this topology, the resulting network topol-
ogy can be diagrammed as such:

This network topology was trained using backpropagation
and the following hyper-parameters:

Hyper-Parameter Value

Transfer Function Sigmoid
Transfer Function Derivative Derivative of Sigmoid
Learning Rate 0.5
Max Initial Weight 0.1
Max Epoch 1000
Validation Stop Threshold 0.08

Below is a plot of this network’s validation error every
epoch of training on the XOR problem.

1020

Figure 3: A diagram of the process within a GELNN system. For the preliminary experiments done for
this project the PushGP system chosen was “Clojush” and an ANN framework called “Cloann” was de-
veloped. Both frameworks are implemented in the programming language Clojure. Source code for Clo-
jush can be found at https://github.com/lspector/Clojush and the source code for Cloann can be found at
https://github.com/erp12/Cloann

It is clear that this topology is effective at learning a so-
lution to the XOR problem because it was able to begin
performing far better than random chance in less than 300
epochs.

4.2 Other Data-Sets
The GELNN system was tested on a variety of other data-

sets with less success than XOR. The data-sets the GELNN
system was tested with are: Iris [7], Wine [1], and Student
Alcohol Consumption [10]. So far, only a few experiments
on these data-sets have been run, due to the computation-

ally intensive nature of a GELNN system. For these data-
sets, every experiment results in the system being unable
to produce topologies that were more effective the topology
described by the embryo encoding.

These experiments were not a strong indication of GELNN’s
effectiveness, as they were restricted to a less than 50 evo-
lutionary generations with a maximum of 100 individuals in
the population. These restrictions were imposed to keep the
run time of the experiments reasonable, and thus allow for
an initial glimpse into the nature of GELNN systems.

The results of these small experiments could speak to a
weakness of GELNN systems, or the simplicity of the three
chosen data-sets. Embryo encodings are simply a neural net-
work with no hidden nodes. It is possible that any network
with hidden nodes is either training less effectively on these
data-sets, or over-fitting the training data and reporting a
poor generalization error during fitness evaluation.

Further investigation into a wider variety of data-sets, and
less restricted evolutionary runs, is needed to obtain a full
understanding of GELNN’s capabilities.

5. FUTURE RESEARCH

5.1 Auxiliary Layer Attributes
The GELNN system described in this paper uses evolu-

tion to search for effective ANN topologies by optimizing
the number of layers, how many nodes are in each layer,
and how those layers are connected. There are a number

1021

of other attributes of neural networks that evolution could
optimize. One such attribute is the transfer function used
by the network. It is not uncommon for networks to use
different transfer functions for the nodes in different lay-
ers. There are a variety of transfer functions that have been
found useful by human designed networks. Evolution could
either search for the most appropriate of these functions, or
could be used to evolve the actual function.

The latter option is likely a difficult task due to the re-
strictions of what is an acceptable transfer function. It
is generally considered useful for transfer functions to be
monotonically increasing, continuous, and differentiable. If
evolution were to evolve the transfer functions using a GP
system, it would introduce the question of how to deal with
transfer functions that were not monotonically increasing,
continuous, and differentiable. For this reason, it is likely a
more logical next step to allow evolution to pick the optimal
transfer function for each layer from a list of known effective
functions.

Another attribute of ANN layers that evolution could search
over is the way that layers are connected. The current imple-
mentation of GELNN assumes that if an inter-layer connec-
tion is present between two layers, those layers are fully con-
nected. Recent advances in artificial neural networks have
shown the effectiveness of convolutional topologies that con-
tain layers connected in a variety of ways other than fully
connected [6].

Evolution could find the optimal value for another at-
tribute which controls the layer’s type (ie. Fully Connected,
Convolutional, Max Pooling, Soft Max, etc). This would
complicate the decoding of the network, as some layer types
would need to be followed by layers containing a certain
number of nodes.

5.2 Versatile Training
Two type of ANNs that are not currently supported by

GELNN are Convolutional Neural Networks and Recurrent
Neural Networks due to the fact that changes to the back-
propagation algorithm would need to be made to support
each of these types of ANNs.

These networks have both proven to be successful at dif-
ferent types of problems. If a versatile training algorithm
could be designed that was capable of training both Con-
volutional Neural Networks and Recurrent Neural Networks
based on auxiliary layer attributes in a GELNN encoding, it
would expand greatly expand the problems that a GELNN
system would be able to address.

Acknowledgments
This material is based upon work supported by the Na-

tional Science Foundation under Grants No. 1129139 and
1331283. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

6. REFERENCES
[1] M. F. et al. An extendible package for data

exploration, classification and correlation. Institute of
Pharmaceutical and Food Analysis and Technologies.

[2] W. B. et al. Genetic programming: an introduction.,
volume 270. 1998.

[3] B. Farley and W. Clark. Simulation of self-organizing
systems by digital computer. Transactions of the IRE
Professional Group on Information Theory Trans.
IRE Prof. Group Inf. Theory, 4(4):76–84, 1954.

[4] G. E. Hinton. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–07, 2006.

[5] G. E. Hinton. Learning multiple layers of
representation. Trends in Cognitive Sciences,
11(10):428–34, 2007.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. Advances in neural information processing
systems.

[7] M. Lichman. Uci machine learning repository.
University of California, School of Information and
Computer Science, 2013.

[8] S. Luke and L. Spector. Evolving graphs and networks
with edge encoding: Preliminary report. Late-Breaking
Papers at the Genetic Programming 1996 Conference,
pages 428–34, 2007.

[9] M. Minsky and S. Papert. Perceptrons; an
introduction to computational geometry. The MIT
Press, Cambridge, expanded edition, 19(88), 1969.

[10] F. Pagnotta and H. M. Amran. Using data mining to
predict secondary school student alcohol consumption.
Department of Computer Science,University of
Camerino.

[11] R. Poli, W. B. Langdon, and N. F. McPhee. A ı̈ň ↪Aeld
guide to genetic programming, volume 270. 2008.

[12] D. Rumelhart, G. Hinton, and R. Williams. Learning
internal representations by error propagation.
Readings in Cognitive Science, pages 399–421, 1988.

[13] L. Spector and A. Robinson. Genetic programming
and autoconstructive evolution with the push
programming language. Genetic Programming and
Evolvable Machines, 3, 2002.

[14] T. H. L. Spector and J. Matheson. Solving
uncompromising problems with lexicase selection.
IEEE Xplore, 313(5786):504–07, Oct 2006.

[15] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

1022

