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ABSTRACT
The human brain can generate new ideas, hypotheses and
candidate solutions to difficult tasks with surprising ease.
We argue that this process has evolutionary dynamics, with
multiplication, inheritance and variability all implemented
in neural matter. This inspires our model, whose main com-
ponent is a population of recurrent attractor networks with
palimpsest memory that can store correlated patterns. The
candidate solutions are represented as output patterns of
the attractor networks and they are maintained in implicit
working memory until they are evaluated by selection. The
best patterns are then multiplied and fed back to attractor
networks as a noisy version of these patterns (inheritance
with variability), thus generating a new generation of can-
didate hypotheses. These components implement a truly
Darwinian process which is more efficient than both natural
selection on genetic inheritance or learning, on their own.
We argue that this type of evolutionary search with learn-
ing can be the basis of high-level cognitive processes, such
as problem solving or language.

Keywords
Attractor network; autoassociative neural network; learning;
evolutionary search; Darwinian dynamics; neurodynamics.

1. INTRODUCTION
∗Also at: Department of Plant Systematics, Ecology and
Theoretical Biology, Research Group of Ecology and The-
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Budapest, Hungary.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931672

Previous work in neuroscience has proposed the hypothe-
sis that selection acts on a group of neurons [3, 2, 6]. This
is suggestive of a synergy between learning and evolution.
However, this synergy has not been exploited theoretically,
partly because, although invoking selection in an analogous
way as in evolution, these neuroscientific ideas regard the
process as a “one shot”, lacking the iterative (generational)
component, and, importantly means to further variation at
each round [9].

In order to properly explore the effects of learning on evo-
lution, or, equivalently, an evolutionary implementation of
learnable systems, it is necessary to consider three aspects:
multiplication, inheritance and variability [12]. In evolu-
tionary processes, either algorithms or biological, variability
comes from mutations and recombination of heritable units.
Furthermore, if these hereditary units affect survival, then
they constitute units of evolution. Importantly, this defini-
tion does not restrict the nature of the units, in the sense
that they might well be physical genes, organisms, linguistic
constructs or, in the case of this work, neuronal networks.

We introduce a minimal model of evolution where the indi-
viduals are attractor networks. This is intended to be a proof
of concept of possible mechanisms that occur in the brain.
However, we point out that there are also algorithmic ad-
vantages, because, as shown before, the evolution with neu-
rodynamics can be more powerful than selection or learning
alone [8, 10, 4, 5].

2. METHODS

2.1 Recurrent attractor networks
The individuals in our population are recurrent attractor

networks. These are networks that can learn several pat-
terns; each learnt pattern is called a prototype. Prototypes
become attractors: given the same input, the prototype, or
a highly correlated variant, is returned (Fig. 1, steps 1-2).
Also, there is certain set of inputs that will always return
the same prototype. This defines as a basin of attraction
towards the prototype, hence the name.

We consider binary neurons ζ ∈ {−1,+1} representing in-
active and active states, respectively. In our model, a neuron
i fires (ζi = +1) if the total sum of incoming collaterals, hi,
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is greater than 0, where
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and wik are the incoming associative weights and m takes
values in the patterns used for training.

We employ a learning scheme introduced by Storkey [13],
in which the associative weights are updated according to
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This update scheme has a larger learning capacity C =

κN (κ = 0.25) than the simpler and popular Hebb’s rule
(κ = 0.14) [13]. (Capacity is the number of different pro-
totypes that a network can store.) More important than
the capacity itself is the palimpsest property. Under Hebb’s
scheme if the capacity is surpassed, catastrophic forgetting
ensues and the network will be unable to retrieve any of the
previously stored patterns, forgetting all it has learnt. This
does not occur under the scheme of Storkey, in which older
prototypes are forgotten and replaced by new ones.

Our experiments used ℵ = 20 structurally identical at-
tractor networks, each consisting of N = 200 neurons, im-
plementing Storkey’s palimpsest learning rule, and initially
trained with random patterns.

2.2 Selection
We use a scheme of elitist selection, where fitness of a pat-

tern is defined as follows (Fig.1, steps 3-4): After provoca-
tion of each network i = 1, . . . ,ℵ we first evaluate Pearson’s
product-moment correlation ri between the output pattern
of the ith network, ζout

i , and an externally set target pat-
tern T (e.g. a cognitive problem to solve). Then, the pat-
tern with the highest r is selected to breed true: Ω ≡ ζout

b ,
where b = arg max{r1, r2, . . . rℵ}. We implement this selec-
tion scheme according to the following algorithm:

1: function Select.Best(n, P, T )
2: for i← 1,ℵ do
3: oi ← ni(Pi)
4: ri ←Pearson.Corr(oi, T )
5: end for
6: b← arg maxi(r)
7: return ob

8: end function

Note that in this scheme, attractor networks act simply as
a decoding function because they output a value that only
depends only on their previous training. Thus, at this stage,
although selection is implemented in accordance to evolu-
tionary notions, it acts on non-heritable particles. There-
fore, if the networks are provoked again with Ω, they will
simply return Ω.

3. RETRAINING
Selection on variation is necessary, but if there is no her-

itability, there is no evolution. The analogous process to
heritability in our system is implemented by retraining some
of the networks in the population (Fig 1, step 5). This
is achieved by training a subset of ℵR networks (different
in each generation) with Ω′, a mutated version (with rate
µR = 0.01) of Ω. This step is crucial since it constitutes

Figure 1: Evolutionary algorithm coupled with
learning. 1: provocation. 2: Output of prototype
variant. 3: evaluation of population output. 4: Se-
lection of best pattern Ω. 5: Retraining of networks
with mutated Ω′. 6: Provocation of population with
mutated Ω′′.

the basis for the Darwinian evolutionary search over attrac-
tor networks, as it effectively implements heritable variation
though retraining.

3.1 Mutation and sources of variability
As indicated in the introduction, we need to add sources

of variability. First note that attractor networks are noisy
in the sense that they return a pattern that has some mi-
nor variations to the prototype of the provoked attractor,
and in that sense these are “mutated” versions of their pro-
voked prototype. Occasionally, these mutated patterns fall
into alternative different attractors of other networks in the
population and consequently provoke prototypes that were
not provoked before.

A second natural source of variation is the appearance of
spurious patterns. In some cases, the network converges to
a pattern different from any one learned previously. These
spurious patterns are a linear combination of an odd number
of stored patterns:

ζspur
i = ± sgn(±ζm1

i ± ζm2
i . . .± ζmS

i ) (3)

where S is the number of the stored patterns [11].
However, these two sources of variability act before selec-

tion, which means that in an iterative scheme all networks in
the following round would be provoked with the same pat-
tern, which eventually leads to a halt (results not shown).
Therefore, after selection, we introduce further mutations
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to the optimal pattern. The selected pattern Ω is mutated
with rate µL = 0.005 before redistribution to each of the ℵ
networks (Fig. 1, step 6).

3.2 Emulated-network model
An additional model for input-output was employed to

emulate attractor networks without the need to explicitly
employ neural networks. In this emulated model, each in-
dividual stores Cf patterns (Cf can be arbitrarily tuned,
but for comparison we kept it close to the actual capac-
ity C of the networks we employ). When an individual is
fed with an input pattern it outputs the pattern that has
the closest Hamming distance to the input, with additional
noise (µe = 0.001). This procedure emulates the almost-
perfect recall property of the attractor networks, including
their noisy behavior.

3.3 Evolutionary algorithm
By algorithmically combining the elements above, we are

able to formally implement an evolutionary model that in-
cludes learning as heritable component.

Given the metaparameters ℵ, N, T, µL,ℵT , and µT , the
complete evolutionary algorithm is described in the following
pseudocode:

1: procedure Neurodynamics
2: Declare ℵ networks n each with N neurons
3: for i← 1,ℵ do . Train networks
4: τi ← random binary vector of length N
5: Train(ni) with τi

6: end for
7: ρ0 ← random binary vector of length N
8: Pi ← ρ0, i = 1, . . . , N . . Initial provocation vector
9: while Ω 6= T do

10: Ω← Select.Best(n, P, T )
11: for i← 1,ℵ do . New provocation vector
12: Pi ← Mutate(Ω) with rate µL

13: end for
14: R← Random vector of length ℵR . Retraining
15: for all i ∈ R do
16: τi ← Mutate(T ) with rate µR

17: Train(ni) with τi

18: end for
19: end while
20: end procedure

4. RESULTS
Learning of new patterns into the attractors allows the

networks to adapt to a solution by performing an evolu-
tionary search. The results of the evolutionary experiments
clearly prove that an appropriate architecture of attractor
networks (Fig. 1) can implement evolutionary search.

We first focus on the evolutionary search on a single peaked
landscape. Networks can build their own stepping stones
(Fig. 2) in order to reach the global optimum. This is
achieved though the learning of the actual best pattern of
the previous generation.

In this scenario, neither the global optimum nor a route
toward it is assumed to pre-exist in the system. We found
that the system can converge to the global optimum, and
this convergence is robust against a wide range of mutation
rates. The speed of convergence to the optimum increases
with the number of retrained networks ℵR (Fig. 2).

Figure 2: Evolutionary outcome of the learning-
search for the optimum for different number of re-
trained networks. Thick lines: network model; thin
lines: emulated morel. (See text for details.)

Note that the emulated-network model produces outputs
comparable to the neuronal population. This suggests that
non-genetic modes of inheritance have comparable evolvabil-
ity to genetic inheritance, which is relevant to understand
cultural evolution.

We now turn to a more challenging scenario, where the
environment is periodically switching between two optima.
For this we simply alternate the target pattern between T1

and T2 every genv(= 1000) generations. (This number was
chosen large enough as to allow learning of the landscape.)
After glearn(= 8000) we switch off network retraining. We
chose T1 = (1, 1, . . . , 1) and T2 = (−1,−1, . . . ,−1), both of
dimension N .

Figure 3 shows that the network population can quickly
adapt to changing environments. Different environments
have fixed global optima that are revisited from time to
time. After selectively finding and learning the optima of
each of the two environments separately for a couple of pe-
riods, further learning is suppressed. The fact that networks
are nevertheless able to recall the optimum fitness right after
the environmental change proves that they use previously
stored memories for this instead of repeatedly optimizing.
For this recall, however, a partially correlated input cue is
necessary to trigger the appropriate memory, otherwise the
input would not fall in the basin of the required stored pat-
tern. Note that the presence of an appropriate stored mem-
ory for the given environment makes the response to the
environmental change almost instantaneous.
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Figure 3: Fitness and recall accuracy over periodi-
cally alternating environments. Red: average fitness
〈r〉; green: best fitness (rob); ochre: distance of the
best output of the population from the closest one
stored in memory.

5. DISCUSION
Evolution by means of selection is rationalised and de-

scribed as a search on a fitness landscape, where a popula-
tion across generations climbs to the peaks.

Attractor networks have a somewhat different mode than
biological evolution. The reason is that networks, unlike
organisms, just map inputs to outputs, sieving out the vari-
ation generated by mutation, in turn counteracting selection
on the output values. In this sense, attractor networks work
against variability, impeding hill-climbing. Therefore, it be-
comes justifiable and utterly necessary to include “heredity”
through network retraining, which restores evolvability.

Our choice to use attractor networks for a proof of con-
cept of Darwinian neurodynamics is motivated by the fol-
lowing factors. First, attractor networks employ the same
architecture for generating, testing and storing novel pat-
terns. Second, they can retrieve previously learnt patterns
which facilitate evolutionary search by relying on past ex-
perience. Third, our choice of Storkey’s learning model is
significant because it naturally provides means to generate
novelty through the superposition of attractors. We inter-
pret the target T as the solution to an externally-posed prob-
lem and the hill-climbing elitist fitness landscape represents
cognitive advance towards T.

However, note that there is still a relatively narrow win-
dow of action for evolution to happen. On the one hand,
information transmission has to be accurate enough as to
allow fitness increase. But on the other hand, if information
transmission is too noisy, heritability is loss [7].

The equivalent idea was discussed by Adams [1] in his
“Hebb and Darwin”paper. There, he discusses that synaptic
replication and synaptic mutation are important factors for
the brain to implement a Darwinian system.

Synaptic replication refers to the strengthening of existing
synapses, in turn reflected in neural networks by the increase
in synaptic weights. He realised that copying is not enough,
but rather, inexact copies were necessary in order to test
new variants against the other functional alternatives.

6. CONCLUSIONS
Our work evidences that the synergy between neuronal

and evolutionary dynamics can implement an instance of

natural evolution that can be more powerful than natural
selection in the wild. This is because constrains which we
find in genetics, such as limited mutation, are not limiting.
This is thanks to the different nature of the network archi-
tectures relative to organisms that develop from genotypes.

Thus whilst network populations can on the one hand neu-
tralise heritability if untrained, when endowed with training
rounds during evolution can respond to selection more effi-
ciently than most genetic systems [5].

Attractor networks thus offer a proof of concept of holis-
tic replication of neuronal patterns that can have unlimited
hereditary potential.
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