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ABSTRACT
We present Embodied Chaotic Exploration (ECE), a novel
direction of research into a possible candidate for Darwinian
neural dynamics, where such dynamics are occurring not at
the level of synaptic connections, but rather at the slightly
higher and more abstract level of embodied motor pattern
attractors. Crucially, the (chaotic) neuro dynamics are em-
bodied and it is the whole neuro-body-environment system
that must be considered, although the changes occur at the
neural level. ECE incrementally explores and learns mo-
tor behaviors through an integrated combination of chaotic
search and reflex learning. The architecture developed here
allows real-time, goal-directed exploration and learning of
the possible motor patterns (e.g. for locomotion) of embod-
ied systems of arbitrary morphology. The overall iterative
search process formed from this combination is shown to
have strong parallels with evolutionary search.

CCS Concepts
•Theory of computation → Self-organization;
•Computing methodologies → Cognitive robotics;
Evolutionary robotics;
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Introduction
There is a growing body of observations that intrinsic chaotic
dynamics exist in the nervous systems of humans and other
animals [5, 13, 4, 20, 19]. Some studies indicate intrinsic
chaotic dynamics in animal motor behaviors at both the neu-
ral level [13, 19] and the level of body and limb movement
[14]. These seem particularly prevalent during developmen-
tal and learning phases (e.g. when learning to coordinate
limbs) [10]. The existence of such dynamics in both normal
and pathological brain states, at both global and microscopic
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scales [20], and in a variety of animals, supports the idea that
chaos plays a fundamental role in neural mechanisms [18].

Although the functional roles of chaotic dynamics in the
nervous system are far from understood, a number of in-
triguing proposals have been put forward. Kuniyoshi and
Sangawa [7] made the important suggestion that chaotic
dynamics underpin crucial periods in animal development
when brain-body-environment dynamics are explored in a
spontaneous way as part of the process of acquiring motor
skills. A few robotics studies have demonstrated that chaotic
neural networks can indeed power the self-exploration of
brain-body-environment dynamics in an embodied system,
discovering self organized patterns that can be incorporated
into motor behaviors [8, 6, 12].

This idea has been successfully applied for generating
robot locomotor behaviors [15, 16] to allow goal-directed
(fitness-directed) search through a general and fully dy-
namic embodied neural system, whereby chaotic search is
exploited through adaptive bifurcations for the real-time,
goal-directed exploration and learning of the possible
locomotion patterns of an articulated robot of an arbitrary
morphology in an unknown environment. This was further
extended to explore beyond the fixed set of locomotor
behaviors that is initially given by the physical embod-
iment by allowing the iterative use of embodied chaotic
exploration (ECE) through the addition of proprioceptor
adaptation [17]. These studies raise an interesting idea
about the relationship between fitness-directed ECE and
Darwinian neural dynamics [3] and we suggest there is
a strong direct analogy between ECE and estimation of
distribution algorithms (EDAs) [11, 9], a well-established
class of evolutionary algorithms, and that ECE can be
viewed as a specialized form of Darwinian neural dynamics.

ECE with Proprioceptor Adaptation
While many optimization and search strategies use random
perturbations of the system variables to search the space
of possible solutions, ECE attempts to generate a set of
attractors (e.g. locomotor behaviors) that spontaneously
emerges from the interactions between the neural system
and its physical embodiment. The intrinsic chaotic dynam-
ics of the system are used to naturally power a search process
without the need for external sources of noise. The system
employs the concept of Chaotic Mode Transition with exter-
nal feedback [1], which exploits the intrinsic chaoticity of a
system orbit as a perturbation force to explore multiple syn-
chronized states of the system, and stabilizes the orbit by
decreasing its chaoticity according to a feedback signal that
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Figure 1: A conceptual illustration of ECE and the schematic diagram of the control system. (A) The state space of a
neuro-body-environment system coupled through physical embodiment consists of different basins of attraction with different
performance levels. An exploration process finds the desired attractor (attractor C), by varying the complexity of the orbit
dynamics through changing the system chaoticity according to the performance feedback. Lump spaces and narrow passages in
the landscapes of higher complexities represent quasi-attractors and itinerant pathways, respectively. (B) Schematic diagram
of the neural control system for the articulated robot with arbitrary DoFs (3-DoF case is shown). The red connections
from muscle proprioceptors (Group Ia, II, and Ib) to alpha motor neurons are learned by Hebbian dynamics in order to
sustain (memorize) the phase relationship between the discovered motor pattern and the ongoing sensor signals. (C) Overall
dynamics of the repeated exploration-learning through landscape deformation. ECE samples the population of attractors
(motor patterns) and explores the patterns by driving the system orbit through the state space. When the orbit is entrained
in a high performing basin of attraction, the dynamics is further stabilized by proprioceptor learning. The learning deforms
(mutates) the attractor landscape producing a new landscape that inherits major parts of the structure of the previous state
space. The process then repeats.

evaluates the behavior (Fig. 1A). Specifically, an evaluation
signal, which measures how well the locomotion behavior of
the system matches the desired criteria (e.g. locomote as
fast as possible), is used to control a bifurcation parameter
that alters the chaoticity of the system. During exploration,
the bifurcation parameter continuously drives the system be-
tween stable and chaotic regimes. If the performance reaches
the desired level, the bifurcation parameter decreases to zero
and the system stabilizes on this desired behavior.

The overall architecture of the system is illustrated in Fig.
1B. The neural architecture is inspired by the organization of
spinobulbar units in the vertebrate spinal cord and Medulla
Oblongata (the lower part of the brainstem which deals with
autonomic, rhythmic, involuntary functions). The archi-
tecture can be applied to a physical system with an arbi-
trary number of degrees of freedom (one CPG/alpha/muscle
group per degree of freedom). Each degree of freedom of the
embodied system is controlled by an actuator (muscle) con-
nected to a (alpha) motor neuron, which integrates descend-
ing commands from a corresponding central pattern gener-
ator (CPG) neuron and proprioceptive signals from all ac-
tuators/muscles. Each actuator/muscle conveys three types
of proprioceptive signal: group Ia afferents, which measure
the rate of change of stretch (or rotation); group II affer-

ents, which measure the degree of stretch (or rotation); and
one corresponding to the signal from the golgi tendon organ
(group Ib), which provides muscle force information. Each
CPG unit is fed by each of the three proprioceptive signals
from the homonymous muscle/actuator (the blue connec-
tions in Fig. 1B). These are integrated and modulated by
a sensor adaptation module (SAM) before being passed to
the CPG unit. In addition, the group Ia and II proprio-
ceptive signals are fed from all muscles/actuators to each
alpha neuron (the red connections in Fig. 1B), which are
subject to learning. The CPG units are only coupled indi-
rectly via bodily and environmental interactions (coupling
through physical embodiment), which exhibits multiple syn-
chronized states (modes) that reflect the body schema and
its interactions with the environment, each of which can be
regarded as a potential candidate for meaningful motor be-
havior. The exploration process, powered by adaptive bi-
furcation through the feedback evaluation signal, allows the
system to become entrained in these modes until one is found
that is stable and high performing. The whole process can
be interpreted as an iterative, continuous, and deterministic
version of stochastic trial-and-error search (for fitter attrac-
tors within a given state space), which exploits the intrinsic
chaotic behavior of the system.
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Figure 2: A visualization of the attractor landscape deformation of a simple mass-spring system (top) and the exploration
behavior of a three-armed finned swimmer (bottom) [17]. Each spring-damper complex represents the simplified Hill type
muscle, and the torsional version of the same muscle model was used for the swimming robot. The 2D attractor landscapes
are drawn by plotting the points from the two phase differences: the difference between the muscles 1 and 2, and the muscles 1
and 3 for the mass-spring system (colors represent the stability: from blue to red), and the phase differences of the arms 1 and
2, and the arms 1 and 3 for the swimmer (which has three pairs of antagonistic torsional muscles). The performance graphs
and the landscape of the swimmer robot depict only the points that the robot can access during the exploration process (see
text for further details).

The learning of the afferent weights of the alpha motor
neurons are smoothly triggered at the end of each explo-
ration epoch. As the system stabilizes by discovering a use-
ful pattern, the learning of connections between the muscle
sensors and the alpha motor neurons are dynamically acti-
vated using an adaptive synchronization scheme [2] in order
to capture and maintain the discovered motor pattern. This
learning process (proprioceptor adaptation) changes the dy-
namical properties of the embodied system, thus deforming
(mutating) its state space (Fig. 1C). The new state space in-
herits most of the properties of the previous one, but, impor-
tantly, new potential pathways for the chaotic exploration
process have been opened up, leading to the discovery of
new, potentially fitter attractors. The process then repeats
until some stopping criteria is met. Thus, exploration and
learning are merged as an online continuous dynam-
ical process such that the desired motor behavior is
spontaneously explored and discovered in a coherent
way through the changing search space by adaptive
learning.

Fig. 2 (top) shows examples of the deformation of an
attractor landscape by proprioceptor learning using a sim-
ple spring-mass system. The attractor landscape of the
spring-mass system, which is initially formed by physical
embodiment, reveals that a few groups of effective attractors
are distributed symmetrically over the phase space, where
the three quadrants (1st, 2nd, and 4th) have highly stable
group of patterns (near the red points) and one quadrant
(3rd) has patterns with the lowest stability (mostly blue).
The performances for each quadrant are manually set such
that the most unstable region has the highest performance

(around the center of 3rd quadrant) to make the overall re-
quired behavior suitably challenging. At each exploration-
learning epoch, the deformation sequences show that the
reflex learning creates/deforms the stable regions (attractor
basins) while it generally preserves the regions near the pre-
viously selected patterns, until it eventually gets a chance
to stabilize the desired regions. The repeated exploration-
learning for a freely moving simple underwater robot (Fig.
2 lower) shows that the system visits a wider variety of pat-
terns and finds higher performing patterns than the basic
system without the proprioceptor learning. While a size-
able proportion of the newly visited patterns created by re-
flex learning have a lower performances, a significant portion
of them have higher performances than the system without
the proprioceptor learning (far denser red dots in higher per-
formances). The discovered location on the landscape plot
shows the exploration with learning (red dots) can visit far
wider regions that are unable to be accessed by the system
without learning.

Relationship between ECE and Evolutionary
Neural Dynamics
The overall ECE process has a number of interesting paral-
lels with evolutionary dynamics. The whole system (liter-
ally) embodies a population of (motor behavior) attractors,
which are sampled by chaotic exploration. The proprioce-
tor learning process warps (mutates) the state space such
that a new landscape of attractors is created, but one that
inherits the major properties of the previous (ancestor) land-
scape (replication with variation). The process repeats with
the new population being sampled by chaotic exploration.
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The evaluation mechanism effectively selects a sufficiently
fit attractor, which then directly influences the creation of
the new landscape through application of the proprioceptor
adaptation mechanism.

Since the population of attractors is effectively implicit
(the intrinsic dynamics of the system drive it to sample the
space of attractors), our embodied system can be thought
of as a kind of generative search process. This is loosely
analogous to the generative statistical models used by es-
timation of distribution algorithms (EDAs) [11, 9], which
are well established as part of the evolutionary computing
canon. Instead of using an explicit population of solutions
and the traditional machinery of evolutionary algorithms,
EDAs employ a (often Bayesian) probabilistic model of the
distribution of solutions, which can be sampled in order to
generate possible solutions. Search proceeds through a series
of incremental updates of the probabilistic model guided by
feedback from the fitness of sampled solutions. In an analo-
gous way, our generative system (the overall system dynam-
ics) is incrementally updated in relation to evaluation based
feedback. The overall system dynamics are the generative
model, the exploration phase is the sampling step (with the
dynamics of the maximum desired performance controlling a
selection pressure), and the reflex learning process provides
a form of mutation that facilitates the replication (with vari-
ation) of the whole phase space, now containing a slightly
different population of attractors, but with a bias toward
preserving more stable and fitter regions.

The current form of the system is like an ultra elitist evolu-
tionary algorithm: only a single fit member of the population
directly influences the next generation, whereas other mem-
bers only have an indirect effect through influencing the way
the population is sampled by chaotic search. An interesting
extension, and the focus of further work, will be to incor-
porate (fitness dependent) influence from a larger sample
of the population in creating the new attractor landscape.
This will then create solidly Darwinian neurodynamics in
a neural architecture that is both practical and fully bio-
logically plausible. This work thus points toward possible
fully integrated and intrinsic mechanisms, based entirely on
neuro-body-environment interaction dynamics, that might
be involved in creating Darwinian processes that could con-
tinually run within the nervous systems of future robots [3]
without the need for off-line processing or sleight-of-hand
magic black boxes.
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