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ABSTRACT

The design of circuits is an important research field and the
corresponding optimization problems are complex and com-
putationally expensive. Here, a Cartesian Genetic Program-
ming (CGP) technique was used to design combinational
logic circuits. Several configurations were tested for seeding
the initial population. First, the number of rows, columns,
and levels-back were varied. In addition, the initial popula-
tion was generated using only NAND gates. These config-
urations were compared with results from the literature in
four benchmark circuits, where in all instances it was pos-
sible to find that some seeding configurations contributed
beneficially to the evolutionary process, allowing CGP to
find a solution employing a lower number of fitness evalua-
tions. Finally, the variation of the number of nodes of the
individuals during the search was also analyzed and the re-
sults showed that there is a correlation between the topology
of the initial population and the region of the search space
which is explored.
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1. INTRODUCTION
The design of combinational logic circuits (CLC) is a dis-

crete optimization problem which requires knowledge and
creativity [1]. Particularly, a large set of possibilities is in-
vestigated in evolutionary design, as it is not limited by the
conventional knowledge of the designer [7].
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CGP [5] is a genetic programming technique in which the
programs are modeled as a graph and, thus, a large number
of computational structures can be easily represented, such
as CLCs [8]. Nowadays, CGP is one of the most efficient
methods for evolutionary design and optimization of digital
combinational circuits [6].

Here, we propose and test changes in the number of columns
and rows, as well as in the parameter levels-back and types of
gates used in the initial population generation of CGP. The
effectiveness of our approach is demonstrated when applied
to four benchmark problems.

2. CARTESIAN GP
CGP provides a great generality enabling the represen-

tation of neural networks, circuits, and other computational
structures [8]. The most common form of CGP uses a (µ+λ)
reproduction strategy.

Goldman [3] proposed a method in which a single active
gene is modified every time an offspring is generated. The
Single’s iterative process generates an offspring by mutat-
ing randomly selected genes until an active gene is changed.
When this mutation is used, one can see that: (i) one ac-
tive gene is mutated, (ii) inactive genes may be changed,
and (iii) no mutation rate needs to be specified by the user.
As Single Active Mutation achieved the best results on the
hardest test-problem from [3], here we adopted this muta-
tion operator for all the computational experiments.

3. DESCRIPTION OF OUR APPROACH

3.1 Heuristic Population Seeding Procedures
One can see that levels-back controls the connectivity and

affects the number the inactive nodes. Thus, we propose and
compare several scenarios for seeding the initial population.
Initially, by varying the three parameters in the representa-
tion of CGP: the number of columns, rows, and levels-back.
It is important to notice that this constraint is applied only
during the creation of the initial population.

Then another constraint was included: the initial popu-
lation was generated using only NAND gates. NAND gates
possesses a special property: they are universal, in the sense
that they can be used to create the three basic logic ex-
pressions (OR, AND, and INVERT). Thus it is possible to
implement any logic expression using only NAND gates and
no other type of gate. This characteristic provides flexibility
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and is very useful in logic circuit design [9]. Since the inter-
nal circuitry of the NAND gates are simpler, the resulting
circuits usually have better characteristics [2, 9].
Thus, the use of only NAND gates in the initial popula-

tion will be tested. However, along the evolutionary process
NAND gates can be exchanged by any other via mutation.

3.2 Analysis of the Evolution
Comparing the number of evaluations each algorithm re-

quires in order to solve a problem does not provide much
understanding concerning their relative performance [4].
The proposed approach is based on the idea of analyz-

ing the behavior of the topology when a beneficial mutation
occurs. Every time an improvement in fitness occurs, the
number of active nodes of the child is stored.
In all the following examples the median of this vector

was chosen as a parameter to analyse the variation of the
number of active nodes of the individuals during the search,
thus providing information on topology behavior.

4. EXPERIMENTS
For the comparative study reported in this paper, four

benchmark examples studied by Goldman [4] and widely
used in the electronics literature [9, 2] were chosen to verify
the effectiveness of our approach. For each of the examples
reported, we used µ = 1 and λ = 4 [4], and performed 51
independent runs. The best offspring replaces the parent if
its fitness is not worse than that of the parent. Ties among
offspring are broken by random selection and ties between
the offspring and the parent are awarded to the offspring:
in this manner inactive genes are allowed to drift, which
has been shown [6, 10] to significantly improve performance.
The algorithm is terminated when the maximum number of
evaluations is exhausted or a feasible solution is obtained.
The maximum number of objective function evaluations al-
lowed are 5000, 150000, 50000, and 1100000, respectively,
for the examples 1, 2, 3, and 4. For all problems, we used
the function set AND, OR, NAND, NOR.
The proposed technique were analysed considering the fol-

lowing four test-problems: 3-Bit Parity (Example 1), 16-4
bit encoder (Example 2), 16-4 bit decoder (Example 3), and
3-bit multiplier (Example 4). This last problem is very dif-
ficult by comparison to the other problems.
The following observations summarize our analysis of the

obtained results: (i) Varying only the levels-back was ben-
eficial to the evolutionary process in the Example 4; (ii)
Varying only the topology led to no improvement in all sce-
narios; (iii) Varying the topology and levels-back was bene-
ficial to the evolutionary process in the Examples 3 and 4;
(iv) Initializing using only NAND gates was beneficial to the
evolutionary process in the Example 4; (v) Initializing using
only NAND gates and varying levels-back was beneficial to
the evolutionary process in the Examples 1, 2, and 4; (vi)
Initializing using only NAND gates and varying topology
was beneficial to the evolutionary process in the Examples 3
and 4; (vii) Initializing using only NAND gates, and varying
both topology and levels-back, was beneficial to the evolu-
tionary process in the examples 1, 2, and 4; (viii) When
levels-back was at 25% the population was able to decrease
the amount of active nodes along the search; In most cases,
this behavior was beneficial to the evolutionary process. (ix)
The population that started with a high degree of connec-
tivity was able to decrease the number of nodes and thus

explore regions of the search space with different degrees of
connectivity; (x) When levels-back was set to 100% or 50%,
the number of active nodes in the solution is roughly the
same as in the initial population; and (xi) The levels-back

parameter determines not only the level of connectivity of
the initial population, but also defines the behavior of the
topology throughout evolution.

5. CONCLUSIONS
Experimental results confirmed the superiority of the pro-

posed heuristics over random seeding in reducing the number
of fitness evaluations to reach a feasible solution. Differently
from what has been pointed out in the literature, we have
shown that the parameter levels-back used to generate the
initial population should be constrained, instead of allow-
ing connections to be formed between any pair of nodes.
Additionally, using only NAND gates in the initialization
procedure led to increased performance in the majority of
the cases studied.
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