
Small-Moves Based Mutation For Pick-Up And Delivery
Problem

Viacheslav Shalamov
ITMO University

49 Kronverksky av.
St. Petersburg, Russia

shalamov@rain.ifmo.ru

Andrey Filchenkov
ITMO University

49 Kronverksky av.
St. Petersburg, Russia

afilchenkov@niuitmo.ru

Daniil Chivilikhin
ITMO University

49 Kronverksky av.
St. Petersburg, Russia

chivdan@rain.ifmo.ru

ABSTRACT
One of the common approaches to solve the Pickup and De-
livery problem is to use small local changes in already built
solution called “small moves heuristics”. In this paper we
consider four different variants of these small local changes
and one combination of them. Each of these strategies we
used as a mutation operator in five different evolutionary
algorithms. Experimental results indicate that applying the
combined small moves strategy together with the K +KN
evolutionary algorithm yields the best results.

1. INTRODUCTION
Logistic and shipping management produces a family of

routing problems, which have been a focus of the optimiza-
tion community research. The most known problem is the
Travelling Salesman Problem (TSP), which is often consid-
ered to be one of the main benchmarks for combinatorial op-
timization algorithms [8]. A variety of additional conditions
and constraints exist for TSP. They create a huge family
of optimization problems being NP-hard. If the travelling
salesman is required not only to visit each point in his route,
but also has to pick items in some points and deliver them
to other points, the TSP with pickup and delivery (TSPPD)
arises [7]. This problem belongs to a wider class of Pickup
and Delivery Problems (PDP), where not only a single mov-
ing object (travelling salesman), but a set of moving objects
(vehicles) is available to perform picking up and delivering.

The PDP class consists of many different routing prob-
lem variants, a recent review can be found in [10]. One-to-
one PDP subclass includes only such PDPs, in which every
vertex has only a single item, which should be delivered
to another vertex [2]. Problems of this subclass, in which
only a single vehicle is used, are called Single Vehicle PDPs
(SVPDPs). Among them, a special type of problems is dis-
tinguished called SVPDP with LIFO (SVPDPL): another
restriction should be satisfied that the vehicle stores items
according to the last-in-first-out principle [4].

The SVPDPL problem arises in transportation of heavy,
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fragile or dangerous items, which should be taken out of a
vehicle in the reverse order to the one they were put in [5].
Another aspect of the problem importance is its theoretical
simplicity, which is useful for the general approaches and
technique analysis.

SVPDPL is an NP-hard problem, thus, a number of heuris-
tics for solving are suggested. Variable neighborhood search
(VNS) presented in [1] is a search framework for applying
local changes to a route in order to obtain a new, better one.
These changes can be considered as mutation operators in
terms of evolutionary computation [11], or edges in solution
graphs [3]. Several change operators have been suggested
or adopted in order to be applied with VNS. To the best of
our knowledge, these operators have never been compared
to each other, and even the problem of selecting these oper-
ators has never been stated.

In this paper, we undertake a comparison of five local
change operators by conducting computational experiments
on artificial data. The results of experiments are presented
and discussed.

The remainder of the paper is organized as follows. In
Section 2, we define SVPDPL, its solution and local changes,
which can be applied with VNS. In Section 3, we describe
algorithms we used for comparison and experiments for their
performance evaluation, and in Section 4 we conclude the
paper and outline the future work.

2. PROBLEM STATEMENT AND SMALL
MOVES

2.1 SVPDP
First, we introduce SVPDP. We will partly follow the no-

tation from [5]. Consider a weighted graph G = (V,E,W ),
where V is the vertex set, E is the edge set, and W is a
weight function defined on V and E, which will be dis-
cussed later. On the vertex set, a set of pairs is defined:
(P,D) = ((p1, d1), . . . , (pL, dK)), P,D ∈ V ; P is a set of
sources, where items should be picked up, and D is a set
of corresponding destinations, to which the items should be
delivered. We will enumerate vertices in the first subset with
1, . . . , L, and vertices in the second subset with L+1, . . . , 2L.

Weight assigned to an edge represents the cost of travelling
on this edge, and weight assigned to a vertex represents the
load for the vehicle. In the simplest, case the edge weight is
the Euclidean distance, and all the loads are +1 and −1 for
pickup and delivery correspondingly.

To state SVPDPL as an optimization problem, we need
to introduce more notations. Let xij be binary variables,
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such that xij = 1 iff edge (i, j) belongs to the current route
(PDP solution). For a vertex subset S, let δ(S) denote a
set of edges, which have exactly one vertex belonging to S.
For E′ ⊆ E let x(E′) =

∑
P (i,j)∈E′ xij . And for S ⊆ V

let x(S) =
∑

i,j∈S xij . Under these notations, the SVPDPL

problem is to find a Hamilotonian cycle (path visiting each
vertex only once and returning to the origin node) in the
graph, which satisfies the following requirements:

1. Minimize
∑2n

i=0

∑2n+1
j=i+1 cij · xij .

2. x0,2n+1 = 1.

3. ∀i ∈ V, x(δ(i)) = 2.

4. ∀(i, j) ∈ E, xij = 0 or xij = 1.

2.2 Small moves
Since the search of the exact solution is NP-hard, heuristic

known as “small moves” was suggested [1, 11]. The main
idea is to apply small changes to a found solution in order
to obtain a new, better one.

In this work, we use the following four types of small
moves.

Lin-2-Opt substitutes two edges (ij , ij+1) and (ik, ik+1)
with other two edges (ij , ik) and (ij+1, ik+1), then it inverses
the subpath (ij+1, . . . , ik).

Double-bridge, which was first introduced in [6], exchanges
edges (ij , ij+1), (ik, ik+1), (il, il+1) and (ih, ih+1) with (ij , il+
1), (ik, ih+1), (il, ij+1) and (ih, ik+1).

Couple-exchange selects two orders (i, n+i) and (j, n+j),
then it replaces i with j and n+ i with n+ j.

Point-exchange is analogous to the couple-exchange. The
only difference is that not the pairs, but single points are
exchanged.

We also use the “Mixed” small move where each of the
four small moves can be applied with equal probability.

3. ALGORITHM AND EXPERIMENTS

3.1 Algorithms
The small moves, described in the previous sections, are

usually applied in the following manner: we randomly pick
a possible small move, and if its application improves the
solution, we retain it. However, it is obvious that such a
greedy-like strategy misses many possible solutions.

One can notices that this small-move technique is very
close to mutation operations. The described strategy of
application is just a single way to schedule different small
moves. We suppose that various strategies from evolution-
ary computations can outperform simple strategy. We used
five schemes based on simple evolutionary algorithms (EAs) —
(1+1)-EA, (1+λ)-EA, (1, λ)-EA, and (µ + λ)-EA:

1. 1 + 1: each generation consists of a single individual
which gives birth to a single child.

2. 1 + N : each generation consists of a single individual
which gives birth to N =

√
L/2 children. In this work

we used N equal to 5.

3. 1, N : each generation consists of a single individual
which gives birth to N children and cannot be selected
to the next generation.

4. 1 + N + Big mutation (1+N+BM): this is similar to
1+N , but generations with indices 3 · L2, 6 · L3, and
9 ·L2 are influenced by a big mutation: each individual
in these generations mutates

√
L times.

5. K+KN : this is similar to 1+N with the exception
that each generation consists of K =

√
L/4 individu-

als. In this work K equals to 5.

Thus, we applied 25 different scheduling algorithms: each
strategy for each model. Each scheduler is called by its
strategy.

3.2 Experiment setup and test data
We build up artificial problem instances as it is a common

practice for such type of problems. Each problem is defined
by a set of points located inside a square 100× 100.

We conducted two series of experiments, in which points
where generated by two different probability distributions.
In the first series the points are generated with the Gaus-
sian distribution with centre (50, 50) and variance equal to
12.5. In the second series the points are generated with the
uniform distribution.

As it was stated in [11], 12·L2 application of small moves is
enough and the route is unlikely to change anymore, because
the system reaches a local optimum. In our case, 12 · L2

equals to 30,000. However, we held experiments for 200,000
fitness function evaluation.

Each of the described small moves was tested on each of
the two experiment series 100 times: 10 times on 10 different
problems.

For each run, we measured the relative improvement of the
found solution in comparison to the initial näıve solution:
(i1, iL+1, i2, iL2 , . . . , iL, i2L).

In order to compare different algorithms, we applied Wilcoxon
signed rank test: since all the algorithms were run 10 times
on 10 datasets. Thus, for each dataset we evaluated mean
relative improvement, and then treated it as paired data.

3.3 Results
Results for problems generated with uniform distribution,

are presented in Table 1. We chose the best result for each
small move, after which we have compared this result with
all other results using Wilcoxon signed rank test (see Ta-
ble 2). Thus, we colored the best results for each small move
with light grey, and the best results for all small move —
with dark grey.

We can see that the two last EAs outperformed all the
other in most of the cases. However, the best results were
achieved not solely by them, but also by (1+N). We see that
the greedy strategy (1+1) is the worst one. Also, Double-
Bridge small move shows the same results for all EA (which
is relative poor).

Results for problems generated with Gaussian distribu-
tion, are presented in Table 3 and results for statistical com-
parison are presented in Table 4. Colorization notation re-
mains the same.

We see that points generated with Gaussian distribution
shares the same patterns as the previous case. The only
difference is that (1+1) also reaches the best result.

We have plotted behavior for different algorithms. All the
plots can be found in a hosting1. (1, N) is worst by dis-
covering Figure 1: because (1, N) excludes the parent from
1http://genome.ifmo.ru/files/papers files/GECCO2016/

1028

http://genome.ifmo.ru/files/papers_files/GECCO2016/


Small moves
EA type Lin-2-Opt Couple-Exchange Double-Bridge Point-Exchange Mixed

1+1 0.703 (0.031) 0.493 (0.031) 0.560 (0.030) 0.499 (0.030) 0.735 (0.029)
1+N 0.709 (0.028) 0.494 (0.039) 0.559 (0.030) 0.500 (0.032) 0.738 (0.025)
1, N 0.712 (0.028) 0.250 (0.043) 0.560 (0.030) 0.252 (0.044) 0.545 (0.047)

1+N+BM 0.714 (0.029) 0.501 (0.029) 0.559 (0.030) 0.507 (0.030) 0.736 (0.029)
K+KN 0.708 (0.027) 0.502 (0.030) 0.560 (0.030) 0.506 (0.029) 0.740 (0.024)

Table 1: Relative improvement: each cell contains the mean and standard deviation (in braces) improvement
of the corresponding EA–Small moves pair for points generated with uniform distribution. The best results
for each small move are colored with grey. The best results are colored with dark grey.

Small moves
EA type Lin-2-Opt Couple-Exchange Double-Bridge Point-Exchange Mixed

1+1 0.005 0.003 0.323 0.011 0.018
1+N 0.102 0.008 0.401 0.003 0.224
1, N 0.038 0.003 0.323 0.003 0.002

1+N+BM BEST 0.401 0.480 BEST 0.084
K+KN 0.011 BEST BEST 0.255 BEST

Table 2: P -values for Wilcoxon pair-rank test: comparison with the best scheduler for points generated with
uniform distribution. P -values greater than 0.05 are colored with strong grey.

Small moves
EA type Lin-2-Opt Couple-Exchange Double-Bridge Point-Exchange Mixed

1+1 0.657 (0.027) 0.460 (0.027) 0.525 (0.024) 0.467 (0.026) 0.693 (0.022)
1+N 0.659 (0.030) 0.462 (0.027) 0.526 (0.025) 0.466 (0.024) 0.697 (0.025)
1, N 0.675 (0.023) 0.244 (0.039) 0.524 (0.025) 0.248 (0.037) 0.517 (0.040)

1+N+BM 0.670 (0.030) 0.470 (0.025) 0.527 (0.023) 0.474 (0.023) 0.695 (0.021)
K+KN 0.670 (0.028) 0.475 (0.024) 0.525 (0.025) 0.477 (0.022) 0.695 (0.025)

Table 3: Relative improvement: each cell containts the mean and standard deviation (in braces) improvement
of the corresponding EA–Small moves pair for problems generated with Gaussian-distribution. The best
results for each small move are colored with grey. The best results are colored with dark grey.

Small moves
EA type Lin-2-Opt Couple-Exchange Double-Bridge Point-Exchange Mixed

1+1 0.003 0.003 0.166 0.003 0.070
1+N 0.011 0.003 0.440 0.003 BEST
1, N BEST 0.003 0.038 0.003 0.003

1+N+BM 0.166 0.006 BEST 0.142 0.102
K+KN 0.069 BEST 0.288 BEST 0.255

Table 4: P -values for Wilcoxon pair-rank test: comparison with the best scheduler for points generated with
Gaussian-distribution. P -values greater than 0.05 are colored with strong grey.

the new generation, we see this behavior prevents solution
improvement.

Also, visual analysis shows that the algorithms reach its
highest values relatively early, as an example, see Figure 2.
Thus, for each algorithm we discovered, when it reaches its
best results. This comparison for the mixed small move is
presented in Table 5. We see, that K+KN is relatively fast
for both types of the data.

4. CONCLUSION
In this paper, we have proposed an evolutionary algorithm

based solution for the Single Vehicle Pickup and Delivery
problem. By using the small moves proposed in [9] as muta-
tion operators for evolutionary algorithms, we were able to
sufficiently increase the efficiency of SVPDP solution. Ac-
cording to the obtained results, we may state that (K+KN)

EA type
Problems 1+1 1+N 1, N 1+N+BM K+KN
Uniform 161 158 196 146 122
Gaussian 158 113 86 183 131

Table 5: Number of thousands of steps, taken by
each EA using mixed small move to find the opti-
mum.

EA is the best scheduler in the terms of speed and result-
ing performance. The commonly used greedy strategy was
outperformed by the most of the applied algorithms.

In the future, we plan to develop strategies for small moves
application. A strategy is a vector where each element de-
fines the probability of selecting a particular small move.
Strategy construction can be carried out using reinforce-
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Figure 1: Plot for 1, N for Couple Exchange small
move, dependency on of relative improvement on
number of the fitness function evaluation

Figure 2: Plot for 1+1 for Lin2Opt small move,
dependency on of relative improvement on number
of the fitness function evaluation

ment learning, initial strategy selection can be done with
meta-learning.

Furthermore, it may be beneficial to learn a Markov chain
or a nondeterministic finite automaton that would define
transitions between vectors. The insight behind this is that
a smart application of small move series may be beneficial.

Finally, in the long perpective, we plan to apply meta-
learning on the level of solutions rather than on the level
of the problem. This way we would calculate some meta-
features for each solution and form the strategy vector on
this basis.
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