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ABSTRACT
Evolutionary development as a strategy for the design of
artificial neural networks is an enticing idea, with possible
inspiration from both biology and existing indirect repre-
sentations. A growing neural network can not only optimize
towards a specific goal, but can also exhibit plasticity and
regeneration. Furthermore, a generative system trained in
the optimization of the resultant neural network in a rein-
forcement learning environment has the capability of on-line
learning after evolution in any reward-driven environment.
In this abstract, we outline the motivation for and design of
a generative system for artificial neural network design.
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1. INTRODUCTION
Indirect representations of neural networks have proven

to be an effective means for designing and evolving net-
works [5]. Some examples are HyperNEAT [7] and POET
[4], which determine the weights between neurons in a net-
work. Indirect encoding can be more suited to evolution,
and can compactly express properties such as modularity
and hierarchy in the resultant network. Here, a develop-
mental model is proposed as an indirect encoding, where
an evolved controller grows a network in a developmental
environment.

Developmental systems are well suited towards action in a
dynamic environment. Many methods have been proposed
to allow a neural network to continuously modify its own
weights, such as [6] and RELEARNN [1]. With this capa-
bility, a neural network could respond properly to situations
not provided during training, and could continue to improve
during use. The developmental model proposed is intended
for the continuous design of the resultant neural network in
a dynamic environment.

We propose a model tailored to these needs. A develop-
mental controller is evolved as an indirect encoding of an
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artificial neural network, which is evaluated in a number
of control scenarios. ANNs are grown in a reinforcement
learning environment by the developmental model, and the
relative performance over the growth of the network is used
as a fitness measure for the developmental model. In this
way, individuals are selected that can grow a neural network
suited to a reinforcement learning environment without pre-
viously knowing the details of the environment.

The design and evaluation of this model is undergoing,
but we have presented below the general methods for the
model. The developmental environment is presented in § 2,
and the controller for the environment is presented in § 3.

2. NEURAL MODEL
A neuron is composed in this model of two separate bod-

ies: a soma and an axon. Dendrites are ignored in this
model, and synapses are considered formed when an axon
growth cone reaches the exact location of a soma in a discrete
3D space. Growth cones move through the space follow-
ing morphogen gradients, imitating the behavior of growth
cones following chemical cues in the developing brain [8]. In
this model, morphogens are emitted by the somas and dif-
fuse spatially throughout the entire 3D space. The emission
of the guidance morphogens by the soma allows for a form
of indirect communication between neurons and between a
soma and axon growth cone, and can lead to complex topolo-
gies [3]. Axons are allowed to branch up to a predefined
maximum number of branches, creating a new growth cone
at their location. This new growth cone begins movement
of its own after a delay of one timestep. Finally, axonal
growth cones can die or take no action at any time step.
The timescale of axonal action and weight modification is
scaled by a factor evolved with the controller to mimic the
fact that biological synaptic firing is a much faster process
than synaptic modification.

In its current design, the 3D space is defined as a simple
cube, with soma at each face. Axons grow during evalua-
tion in a problem-based domain, and at each time step the
synapses formed by axons with distal ends located at soma
cells are translated into a neural network. One face of the
cube is considered the input, and another the output. All
soma along the input and output faces are considered input
and output neurons, respectively. Growth cones at their
own soma are not considered as connections, nor are growth
cones that reach the input face. This design is appropriate
for large networks of neurons with highly spatial input and
outputs.

The resultant neural network is an integrate and fire spik-
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Figure 1: A bird’s-eye view of four topologies produced by the model, showing different symmetry and
modularity features. Axons from all somas are shown, but only the input and output soma cube faces are
rendered. Coloration indicates morphogen concentrations.

ing neural network, which allows for a multitude of infor-
mation to be presented by the network in the form of dif-
ferent firing patterns and varying gradients of neurotrans-
mitter amount [9]. A single neurotransmitter is distributed
throughout the network in a lossless manner, and is provided
to the input soma at each timestep, according to the prob-
lem inputs. Each neuron has an individual firing threshold,
which is modified by its controllers. The weights of the net-
work are similarly individual for each axon and are modified
by the axon contollers. The controller is described below.

3. THE CELL CONTROLLER
Axon actions, firing threshold, synaptic weights, and mor-

phogen emission are all controlled by a genetic regulatory
network. In nature, a gene regulatory network (GRN) is a
network of proteins that controls the behavior of cell. In a
living organism, a cell has several functions described in its
genome. A gene regulatory network controls their expres-
sions by the use of external signals collected from protein
sensors localized on the membrane. These signals activate
or inhibit the transcription of the genes, which then deter-
mines the cell’s behavior.

The GRN model used in this work is a simplified com-
putational model of a real gene regulatory network. It has
been designed for computational purposes and not to simu-
late protein interactions. In it, a gene regulatory network is
defined as a set of interacting proteins. The proteins use in-
dividual identifiers to determine their various concentrations
and, therefore, the behavior of the network. The controller
is evolved by modifying the individual protein identifiers,
and by adding and removing proteins. More details about
gene regulatory networks can be found in [2].

The inputs to the controller are the morphogen concentra-
tions at the axonal growth cone position, the soma position,
the current firing threshold, the weight of the axon, the neu-
rotransmitter amount present in the soma, the neurotrans-
mitter amount present in a post-synaptic soma if there is
one, and a reward from the problem domain. The outputs
are the morphogen concentrations for emission, the change
in axon weight, the change in firing threshold, and the axon
actions: movement along each morphogen gradient, branch-
ing, apoptosis, and quiescence. The maximum output of all
the axon action outputs is taken to decide the action.

4. DISCUSSION AND CONCLUSION
Above we have described the basics of a developmental

model that can produce symmetry, modularity, and heirar-
chy. The capabilities of this model are currently being ex-

plored by evaluating the performance of the resultant artifi-
cial neural networks in a number of reinforcement learning
scenarios. An evolved controller that can act in a dynamic
environment to grow and modify a neural network in a vari-
ety of problems will address some of the current shortcom-
ings of static artificial neural networks and give insight into
intelligent controllers that act as secondary parts of a neu-
ral network, modifying them based on new situations and
information.
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