
Random Tree Generator for an FPGA-based Genetic
Programming System

Carlos A. Goribar Jiménez, Yazmín Maldonado and Leonardo Trujillo
Instituto Tecnológico de Tijuana, Tijuana, Baja California.

cgoribar@tectijuana.edu.mx, yaz.maldonado@tectijuana.edu.mx,
leonardo.trujillo@tectijuana.edu.mx

ABSTRACT
The present work deals with the implementation of an auto-
matic random tree generator on an FPGA, this implemen-
tation is intended to be part of a complete genetic program-
ming embedded system. We propose two methods for a ma-
trix implementations and one for a vector implementation.
All trees in the population are created in concurrent pro-
cesses leading to significant time savings. We present pseu-
docode and results of hardware consumption for the three
implementations.

Keywords
FPGA; Genetic Programming; GSGP

1. INTRODUCTION
This work deals with the implementation of the an auto-

matic generator of random syntax trees on FPGAs (Field
Programmable Gate Array), to be used as the initial popu-
lation in genetic programming (GP) algorithms although a
similar approach can be used in any application that require
tree data structures in its design. GP is an evolutionary
computation technique designed to find solutions for search
and design problems without requiring the user to provide
prior information about the structure or form of the solution
that is sought , John Koza expanded and popularized GP
(1992) in [8], and was a pioneer in GP application field, be-
coming to be known as the father of GP. Trees are the most
used data structure in GP literature to represent programs
or mathematical functions, or more generally, any syntacti-
cal expression that defines some manner of computation.

This work is intended to be used with a GSGP (Geo-
metric Semantic Genetic Programming) based system [9].
The GSGP representation takes into account the semantics
(meaning) of the individuals rather than simply using the
syntactic representation during the search process. More-
over, the genetic operators used by GSGP have the prop-
erty of inducing a unimodal error surface for any supervised
learning problem. On the other hand, one problem of GSGP

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

GECCO’16 Companion, July 20 - 24, 2016, Denver, CO,USA

ACM ISBN 978-1-4503-4323-7/16/07. . . $15.00
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DOI: http://dx.doi.org/10.1145/2908961.2931665

is that their genetic operators generate individuals that are
larger in size than their parents, turning this approach dif-
ficult to implement in practice. Nevertheless, the proposal
in [2] only stores the individual trees form the initial popu-
lation without change throughout the entire search process
using tables of semantics.

Traditionally, most GP systems are executed as software
on a desktop computer or workstation, but as the paradigm
has matured, GP is used to solve increasingly more com-
plex problems leading to longer run times (mainly due to
fitness evaluation) and larger memory consumption, this is
particularly problematic for GP systems that are affected
by the bloat phenomena (a rapid increase in program size
not accompanied by any significant corresponding increase
in fitness) [12]. One method to reduce computational costs is
to use multicore processors, this technique allows the whole
program to run in concurrent threads that accelerate fitness
computation (the most severe bottleneck in most GP algo-
rithms).

However the number of cores found in commercial micro-
processor are limited to about four. On the other hand, one
can take advantage of the massive parallel processing power
that a Graphics Processor Unit (GPU) exhibits; for instance,
in [1] the authors propose a transcription of existing GP par-
allelization strategies to the OpenCL programming platform
achieving 10x times the throughput of a twelve-core CPU
and [5] explains the use of the GPU to accelerate the eval-
uation of individuals that allows to get speed increases of
several hundred times over a typical CPU implementation,
[4] which shows how to take advantage of GPUs for the evo-
lution of an image filter. GPU may seem the natural choice
when high parallel processing power is needed, however the
strength of GPUs is also its own weakness because high par-
allelization works well when the very same operation needs
to be performed on a vast amount of data, but it is not effi-
cient when different operations on different data is required,
the latter is a normal case when GP is used in real world
applications. FPGAs on the other hand are a very flexible
devices that allows for the implementation of complex digi-
tal systems in a small silicon chip or integrated circuit, this
device considered to be at the intersection of software and
hardware-oriented systems.

FPGAs are less expensive compared to GPUs or CPUs.
Another attractive characteristic of FPGAs is the possibil-
ity to perform parallel computing, [13] is an example of
using parallel processes in mapping of a population-based
ant colony optimization algorithm that led to significant im-
provements in runtime.

1023

Examples of FPGA-based GP are the following: Cartesian
GP is implemented in [7] using two Microblaze soft proces-
sors, the system is used to evolve an image filter and results
show a significant speed-up of up to 58x in comparison with
a highly optimized software implementation. A purpose of
a register machine implemented on an FPGA is found in [6].
A linear GP structure is employed, hence individuals have
the form of register-level transfer language instructions. The
functional set contains opcodes while the terminal set con-
tains operands, in this approach a population of (linearly
structured) individuals is created off-line by the host. Fi-
nally, [14] deals with the implementation of a tree-based
GP, exploiting the power of self-reconfigurable partitions on
FPGAs, this system is used to evolve a circuit that exhibits
the same behaviour as a digital multiplexer having 8 data
inputs and 3 control inputs, as well as a regression problem.
The results show a speed-up of three orders of magnitude
for fitness evaluation (the stage that consumes up to 99% of
execution time).

2. TREE GENERATION METHODS
The three original and most widely used initialization

methods for the generation of the initial population [11]:

Grow : Nodes are selected randomly from the whole prim-
itive set (functions and terminals) until the depth limit is
reached. Once the depth limit is reached only nodes from
the terminal set can be chosen.

Full :Nodes are chosen at random from the function set un-
til the maximum tree depth is reached, then only terminals
can be chosen.

Ramped half-and-half : In this method half of the initial
population is constructed using the full method and half is
constructed using the grow method. Also a range of depth
limits is used during the population creation.

As we have mentioned before, pointers are not synthetiz-
able on hardware using the VHDL programming language,
thus our work consist of two proposal methods for matrix
implementation and one for vector implementation.

Now, the first step in the implementation is to define
the set of primitives, this set is composed by the termi-
nal and function sets. Table 1 shows the primitive set that
includes arithmetic functions, variables (x and y) and con-
stants within range from 0 to 9. Each element in the primi-
tive set will be associated with an ID, so the ID will represent
only one element of the primitives in hardware implementa-
tion. This table can be modified to include the primitives of
a particular problem domain.

For simplicity we use of the full method with all functions
having the same arity of two, these kind of trees are enough
to be used in the implementation of GSGP [2]. In other
words, the use of the static full trees does not represent a
problem when working with GSGP. More over, the use of
arithmetic functions (+,−, ∗,÷) and the absence of other
functions like trigonometric functions are based on the fact
that previous works on GSGP have shown that it is pos-
sible so solve complex real problems using only arithmetic
functions.

Figure 1 shows how the implementation of one tree in a
single matrix is done. In this case a 4x8 matrix is used to
store a tree of depth 3 generated with the full method. In
general, a tree with depth n can be stored in a matrix with

Table 1: Definition of primitives
Op/Var/Const ID Arity

+ 0000 2

- 0001 2

* 0010 2

÷ 0011 2

x 0100 0

y 0101 0

0 0110 0

1 0111 0

2 1000 0

3 1001 0

4 1010 0

5 1011 0

6 1100 0

7 1101 0

8 1110 0

9 1111 0

[0]

[1]

[2]

[3]

[4] [5] [6] [7][0] [1] [2] [3]

Matrix Node 4x8

i
depth

Figure 1: Tree implemented in a 4x8 matrix.

dimensions n + 1 by 2n provided that all functions exhibit
an arity of 2. Note that elements in the first n rows will
be filled with functions only, then the row n + 1 will be
filled entirely with terminals. In this implementation only
2n+1−1 elements of the matrix are used (one element of the
matrix holds one tree node) from the (n + 1) 2n available
in the n + 1 by 2n. A better implementation in terms of
memory utilization might be to implement two trees in one
matrix as follows.

In this case a 4x9 matrix is needed to store two trees of
depth 3 generated with the full method. In general, a tree
with depth n can be stored in a matrix with dimensions
n + 1 by 2n + 1 provided that all functions have an arity of
2. Figure 2 shows how the implementation of two trees in
matrix are taking place. Note that in this implementation
we make use of 2

(
2n+1 − 1

)
to store the tree nodes from the

(n + 1) 2n + 1 available in a n + 1 by 2n + 1 matrix.
Figure 3 shows how to implement a full tree on a vector.

TinyGP is a GP system implemented in Java, and employs
a similar representation without pointers [11]. In this case
not even one element of the vector will be wasted if the
length of the vector is 2n+1 − 1 for a tree with depth n. In
this approach functions are first generated until the element
2n − 1, then only terminals are selected from the terminal
set and placed in consecutive order in the remaining spaces
in the vector.

A Linear Feedback Shift Register (LFSR) [3] is used as
pseudo-random number generator, this is a common method
for population initialization and are specially easy to be used
in hardware impementations [10].

A LFSR circuit with n outputs is able to generate a pseudo-
random sequence of 2n− 1 patterns.

The pseudo-random number generator depends upon its
initial condition or seed, so for a particular seed as input, the
generator will generate a particular output which obviously
depends directly on the number of registers in the LFSR.

The pseudo-code for the generator of GP trees is shown
in Algorithm 1, the requirements are the maximum depth,
the set of functions, and set of terminals, also a matrix of
max depth by 2max depth to hold the data is needed.

1024

Tree1 Tree2

Tree1

Tree2

Unused

Figure 2: Tree implemented in a 4x9 matrix.

A

B C

D E F G

H I J K L M N O

Figure 3: Tree implemented in a vector.

The random ID is generated with the LFSR circuit, this
means that if a function is needed then the LFSR pro-
duces several outputs until an ID in the range of functions
(new random(functions)) is found, and when a terminal
(new random(terminals)) is needed the LFSR produces sev-
eral outputs until an ID in the range of terminals is found.
Tree(depth, i) is a reference to the row number depth and
column i in the matrix Tree.

Steps 1 to 15 configure tree1, and steps 16 to 30 configure
tree2, so in the implementation we follow steps 1 to 15 for
the one tree in one matrix implementation while steps 1 to 30
were followed for the two trees in one matrix implementation
method.

FPGAs are very flexible devices that allow for the imple-
mentation of concurrent processes [13].

In this case we just need to replicate the same exact circuit
N times.

Note that each tree generator depends on its seed, obvi-
ously if all seeds are the same, each tree generated by each
process will be exactly the same, thus different seeds are
needed to obtain different trees.

3. RESULTS
Simulations were performed on Xilinx Isim 13.4v (64-bit)

and implemented on the XC3S700A chip, however, a dif-
ferent chip can be used to better suit a specific application
and requirements of internal resources.

A segment of the simulation waveforms (last 56clk pulses)
for the implementation of the two trees in one matrix are
shown in Figure 4, clk (50MHz) and seed are input signals,
while qsal and ready are output signals for debugging pur-
poses. The pseudo-random generator is composed by a D-
type Flip-Flop, so it needs to be inicialized with the desired
seed, this is done using the rst, set and x internal signals.

A resulting tree with depth of 3 coded in tree which is a
4-by-9 array is shown in Figure 4. The explanation of that
matrix is the following: the first row in tree is

tree[0] = [0010, 1010, 1101, 1110, 1111, 0111, 0011, 1000, 0100]

where the first element corresponds to the root of tree1, this
node would be the function “∗” per Table 1, this row also
corresponds with depth 0 for the tree1, while is the depth n

Algorithm 1 Tree implemented on a matrix
Ensure: Input

max depth ∈ N+ : maximum tree depth
F : set of functions
T : set of terminals

Ensure: Output
Tree : max depth by 2max depth matrix

// Build Tree1.
1: depth← 0 // depth = 0 at root node.
2: i← 0 // i holds the i-column.
3: while depth <= max depth do
4: if depth < max depth then
5: rand node← new random(F)
6: else
7: rand node← new random(T)
8: end if
9: Tree(depth, i)← rand node
10: i← i + 1
11: if i > 2depth then
12: i← 0
13: depth← depth + 1
14: end if
15: end while

// Build Tree2.
16: depth← 0 // depth = 0 at root node.
17: i← 0 // i holds the i-column.
18: while depth <= max depth do
19: if depth < max depth then
20: rand node← new random(F)
21: else
22: rand node← new random(T)
23: end if
24: Tree(max depth− depth, 2max depth − i)← rand node
25: i← i + 1
26: if i > 2depth then
27: i← 0
28: depth← depth + 1
29: end if
30: end while

for tree2. The last row in tree is

tree[3] = [0100, 1000, 0111, 1111, 1110, 1101, 1010, 0101, 0010]

that corresponds to [x, 2, 1, 9, 8, 7, 4, y, ∗] in accordance to
the definitions in Table 1. Note that the elements x to y
are the terminals of tree1, while “∗” is the root of the tree2.
“UUUU” simply means that that element has not been ini-
tialized, however it does not cause any problems because we
do not care about the state of those elements in the matrix.

Table 2 and Table 3 summarizes the consumption of hard-
ware resources for the implementation of 1, 10, 50, and 100
trees with a depth of 3, 1TM means one tree on one ma-
trix, 2TM means two trees on one matrix, and V R means
vector representation. Note that in the case of one tree in
one matrix, resources are sufficient for the implementation
of up to 100 trees except for the Number of bonded IOBs,
this is because of the inputs needed for each tree seed (4−bit
input), and the ready (5 − bit output) signal. In the case
of the two trees in one matrix implementation, although a
reduction of hardware resources was expected due to a more
efficient memory utilization, results show that less than 50
arrays (or less than 100 trees) can be implemented on the
FPGA, this is because a more complex circuit is necessary
to handle the matrix in order to place two trees in it.

4. CONCLUSIONS
Implementation of tree data structures in FPGA devices

is not a trivial task, due to the impossibility of using point-
ers as it is normally done in software design, that is why

1025

Figure 4: Simulation for method “two trees in one
matrix”.

Figure 5: Tree with depth of 3 coded in a 4-by-9
array.

researchers avoid the use of these kind of structures in their
hardware designs.

This work has proposed three methods to generate the
initial population for a GP system on FPGAs.

Two methods using a matrix coded representation and one
using a vector representation has been implemented using an
FPGA.

We shown how to take advantage of the possibility of ex-
plode the parallelism that FPGAs offer to make the process
more efficient, so trees can be configured concurrently in-
dependently of the number of trees. There are waste of
memory elements that remains uninitialized in the matrix
that holds the tree, but the vector representation does not
present this problem.

We have shown that on the contrary of expected results,
the two trees in one matrix approach consumes more in-
ternal resources compared with the one tree in one matrix
implementation due to the internal circuitry to handle the
matrix configuration, surprisingly, vector representation re-
quires even more hardware resources, so we came to the con-
clusion that one tree in one matrix would be the best choice
for FPGA implementation. This work is the first step in

Table 2: Table that summarizes the consumption of
resources in the FPGA for 1 and 10 Trees.

1 Tree 10 Trees
1TM 2TM VR 1TM 2TM VR

Number of
Slices

<1% 4% 1% 9% 35% 18%

Number of
Slice Flip Flops

<1% 1% <1% 3% 9% 6%

Number of
4 input LUTs

<1% 4% 1% 7% 34% 15%

Number of
bounded IOBs

2% 3% 2% 24% 26% 26%

Number of
GCLKs

4% 5% 8% 4% 45% 45%

Table 3: Table that summarizes the consumption of
resources in the FPGA for 50 and 100 Trees.

50 Trees 100 Trees
1TM 2TM VR 1TM 2TM VR

Number of
Slices

47% 180% 92% 99% 360% 188%

Number of
Slice Flip Flops

18% 49% 33% 36% 98% 67%

Number of
4 input LUTs

36% 170% 78% 71% 341% 156%

Number of
bounded IOBs

121% 128% 128% 242% 257% 257%

Number of
GCLKs

4% 100% 100% 4% 100% 100%

the implementation of a totally embedded Genetic Program-
ming based system, so evaluation, selection and variation is
matter of future work.

Acknowledgments
Funding for this work was provided by CONACYT basic
science research project No. 178323, TecNM(México) Re-
search projects 5861.16P, Prodep(México) ITTIJ-PTC-007,
and by FP7-Marie Curie-IRSES 2013 European Commis-
sion program through project ACoBSEC with contract No.
612689.

5. REFERENCES
[1] D. A. Augusto and H. J. Barbosa. Accelerated parallel genetic

programming tree evaluation with OpenCL. Journal of
Parallel and Distributed Computing, 73(1):86–100, 2013.

[2] M. Castelli, S. Silva, and L. Vanneschi. A C++ framework for
geometric semantic genetic programming. Genetic
Programming and Evolvable Machines, 16(1):73–81, 2015.

[3] S. Golomb. Shift Register Sequences. Holden-Day, Inc., 1967.

[4] S. Harding. Evolution of image filters on graphics processor
units using cartesian genetic programming. Evolutionary
Computation, IEEE World Congress on Computational
Intelligence, pages 1921–1928, 2008.

[5] S. Harding and W. Banzhaf. Fast genetic programming on
GPUs. Proceedings of the 10th European Conference on
Genetic Programming (EuroGP’07), pages 90–101, 2007.

[6] M. I. Heywood and A. N. Zincir-Heywood. Register based
genetic programming on FPGA computing platforms. Genetic
Programming, Proceedings of EuroGP’2000, pages 44–59,
2000.

[7] R. Hrbacek and M. Sikulova. Coevolutionary cartesian genetic
programming in FPGA. 12th European Conference on
Artificial Life Proceedings, pages 431–438, 2013.

[8] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.

[9] A. Moraglio, K. Krawiec, and C. G. Johnson. Geometric
semantic genetic programming. Proceedings of the 12th
International Conference on Parallel Problem Solving from
Nature, 1:21–31, 2012.

[10] D. M. Munoz, C. H. Llanos, L. dos S. Coelho, and
M. Ayala-Rincon. Hardware opposition-based PSO applied to
mobile robot controllers. Engineering Applications of
Artificial Intelligence, 28:64–77, 2014.

[11] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to
Genetic Programming. Lulu Enterprises, 2008.

[12] R. Poli, N. F. McPhee, and L. Vanneschi. Analysis of the
effects of elitism on bloat in linear and tree-based genetic
programming. Genetic Programming Theory and Practice,
VI(7):91–111, 2008.

[13] B. Scheuermann, K. So, and M. Guntsch. FPGA
implementation of population-based ant colony optimization.
Applied Soft Computing, 4(3):9303 – 9322, 2014.

[14] R. P. Sidhu, A. Mei, and V. K. Prasanna. Genetic
programming using self-reconfigurable. FPGAs, in 9th
International Workshop on Field Programmable Logic and
Applications, pages 301–312, 1998.

1026

