
A Semantics based Symbolic Regression Framework for
Mining Explicit and Implicit Equations from Data

Quang Nhat Huynh, Hemant Kumar Singh and Tapabrata Ray
School of Engineering and Information Technology, The University of New South Wales, Australia.

quang.huynh@student.adfa.edu.au, h.singh@adfa.edu.au, t.ray@adfa.edu.au

ABSTRACT

Symbolic Regression (SR) is commonly used to identify relation-

ships among variables and responses in a data in the form of analyt-

ical, preferably compact expressions. Genetic Programming (GP)

is one of the common ways to perform SR. Such relationships could

be represented using explicit or implicit expressions, of which the

former has been more extensively studied in literature. Some of

the key challenges that face SR are bloat, loss of diversity, and ac-

curate determination of coefficients. More recently, semantics and

multi-objective formulations have been suggested as potential tools

to build more intelligence in the search process. However, stud-

ies along both these directions have been in isolation and applied

only to selected components of SR so far. In this paper, we intend

to build a framework that integrates semantics deeper into more

components of SR. The framework could be operated in traditional

single objective as well as multi-objective mode and is capable of

dealing with both explicit and implicit functions. The constituent

modules utilize semantics for compaction of expressions, maintain-

ing diversity by identifying unique individuals, crossover and local

exploitation. A comparison of obtained results with those from ex-

isting semantics-based and multi-objective approach demonstrates

the advantages of the proposed framework.

Keywords

Genetic Programming; Symbolic Regression; Sampling Semantics;

Explicit Equations; Implicit Equations

1. INTRODUCTION
The problem of finding comprehensible relationships among vari-

ables and responses in observed data is of significant interest in

data analytics. Symbolic regression (SR) is a popular method to

discover such relationships, and one of the common approaches

to perform SR by evolving expressions using Genetic Program-

ming (GP). The expressions defining these relationships can be

either explicit (y = f (x)) or implicit (f (x,y) = 0), of which the

explicit functions have been studied more comprehensively in liter-

ature. The conventional SR usually suffers limitations such as bloat

and diversity reduction. To overcome these shortcomings, two of

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO’16 Companion July 20-24, 2016, Denver, CO, USA

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2908971

the emerging trends in GP are the use of semantics and multi-

objective formulations. Semantics has been individually integrated

into different components of SR such as initialization, crossover

and mutation in [4, 1, 3]. One of the recent works reported on

multi-objective GP is [5] where the tree depth and error are con-

sidered as two separate objectives to be minimized, in order to ob-

tain compact, accurate expressions. While the methods have shown

promising results, they have been applied in isolation to different

components of SR.

In this paper, we integrate semantics deeper into more compo-

nents of SR to improve the framework presented in [5]. The pro-

posed framework can be executed in single objective or multi-objective

mode, and is capable of dealing with both explicit and implicit

problems. Semantics is used in different key components, such as

compaction, uniqueness, crossover, and local exploitation. A con-

stant optimization scheme is introduced to determine coefficients

accurately. New mutation and local exploitation operations are

also suggested to enhance the global exploration and local exploita-

tion abilities. The results are compared with an existing semantics

based algorithm [4] for explicit functions and a multi-objective al-

gorithm [5] for implicit functions.

2. SAMPLING SEMANTICS
The authors of [4] defined semantics for real-value SR based on

a method called sampling semantics, where a number of points in

the problem domain are randomly sampled and used to evaluate the

expressions in the population. If the difference between evaluated

values of two expressions is less than a given threshold, they are

considered semantically equivalent. However, in our implemen-

tation, we calculate the semantics only based on the given fitness

cases to reduce the computations required. As a result, a large pro-

portion of allotted computational resource is saved for other mecha-

nisms. Two types of semantic crossover methods, semantics aware

crossover (SAC) and semantic similarity-based crossover (SSC) [4],

are incorporated in our framework.

3. PROPOSED FRAMEWORK
The proposed framework is referred to as semantics based sym-

bolic regression (SSR) and summarized in Algorithm 1. The en-

hanced mechanisms (denoted with asterisk (∗) in Algorithm 1) are

subsequently described. Expressions in SSR have tree structure

representation as in [4, 5]. The first fitness function used in SSR is

Mean Square Error (MSE) for explicit expressions and Mean Loga-

rithmic Error in Derivatives (MLED) [2, 5] for implicit expressions.

The second fitness function is the depth of the tree.

103

http://dx.doi.org/10.1145/2908961.2908971

Algorithm 1 Semantics based Symbolic Regression (SSR)

1: Initialization: Generate initial population; Evaluate and sort the trees
in the population;

2: while termination condition not met do

3: Crossover: Perform semantic crossover of parents selected
using binary tournament; Find the compact∗ form of
the child population;

4: Mutation: Perform multi-point mutation∗ on the child
population; Find the compact form of the child population;

5: Evaluation: Evaluate the fitness of the child population;
6: Remove duplicate trees through uniqueness∗ check;
7: Sorting: Sort the trees in child + parent population based on

single or multi-objective criteria as applicable;
8: Select the best trees to carry to next generation;
9: Perform constant optimization∗ and local

exploitation∗; Re-sort the population;
10: end while

3.1 Compactness
To find the compact form of an expression, first step is to replace

the operator nodes which always return constant values by terminal

constant nodes. The second step is to identify the sub-trees having

the form of (0+ expression), (expression+ 0), (expression− 0),
(1×expression), (expression×1) and (expression÷1) and shorten

them. For a particular node, if all the semantic values are within

a pre-set threshold with respect to the mean of these values, the

operator node is considered as always returning a constant.

3.2 Uniqueness
This mechanism is used to maintain the diversity of the trees

in the population. To compare if two trees are identical, the string

forms of the expressions represented by the trees, number of nodes,

number of operator nodes, identities of the operator nodes, number

of variable nodes and identities of the variable nodes are exam-

ined (in that order). If all these conditions fail to differentiate the

two trees, the semantics is made use of. If the original semantics

of two trees are different, all the constant nodes of the two trees

are reset to 1. Then, the two trees are evaluated again to obtain

their new semantics. If new semantics are the same for both trees,

it means that the structure of the trees are alike and only the values

of the constant nodes are different. Between the two trees, the one

having better fitness is kept.

3.3 Constant Optimization and Local Exploita-
tion

To determine the best values of constants in an expression, a lo-

cal search method is employed. For this step, the terminal variable

nodes are treated as constants while the terminal constant nodes

are treated as variables. The form of the expression is known at

this stage so any reasonable local search method can be applied

to identify the most appropriate values for the terminal constant

nodes.

Local exploitation is simply a mutation operator combined with

fitness checking. After the mutation, the fitness is re-evaluated and

the mutated expression is kept only if the new fitness is better than

the previous one.

3.4 Multi-point Mutation
A fixed percentage of nodes in a tree are selected for mutation

and half of the selected nodes are forced to change to new nodes

of the same class (i.e., binary is mutated to another binary node,

a unary to another unary node and a terminal to another terminal

node). The other half of selected nodes are forced to mutate to new

nodes belonging to other classes, which are chosen randomly. This

new operation is referred to as multi-point mutation and helps to

enhance the exploration ability of SSR.

4. NUMERICAL EXPERIMENTS
SSR is tested with 10 explicit expressions from [4] in single ob-

jective mode and 3 implicit expressions from [5] in multi-objective

mode. A population size of 500 is used, with termination criteria

set to 15× 106 node evaluations for explicit and 100 generations

for implicit cases. Thirty independent runs are performed for each

problem. A run is considered as successful in the case of explicit

expression if there is at least one tree in the population having the

difference between predicted and observed outputs less than 0.01

for all fitness cases [4]. For implicit expressions, a run is consid-

ered successful if it can find the exact expressions from which the

input data is generated. SSR performs better than the algorithm

SSC12 reported in [4] in finding explicit expression as illustrated

in Table 1. It also uncovers the correct implicit expressions in all

the test runs faster compared to the previously reported results [5].

Table 1: Percentage of successful runs of SSC12 and single-

objective SSR for 10 explicit problems

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SSC12 67 33 14 12 47 47 66 38 37 51

SSR 100 93 96 73 100 100 80 73 90 96

5. SUMMARY
In this paper, we present a semantics based symbolic regres-

sion (SSR) framework to mine explicit and implicit expressions

from given data. The proposed approach utilizes benefits of se-

mantics for various components, such as compactness, uniqueness,

crossover and local exploitation. In addition, a new constant opti-

mization technique and multi-point mutation are used to strengthen

the approach further. These enhancements help to deal with the

persistent obstacles in SR, such as bloat, diversity and coefficient

identification as well as enhance the exploration and exploitation

abilities of the algorithm. Numerical experiments are conduced us-

ing both single and multi-objective forms of SSR. The results ob-

tained are compared with existing techniques for both implicit and

explicit functions, which demonstrate the competence and ability of

SSR to find accurate, compact expressions in relatively low com-

putational budget.

6. REFERENCES
[1] A. Moraglio, K. Krawiec, and C. Johnson. Geometric semantic genetic

programming. In Parallel Problem Solving from Nature - PPSN XII,
volume 7491 of Lecture Notes in Computer Science, pages 21–31.
2012.

[2] M. Schmidt and H. Lipson. Symbolic regression of implicit equations.
In Genetic Programming Theory and Practice VII, Genetic and
Evolutionary Computation, pages 73–85. October 2010.

[3] N. Uy, N. Hoai, and M. ONeill. Semantics based mutation in genetic
programming: The case for real-valued symbolic regression. In 15th

International Conference on Soft Computing, 2009.

[4] N. Q. Uy, N. X. Hoai, M. OâĂŹNeill, R. I. McKay, and
E. Galván-López. Semantically-based crossover in genetic
programming: application to real-valued symbolic regression. Genetic

Programming and Evolvable Machines, 12(2):91–119, 2011.

[5] B. Wang, H. Singh, and T. Ray. A multi-objective genetic
programming approach to uncover explicit and implicit equations
from data. In IEEE Congress on Evolutionary Computation (CEC)

2015, pages 1129–1136, May 2015.

104

	Introduction
	Sampling semantics
	Proposed Framework
	Compactness
	Uniqueness
	Constant Optimization and Local Exploitation
	Multi-point Mutation

	Numerical Experiments
	Summary
	References

