Adding Program Length Bias to the Lexicase and
Tournament Selection Algorithms

Eva Moscovici
University of Massachusetts
140 Governors Drive
Amherst, MA 01003-9264
emoscovici@cs.umass.edu

ABSTRACT

Lexicase selection is a relatively new but promising algo-
rithm for selecting parents to participate in evolving the next
generation of programs. Tournament selection is a more es-
tablished and commonly used algorithm that serves the same
purpose. As is the case with many other genetic program-
ming algorithms, the programs generated with involvement
of the lexicase and tournament selection algorithms are of-
ten large and hard to understand. There has been prior
work done related to parsimony and managing bloat in the
programs generated using genetic programming. In this pa-
per, I will discuss a way to reduce program size for lexicase
and tournament selection algorithms, by incorporating the
program length bias into the error for each test case used to
test whether an individual is fit enough to participate in the
evolution or not.

CCS Concepts

eComputing methodologies — Genetic programming;
Artificial intelligence; e Theory of computation — Design
and analysis of algorithms; eSoftware and its engineer-
ing — Automatic programming;

Keywords

Program synthesis; genetic programming; lexicase selection;
tournament selection; parsimony; bloat

1. INTRODUCTION

Lezicase selection is an algorithm that was invented by
Lee Spector[5], and studied by Helmuth et al[3]. The algo-
rithm is designed for selecting parents that will participate
in the evolution process to evolve next generation of the
program. In his dissertation[2], Thomas Helmuth describes
the lexicase selection algorithm in detail, and uses post-hoc
Wilcoxon-Nemenyi-McDonald-Thompson test[4] to compare
the performance of lexicase selection to the performance of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
© 2016 ACM. ISBN 978-1-4503-4323-7/16/07... $15.00
DOL: http://dx.doi.org/10.1145/2908961.2931668

1035

IFS (implicit fitness sharing) and tournament selection al-
gorithms. His calculations conclude that lexicase selection
outperforms IFS and tournament selection algorithms with
0.05 significance level. Tournament selection is one of the
standard algorithms used for parent selection. In the next
section, I will discuss the key idea of both algorithms, de-
scribing lexicase selection in more detail because it is less
known. I will also discuss my proposal of adding a bias
based on the length of the program, which will decrease fit-
ness of the larger programs. As a result, smaller programs
will have a slightly higher chance of being selected as par-
ents, and thus the final successful program the evolution
generates would also be smaller.

2. LEXICASE AND TOURNAMENT SELEC-
TIONS, AND PROGRAM LENGTH BIAS

The lexicase selection algorithm has two steps, initializa-
tion and the loop. In the initialization step, the candidate
individuals (i.e. programs of the latest generation) are set
to be the entire population of the programs in that gener-
ation. The test cases are set to be the list of all the test
cases used for testing the programs. The test cases should
be shuffled randomly. For the loop step, choose a subset of
the remaining candidates (originally that will be all of the
candidates) that perform best on the first test case in the
list of the test cases. If there is only one individual in that
subset of the candidates, return it. If there is only one test
case left, return the random individual from the subset of
candidates. Otherwise, remove the first case from the list
of the test cases, and go back to the beginning of the loop,
picking the next candidates from the subset of the remain-
ing candidates. The number of parents chosen for the next
generation depends on the parameter that represents the
population size. The population size is an argument to the
function that performs the algorithm that the programmer
using the algorithm to evolve a program can choose. Usually
operations such as crossover require 2 parents, and opera-
tions such as mutation require 1 parent. Imagine the evolu-
tion process where the population size is 1000, and you want
10% of the population (100 individuals) to be generated by
mutation, and the rest (900 individuals) by crossover. In
that case, you would need a total of 100 + 900 x 2 = 1900
parents to generate a population of 1000.

The way tournament selection works is that a few individ-
uals are chosen randomly from the population of programs.
The number of competitors is an argument to the function
that performs the algorithm, and can be chosen by the pro-
grammer. The individual who has the highest fitness score

among its competitors is the winner. The fitness score is
determined by testing the program using all the test cases,
determining the error magnitude based on how far from the
correct answer the program was, and adding up the errors
for all the test cases. The bigger the error, the less fit the
program is to be a parent.

In this paper I am comparing and contrasting the per-
formance of lexicase and tournament selection algorithms in
order to determine which one works better. Both algorithms
have certain advantages over each other, so it is not as much
a question of which one is better, as which one works better
for which situation. Analyzing the algorithms this way will
deepen our knowledge of the algorithms, and will help pro-
grammers determine which one they should use depending
on what they are trying to accomplish. It is possible, for ex-
ample, that one algorithm will finish faster, while the other
will take longer, but the one that takes longer, generates
shorter and easier to understand programs. Then we would
know that if we need the ability to generate programs fast,
we will use the first method, while if it is more important for
the code to be easy to understand and maintain, we would
use the second algorithm. Finally, I am adding a modifi-
cation to lexicase and tournament selection algorithms, and
exploring the results.

As of now, both lexicase and tournament selections choose
which individuals will become parents based on how well
they perform on the test cases. The lower the error is, the
better the performance of the program. Adding bias will
help incorporate other criteria, besides how far any given
individual is from the correct answer on the next test case
in the list. I propose adding a bias based on the length of
the program, thus giving slight preference to smaller pro-
grams. Similar approaches have been explored in the past,
such as using both error and program length when deter-
mining which individuals are a best fit to become parents
to reduce bloat[1]. The expectation is that the programs
would be smaller on average, while the number of genera-
tions would increase. In many real-world situations, soft-
ware developers would need to run the evolution only once,
or a few times, to generate the program they want, but af-
ter that, they would just need to use the generated program
itself. In those cases, it would be a worthwhile trade-off to
spend more time generating a program that would, however,
be shorter and easier to understand.

The two problems I used for testing the performance of
lexicase and tournament selection algorithms are a symbolic
regression problem and even 3 parity. The goal of the even 3
parity problem is to find a program that, given three boolean
inputs, determines whether the number of true inputs is
even. The goal of a symbolic regression problem is to find
a formula (program) that produces the proper output for
each input in a given set of input/output number pairs. For
example, given the pairs (1, 2), (2, 5), (3, 10), (4, 17), etc,
it will determine that the formula is y = 2° + 1 or its equiv-
alent. There is an infinite number of equivalent formulas
(y=a2’+z+x, y=2>+1—1+1, etc), and because genetic
programming involves a lot of randomization, the program
might generate any one of these equivalent formulas. The
formula I am using for the tests is y = 22 +x+1. A symbolic
regression problem can also be bimodal, where the formula
that will be used will be different depending on the value
of the input. In my experiments, for bimodal symbolic re-

1036

gression problem, I am using y = 22 + x 4+ 1 for > 0, and
y="Tx*x forx <O0.

3. IMPLEMENTATION

Since the population selected for reproduction depends
on how well the individual performs (i.e. how small is the
error when the program is tested), one way to incorporate
program length into the algorithm is to increase the error
of each test case for larger programs. Every program in the
population is tested using the error function for all the test
cases. Each time a test case is solved correctly, the error
function will still return 0, but if there is an error, I increase
the error function’s return value by size-of-program--100. I
am dividing the program size by 100 because I observed that
almost every successful program for symbolic regression or
even 3 parity is smaller than 100. I want the bias to be
less than 1, so that the error is more important than the
program size. The program size would be used mainly to
break ties when comparing the fitness of the programs with
similar errors.

4. EXPERIMENT

The symbolic regression problems and even 3 parity, with
and without program length bias, using tournament and lex-
icase selection algorithms, were tested by running the code
100 times for each problem and configuration, and record-
ing the average size of the evolved program, and the average
number of generations until a solution was found. For the
ones that do not always (or never) succeed, I also recorded
the number of successes/failures, and the best (i.e. lowest)
error achieved. If a run takes over 100 generations, I assume
it failed and move on to the next run. I put N/A when an
entry is not applicable. For example, if the program never
succeeds during the 100 runs, the average number of gener-
ations entry is not applicable, since it will always fail after
100th generation and move on to the next run.

5. RESULTS

5.1 Lexicase even 3 parity problem

Without adding the program length bias, the average num-
ber of generations for the even 3 parity problem using lex-
icase selection algorithm, after 100 runs, was 6.29, and the
average best program size was 33.76. When adding the pro-
gram length bias, the average number of generations became
7.02, and the average best program size became 26.58. The
results are statistically significant: for the difference in the
average number of generations, p = 0.00034, so p < 0.01.
For the difference in the average best program size, p =
0.0001, so p < 0.01 To calculate statistical significance, I
use Wilcoxon Signed-Rank Test.

As expected, adding program length bias improved the
even 3 parity problem by making the resultant programs
smaller on average, but increased the average number of
generations it takes to find the successful program. In many
real-world situations, it would be a worthwhile trade-off to
spend more time generating a program that would, however,
be shorter and easier to understand, because software devel-
opers would need to run the evolution only once, or a few
times, to generate the program they want, but after that,
they would just need to use the generated program itself.

Table 1: Lexicase selection even 3 parity problem

results
| Without bias | With bias

Average number of generations 6.29 7.02
Average best program size 33.76 26.58
Number of successful runs 100 100
Best error for failed runs N/A N/A

Table 2: Tournament selection even 3 parity prob-

lem results:
| Without bias | With bias

Average number of generations 18.78 N/A
Average best program size 77.22 N/A
Number of successful runs 95 0
Best error for failed runs 1 1.15

For lexicase even 3 parity problem, both with and without
bias, each run was always successful. Out of 100 runs, the
program succeeded in finding the solution 100 times, so the
success rate is 100%.

5.2 Tournament even 3 parity problem

Without adding the bias, the average number of genera-
tions for the even 3 parity problem using tournament selec-
tion algorithm, after 100 runs, was 18.78, and the average
best program size was 77.22. The program was successful 95
out of 100 times, and failed times, with the best error of 1.
Therefore, success rate is 95%. All 5 times it failed, it was
unable to succeed on only one test case. When adding the
program length bias, the program was never successful any-
more: 0% success rate. It was very close, though: on almost
each run, the lowest and most commonly encountered best
error was 1.15. Consider the way error is calculated: if the
program solved the test case correctly, the current total error
for the program is unchanged, but if the program solved the
test case incorrectly, the error is increased by 1+4program
size+100. Therefore, the best error of 1.15 (just like the
best error of 1 for the failed runs in the unbiased version)
means that only one test case was solved incorrectly. Per-
haps quickly eliminating the programs that cannot solve the
hardest test cases by giving more error weight to the hard-
est test cases would solve this issue, and the program will
be successful. That, however, is not within the scope of this
paper. The average program size was 20.869, much smaller
than the average size of the program without adding the pro-
gram length bias. If a way to achieve a successful result is
found, error length bias would be a considerate improvement
to the algorithm.

For the even 3 parity problem, lexicase selection performs
better both with and without the program length bias. With-
out the bias, lexicase selection completed its runs in the av-
erage of 6.14 generations, with the best program size average
of 32.54. In the meantime, tournament selection needed the
average of 18.78 generations, and the average best program
size average was 77.22. The results are shown in Tables 1
(lexicase) and 2 (tournament).

5.3 Lexicase symbolic regression problem
Without the bias, the average number of generations was

9.19, and the average best program size was 14.02. Ev-

ery run resulted in a successful solution, so success rate is

1037

100%. With the bias, however, the situation was different:
0% success rate. The best error was 1.51. One thing I ob-
served was that most programs had the size of 3, sometimes
4. That is a very small program, so it is not surprising
that the program never succeeded. To see if I could lessen
the effect of the bias, I divided the size of the program by
10000, instead of 100, when adding it to the error measure-
ment. Dividing the size of the program by 10000, instead of
100, would lessen the effect of the bias, which could make a
difference in which program is selected. For example, imag-
ine a situation where for a symbolic regression problem, for
the last test case, individuall, of size 25, returned an er-
ror (before adding bias) of 1.1, and individual2, of size 50,
returned an error of 1.01. If divisor is 100, then for individ-
uall, 1.1 + 25 + 100 = 1.35 is the error after adding bias,
and for individual2, 1.01 4+ 50 = 100 = 1.51, so individual2
has higher error if we consider the bias, and individuall will
be selected. However, if the divisor is 10000, then for in-
dividuall, 1.1 + 25 <+ 10000 = 1.1025, and for individual2,
1.01 4+ 50 <+ 10000 = 1.015, so individuall has higher error if
we consider the bias, and individual2 will be selected. In this
scenario, magnitude of the divisor made a difference. Divid-
ing by 10000 instead of 100, however, had little effect on the
performance of the symbolic regression problem used for the
experiments described in this paper: the program size would
stabilize within the range of 3-7, which in many cases is still
too small to be the correct solution. The successful solution
was never found.

5.4 Tournament symbolic regression problem

Without the bias, the average number of generations for
a symbolic regression problem using tournament selection
algorithm was 7.3, and the average best program size was
10.69. The program was successful 92 out of 100 times, and
failed 8 times, with the best error of 0.96. Therefore, suc-
cess rate is 92%. With the bias, the program failed every
single time, with the lowest best error of 1.48. The low-
est non-zero error is higher than it is in the case of unbi-
ased tournament selection runs, but not by much, especially
if we remember that this error is slightly weighted by the
program size as well. The smallest error in the unbiased
case is out of 8, because only 8 runs failed, while the biased
one is the smallest error out of 100, because all of the runs
failed. We cannot compare them in meaningful way because
of the number difference. Overall, for a regression problem,
tournament selection performs better: both average num-
ber of generations and average best program size are lower.
Lexicase selection performed better on one metric: its suc-
cess rate was 100%, while that of tournament selection was
92%. With bias, both lexicase and tournament selections
performed badly: 0% success rate. For lexicase selection the
best error for failed runs was slightly higher (1.51) than for
tournament selection (1.48), but the difference is too small
to be statistically significant. The results are shown in Ta-
bles 3 (lexicase) and 4 (tournament).

5.5 Bimodal lexicase symbolic regression

Without the bias, the average number of generations was
35.25, and the average best program size was 80. Only 26
runs resulted in a successful solution, so success rate is 26%.
This problem is more complex than the previous ones, so
that is not surprising. The lowest best error was 0.17: it
was very close to finding the correct solution. With the

Table 3: Lexicase selection symbolic regression re-

sults
| Without bias | With bias

Average number of generations 9.19 N/A
Average best program size 14.02 N/A
Number of successful runs 100 0
Best error for failed runs N/A 1.51

Table 4: Tournament selection symbolic regression

results
| Without bias | With bias

Average number of generations 7.3 N/A
Average best program size 10.69 N/A
Number of successful runs 92 0
Best error for failed runs 0.96 1.48

program length bias, the program never found the correct
solution. It was not even close: the lowest non-zero error for
failed runs is 9.6

5.6 Bimodal tournament symbolic regression

Without adding the program length bias, the average num-
ber of generations was 43.11, and the average best program
size was 148.23. Only 10 runs resulted in finding a success-
ful solution, so the success rate is 10%. This result is worse
than that of lexicase selection for all the parameters: av-
erage number of generations and average best program size
were higher, and the success rate was lower. The lowest best
error was 0.22: it was very close to finding the correct solu-
tion, but slightly further than the program that used lexicase
selection was. With the program length bias, both with lexi-
case and tournament selections the program never found the
correct solution. However, the program that used tourna-
ment selection algorithm was much closer than the program
that used lexicase selection algorithm was: the lowest non-
zero error for failed runs is 3.7 with tournament selection,
and 9.6 with lexicase. The results are shown in Tables 5 and
6.

6. CONCLUSIONS

The next step would be to explore the types of prob-
lems for which adding length bias would improve the perfor-
mance, and for which it would not, or even make it worse.
Also, we could explore other ways to bias the random selec-
tion that occurs in lexicase algorithm. Different approaches
would hold different benefits when selecting the parents.
The approach described in this paper was geared towards
reducing the size of the program, but sacrifices speed with
which the successful program is produced. If we want to
speed up the program generation process, however, one ap-
proach yet to be explored would be to determine the diffi-

Table 5: Bimodal lexicase selection symbolic regres-

sion results
| Without bias | With bias

Average number of generations 35.25 N/A
Average best program size 80 N/A
Number of successful runs 26 0
Best error for failed runs 0.17 9.6

1038

Table 6: Bimodal tournament selection symbolic re-
gression results
| Without bias | With bias

Average number of generations 43.11 N/A
Average best program size 148.23 N/A
Number of successful runs 10 0
Best error for failed runs 0.22 3.7

culty of the test cases, and perform a biased shuffle, making
the most difficult test cases appear at the beginning of the
list of test cases. The benefit of solving the hardest test
cases first is that this way we should eliminate the badly-
performing programs faster, thus speeding up the parent
selection process.

To improve the ability to solve a problem, a possible ap-
proach is to pick cases that approximately divide the pop-
ulation in two: half (or as close to half as possible) of the
population solved the problem, and half did not. The next
step is to put the test cases that divide the population in
half to the front of the list of the test cases. If the effect of
doing so is too strong, it could be reduced by instead adding
bias to make those test cases more likely to appear at the
front of the list, instead of always making them appear in
the front. Prioritizing test cases that divide the population
in two nearly equal parts would result in a more quick elimi-
nation of completely bad programs than randomly choosing
test cases would, but would not eliminate the programs that
may have some good content, but not good enough to take
care of the hardest test cases. This would add more diver-
sity, but still relentlessly eliminate the most unfit programs.

7. ACKNOWLEDGMENTS

Thanks to everyone in the Hampshire College Computa-
tional Intelligence Lab, especially my advisor Lee Spector,
for their advice related to this work. This material is based
upon work supported by the National Science Foundation
under Grants No. 1129139 and 1331283. Any opinions, find-
ings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

8. REFERENCES

[1] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler.
Multiobjective genetic programming: Reducing bloat
using spea2. In Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, volume 1, pages
536-543. IEEE, 2001.

[2] T. Helmuth. General program synthesis from examples
using genetic programming with parent selection based
on random lexicographic orderings of test cases. 2015.

[3] T. Helmuth, L. Spector, and J. Matheson. Solving
uncompromising problems with lexicase selection.
Evolutionary Computation, IEEE Transactions on,
19(5):630-643, 2015.

[4] M. Hollander, D. A. Wolfe, and E. Chicken.
Nonparametric statistical methods. John Wiley & Sons,
2013.

[5] L. Spector. Assessment of problem modality by
differential performance of lexicase selection in genetic
programming: A preliminary report. Genetic and
evolutionary computation, pages 401-408, March 2012.

