
Multi-UAV Path Planning with Parallel Genetic Algorithms
on CUDA Architecture

Ugur Cekmez
Yildiz Technical University

Computer Engineering
Department

istanbul, Turkey
ucekmez@yildiz.edu.tr

Mustafa Ozsiginan
Turkish Air Force Academy

Aeronautics and Space
Technologies Institute

Istanbul, Turkey
mustafaozsiginan@gmail.com

Ozgur Koray Sahingoz
Turkish Air Force Academy

Computer Engineering
Department

Istanbul, Turkey
sahingoz@hho.edu.tr

ABSTRACT
In recent years, the use of Unmanned Aerial Vehicles (UAVs)
has grown quickly due to its low cost and easily program-
ming for autonomous path following for accomplishing dif-
ferent types of missions. Due to the numerous advantages of
multi-UAVs, when comparing with a single powerful one, to
perform reconnaissance, monitoring, detection and survey-
ing missions the use of multi-UAVs is generally preferred.
While the number of control points and the number of UAVs
are increased, the complexity of the problem also increases.
This paper presents a solution to the problem of minimum
time coverage of ground areas using a number of UAVs. The
solution is divided into two parts: Firstly the area is par-
titioned with K-means clustering and then the problem is
solved in each cluster with parallel genetic algorithm ap-
proach on CUDA architecture. To illustrate the method-
ology, the paper presents the experimental results obtained
with a multi-UAV system, which has a different number of
control points. The results showed the proposed approach
produces efficient solutions for these type NP-Hard problems
of homeland security applications like wide-area surveillance
and site security by using multiple UAVs.

Keywords
Parallel Evolutionary Algorithms; K-Means Clustering; 2-
opt; Multi-UAV Path Planning; Genetic Algorithms

1. INTRODUCTION
An Unmanned Aerial Vehicle (UAV) is a remotely or au-

tonomously controlled aircraft that can carry different pay-
load types such as cameras, sensors, communications, and
electronic warfare equipment. Due to its properties like
small size, low cost, low risk for human operator/pilot, in-
creased flight time; UAVs have enormous potential in civil-
ian and military domains.

As a consequence of growing research in robotics and au-
tonomous control systems, the UAV technology has seen

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931679

a fast ascent in the previous two decades. UAVs have in-
creased usage in firefighting applications, military missions,
search and rescue scenarios, surveillance, reconnaissance,
target engagement, exploration of unknown environments,
etc.

Apart from the commercial planes which fly the predefined
trajectories, UAVs have dynamically changing ones that de-
pend on the terrain and the mission dynamics. The path
planning is an essential part of the UAV’s autonomous con-
trol module and it mainly draws the path that a UAV will go
over. With the detailed definition, a path planning enables
a UAV to find the optimal path from a start point to an
end point while visiting all necessary control points (CPs).
According to the required mission, there needs to be some
criterion such as minimizing the traveled distance, the aver-
age altitude, the fuel consumption and the radar exposure.
In this case, the path planning process can be formulated as
a minimal cost optimization problem.

As the constraints of the problem and the number of con-
trol points increases, the complexity of the problem has
grown. To cope with this complexity, researchers have grad-
ually moved from using deterministic algorithms to using
non-deterministic ones such as evolutionary / swarm algo-
rithms. Usage of Genetic Algorithms (GAs), Particle Swarm
Optimization, Ant Colony Optimization, etc. showed an in-
creased performance on path planning type NP-Hard prob-
lems. However, while the number of CPs are increased, these
algorithms are not sufficient especially in time-constrained
conditions. Therefore, parallel implementation of these algo-
rithms is implemented in some studies to solve the problem
in a fewer execution time. By this way, acceptable UAV path
planning can be achieved in large-scale application areas.

Usage of single UAV is not sufficient to complete the mis-
sion in an acceptable time in case of the enlarged mission
theatre. The increasing demand on UAVs has brought into
focus several challenges, which are associated with the use
of multiple UAVs in the operations. Employing UAV teams
can reduce the time to accomplish the required mission; how-
ever the problem becomes an optimal resource allocation
problem, which is NP-hard. Therefore, in recent years, us-
age of multi-UAVs is preferred, and the number of UAV is
added as a new constraint of the path planning problem.

UAV Path planning problem can be seen as a modified
form of Travelling Salesman Problem (TSP) in its basic rep-
resentation. TSP type problems can be used in the formu-
lation of different application areas. Especially, in the last
decades, researchers have began working on large-scale ones

1079

and the aim is to have high quality solutions in a reason-
able time period. As the hardware systems are improved in
terms of computational resource, most of the studies focus
on increasing the full use of this resource as well as increas-
ing the throughput of the optimization algorithms’ solutions
while decreasing the computation time.

One of the key points for autonomous control of a UAV
is to find the shortest flying path by fulfilling whole con-
straints such as threatened area, obstacles, borderlines and
the aim of the mission. In recent years, researchers have been
studying and proposing a wide variety of solutions for UAV
path planning. There exist lots of path planning techniques,
which use A* [13], Genetic Algorithms [4], Ant Colony Op-
timization [5], Particle Swarm Optimization (PSO) [2], etc.
These techniques mostly find the convergence to the optimal
results as they are using known data sets at hand.

Sanci and Isler [11] suggest a solution to calculate flight
planning for a single UAV. The proposed algorithm uses par-
allel GA that works on Graphical Processing Units (GPUs).
The study indicates that the CPU and the GPU codes vary
in terms of the constraints and resource the programming
languages use, but both can be thought as logically equiva-
lent. However, they solved only a single UAV path planning
problem. On the other hand, Sathyaraj et al. [13] compared
the computational times of Dijkstra, Bellman-Ford, Floyd-
Warshall and the A* algorithms for multi-UAV path plan-
ning. The results in the study show that A* performed bet-
ter in finding the shortest path for multi-UAV system com-
paring to other algorithms. Although they tried to solve a
multi-UAV path planning problem, the proposed algorithm
is not sufficient while the number of CPs is increased.

However, multiple UAVs’ path planning problem is similar
to multiple TSP problems (or mTSP problems), in its sim-
plest mode. In study [8], the authors propose two methods
for partitioning the problem set for multi-UAV path plan-
ning. According to the study, K-Means and Gaussian Mix-
ture Model are used to partition the problem and GA as well
as ant colony optimization is used to find the optimal paths
for the sub problems. The algorithms are implemented to
run on CPUs. In [10], Sahingoz proposed another solution
of multi-UAV path planning problem by using genetic algo-
rithm. However, due to its computational time constraints,
he conducted a test on a relatively small scale problem with
132 control points.

Figure 1: A sample multi-UAV path in 3D Environ-
ment

Apart from these studies, we are focused on solving a large
scale UAV path planning problem with numerous control
points with the help of evolutionary algorithms and with
the power of parallel computation on CUDA architecture.

Figure 2: Thread - Memory organization in CUDA.

Therefore, in this paper, it is aimed to check several control
points in the mission theater by using multiple UAVs as de-
picted in Figure 1. Due to the increased number of control
points, this problem turns into a more complex form, and
it takes a great time to solve with deterministic algorithms.
Therefore, a parallel GA is preferred, and the proposed al-
gorithm is tested on a parallel programming and computing
platform: CUDA. The experimental results validate the ef-
fectiveness of the proposed solution.

This paper is organized as follows. The underlying ar-
chitecture is presented in Section 2. The methodology of
the proposed algorithm including the seed calculation, clus-
tering and solving with genetic algorithm, in which all are
implemented on parallel architecture, are detailed in Sec-
tion 3. In Section 4, the experimental results are depicted
and compared with serial execution. Finally, we conclude in
Section 5 with some thoughts on future work.

2. UNDERLYING ARCHITECTURE
In recent years, the GPUs are one of the most preferred

parallel computing platforms in massive computation with
reasonably low cost. Although the GPUs are the easy-
to-buy computing devices, they can perform thousands of
Giga-FLOPS (floating point operations) per second. Since
NVIDIA announced its CUDA architecture in 2006, GPUs
are in the way of becoming one of the general-purpose com-
putation devices under consideration. Comparing with the
conventional CPU architectures, GPUs have a better orga-
nization for implementing data intensive parallel algorithms.
In the hardware model of CUDA capable GPUs, there are
several Symmetric Multiprocessors (SMs) including many
low-frequency cores on the chip. In the application model
of CUDA, there are a number of three-dimensional grids.
These grids have the threads located in the thread blocks.

1080

Each thread has its own copy of device function and pri-
vate data. The basic thread-memory organization model of
CUDA is shown in Figure 2.

Considering the basic software model of CUDA, simple
algorithms turn into the large problem solvers by simply
dividing the problems into parts, solving these parts sepa-
rately and combining them with a proper data type. Then
it becomes a parallel working model of the corresponding
algorithm.

3. PARALLEL SOLUTION OF THE PROB-
LEM

In this study, it is aimed to solve the multi-UAV path
planning problem by using an evolutionary algorithm: GA.
It is known that the evolutionary algorithms are one of the
most used algorithms in solving NP-hard problems where
the complexity increases exponentially as much as the prob-
lem domain gets bigger [7]. While the evolutionary algo-
rithms produce a feasible solution in an acceptable time,
increasing the problem size still requires more time. There-
fore, there is a need for an additional mechanism to solve
the problem in a quicker way. Comparing the efficiency of
both the conventional and the parallel solutions for the evo-
lutionary algorithms, especially for GA, one can clearly see
that it is no longer feasible to use the classical serial models
considering the recent advances [4, 6]. Due to the low cost of
GPUs and their usage in the field of general-purpose parallel
computation, buying and using these GPU cards are getting
easier for the end user and for the scientists. As a result,
the scientists trend to focus on solving their problems on
these parallel computation platforms by implementing new
algorithms. Based on such a promising technology, in this
study, a parallel GA model is developed and adapted to solve
the TSP-like path finding problems. In the scenario of this
study, a multi-UAV system is optimized where each city in
the TSP is considered as a control point and the UAVs are
responsible to fly over these control points. UAVs are then
expected to return to the depot point. A sample mission
theater as depicted in Figure 1.

The scenario requires the problem domain to be parti-
tioned into K convenient parts and each part is assigned to
a single UAV. In this case, partitioning must be in a mean-
ingful structure which satisfies two conditions. The first one
is to have each UAV fly over such a cluster that other UAVs
do not overlap the control points of others. The second one is
that sending multiple UAVs must decrease the mission com-
pletion time. For this aim, an easy-to-implement clustering
algorithm, K-Means, is chosen and implemented in parallel
to take advantage of the underlying GPU to the utmost. Af-
ter the partitioning is completed, the problem is divided into
K sub problems in which each problem will be solved as a
single UAV path planning problem. Having many sub prob-
lems that are smaller than the whole original problem means
that there exist many relatively small search spaces. As the
problem domain gets smaller, each UAV is now responsi-
ble for traversing smaller number of control points and the
time complexity of the problem reduce substantially, too.
Knowing that the problem domain is now smaller for each
UAV, the GA, running for each sub problem with the same
evolutionary operators, will theoretically end up with bet-
ter fitness values. Even if the population number and the
iteration count of each sub GA are decreased in a reason-

able amount, the possibility of achieving good fitness values
may stay high by gaining the extra computation time. The
parallel GA algorithm is explained in section 3.3 in detail.

This approach has outstanding gains since it allows to sim-
plify the path planning problem and needs less computation
resource, but there are still a few issues to be considered in
the background, such as interpreting the outcomes of using
either one UAV for the whole problem domain or multiple
UAVs for the partitioned sub problems. One of the main
criteria that must be addressed in such an interpreting is
whether using multiple UAVs is more useful considering the
management resource of all these UAVs, or does it waste
these resource. This argument is discussed with the help of
experimental results taken from this study in Section 4.

In this study, the proposed algorithm is composed of three
main functions which run on GPU: generating random num-
ber seeds for the GA work flow, constructing the initial pop-
ulation of size N and evolving it through the generations, and
finally solving the problem with parallel genetic algorithm.

3.1 Empowering Probabilistic Operators
It is known that genetic algorithm approach inherently

hosts for probabilistic operators. Varying from initializing
the first population to selecting the parents for the next gen-
eration children, the GA needs high quality of randomness
to keep the results from converging poor results.

As of the first step, the algorithm computes N random
number seeds by using cuRAND defined in CUDA SDK.
All these seeds are kept in a 1-D array in the GPU mem-
ory. There are two main reasons this library is used. One
of them is that the seeds are created by utilizing all the
available cores in the GPU, which means that creating the
seeds is almost at no cost. After filling in the array of seeds,
the probabilistic operations of GA are able to use the corre-
sponding seeds to provide randomness. Each CUDA thread
having a unique ID pops its seed and constructs a random
number when it needs. The other highlight here is that
cuRAND provides more realistic randomness comparing to
standard rand() functions of C++. The proposed algorithm
in this study uses N threads to construct a random seed
array.

3.2 Parallel K-Means Algorithm
K-Means is a simple clustering algorithm that partitions a

given problem set into K clusters. Each entry in the clusters
has the nearest mean with respect to their similarity mea-
sure. The mean of each cluster is named as centroid. The
centroids are iteratively updated to maximize the similarity
of entries inside the clusters. In this study, it is aimed to
reduce the heavy parts of the K-Means algorithm by basi-
cally distributing its centroids through a number of threads
where each point is assigned to a centroid in parallel.

The basic work flow of how the partitioning is done is
defined in the pseudo-code in Algorithm 1.

As a detailed explanation, the inputs to the K-Means al-
gorithm are the coordinates of the control points in this
scenario. The parallel algorithm determines K random cen-
troids by going through these points at first. This step is run
under a CPU and then all the points including the centroids
are sent to a function that runs parallel on the GPU. In this
step, each thread represents a point in the problem domain.
Each thread takes one point and loops through the centroids.
Each thread then assigns a label of the closest centroid to

1081

Algorithm 1 Basic work flow of K-Means for partitioning
the problem space

1: procedure K-Means
2: for iter in range(100) do
3: for i in range(K) do
4: centroids.append(randomPoint)
5: end for
6: for each thread as point p do
7: labels.append(findNearestCentroid(p,centroids))
8: end for
9: for i in range(K) do

10: updateCentroid(centroids(i),labels)
11: end for
12: end for
13: result ← getTheBestPartition
14: end procedure

it’s point. The function returns a label array where each
index in the array corresponds to a label of a point. Each
label here corresponds to a sub cluster. The centers of the
labeled points represent the new centroids of each cluster. In
this step, as the partitioning process can be distributed over
K sub problems and K is a relatively low number, solving it
with the high-frequency CPU cores in parallel would yield
better time performance comparing to low-frequency GPU
cores. However, as the problem size and K gets bigger, it
is observed that using GPU parallelism turns out to better
serve it. The process continues over several iterations aim-
ing to search for better cluster distributions. In this study,
K-Means Algorithm has a fixed number of iterations where
the iteration count is 100. The algorithm runs 10 times for
each problem domain and the best distribution is fetched to
better feed the Genetic Algorithm. The basic principle of
the parallel K-Means Algorithm is shown in Figure 3.

Figure 3: Parallel K-Means Algorithm.

3.3 Parallel Genetic Algorithm
One of the main efforts in search of having better con-

vergence for the big problem space is generally to optimize

the conventional approaches with the help of accumulated
knowledge. Combining this knowledge with the modern
hardware may result in a state of the art solution in return.
Considering the constraints of the various types of UAVs in
real world, it can be argued that a single UAV can only be
actively used in the small-scale missions. It is likely that
distributing a task to more than one UAV may yield better
performance in a number of cases such as exploring a given
area more effectively in less time. By using the advantage
of being many, these UAVs can also be used to provide a
fault-tolerance at a certain level.

In the scenario of this study, there is a problem space that
is exceeding the limits of a single UAV, which the UAV will
have difficulties to complete the whole task even if the path
finding problem is solved optimally. As the main motivation
of this study, it is aimed to distribute the problem domain
to a multi-UAV system to apportion the heavy problem into
more feasible pieces. In return, the gain varies from hav-
ing the task completed in a shorter time to less use of the
resource.

One of the conventional approaches to find the optimal
path for a given set of points in various situations is to use
the evolutionary operators of GA [1, 12]. Since it produces
acceptable solutions in a limited time, the GA approach is
taken into consideration and is optimized to run in parallel
on GPUs. Multi-UAV problem requires division of the prob-
lem areas into sub domains and this can be done in various
ways. In this study, this partitioning process is handled by
the help of K-Means Clustering Algorithm and each parti-
tion is sent to the GA for producing an acceptable solution.

Initial Population: Creating an initial population for
the GA is probably one of the most aspects of the whole
since it is the one step before the evolving process starts.
All the evolution starts by taking the individuals from ini-
tial population and have them evolved by the genetic op-
erators. An example individual is represented in Figure 4.
To make a good start, one can take a computational model
such as neighborhood metrics. It may be a desired option
when the computational resources are limited to be able to
handle a big population size or the computational time is
restricted for a few iterations. Having a better initial popu-
lation may return as a fast convergence to the near optimal
solution. In this study, it is not indeed concentrated to make
calculations to have a better initial population. Instead, the
initial population is created randomly by simply shuffling
the chromosomes in parallel.

Figure 4: A sample individual in the population.

Comparing with the process of creating random number
seeds in the previous section, it is similar to construct and fill
in the initial random population array. In this step there are
N CUDA threads each using previously constructed random
number seeds with their IDs. Each thread is responsible for
shuffling N chromosomes and then putting the newly created
individual into the 1-D initial population array. The basic
principle of creating this population is depicted in Figure 5.

Fitness Function: The fitness function in GA is what

1082

Figure 5: Constructing a random initial population.

defines the solution space of the problem. It is very cru-
cial in the aim of solving the problem properly and being
a guiding factor of evolving new solutions. In this study,
the fitness function is as simple as calculating the total Eu-
clidean distance between the points through the path the
UAV follows.

Evolving the Population: After the initialization parts,
all the necessities the GA requires has met. Now it is time
to evolve the initial population until a stopping criterion is
reached. In the parallel approach, all the conventional steps
of the GA such as parent selection, crossover, mutation and
elitism are used as they are. In addition, the experiments
showed that using a local optimization technique (2-opt) in-
creased the solution quality significantly at each iteration.

The evolutionary operators work as follows. The first step
is to choose two individuals to match as the parents. The
parents are put into the crossover step to combine their spe-
cific parts to create one new child. The newly generated
child is then mutated, by a given probability rate. Before
the child is ready to find a place in the new generation, the
2-opt local optimization technique is applied to that child to
overcome the possible crosses in the calculated path. The
basic work flow of evolving process is depicted in Figure 6.
Detailed information about the evolving process is explained
in the following subsections.

Elitism: The term elitism in the evolving process is sim-
ply to migrate some of the best individuals directly to the
next generation without any genetic operators affected to
those individuals. What the term best means is that these
individuals, namely chromosomes, have the lowest fitness
value in terms of the total distances of their solution paths.
Keeping these elites from being affected by the genetic op-
erators will guarantee that the overall best solution for each
generation will not be worse than the previous generation.
So, if the new generation produces worse children, the elite
individuals are kept. In this study, the best 32 individuals of
each generation in the iterations are kept as elites. Why the
number stays 32 for each problem set lies in the structure
of how CUDA threads handle the conditional statements
in the code. The CUDA threads work truly parallel in the
thread groups called warps. Each warp has 32 threads in the
SMs (Symmetric Multiprocessors). Each warp works con-
currently in the whole system. It is known that if there are
conditional statements in the CUDA code such as “if, else”.

Figure 6: Evolving step for each individual.

These statements are handled by warps and the warps met
the “if ” condition works first and after that the “else” state-
ment works. This means that if there are 32 (or its multi-
ples) threads that met the condition, then all these threads
work in parallel as warps. Similarly, if the number of threads
is fewer than 32 (or its multiples), then there are free slots in
the warps while the “if ” condition is processed. This is the
basic definition of why elitism is taken as a fixed number.

Selection of Parents: The individuals not in the elite
list are replaced in the evolving process with the help of ge-
netic operators. According to a selection rule, in this case
it is tournament selection, four individuals are randomly se-
lected. After selecting the individuals, the best individual of
four is selected as the first parent. The same process is fol-
lowed to choose the second parent. Then these two parents
are collected by one thread, which is responsible for the ith
index in the individual chromosome in the population array.

Crossover: Creating a new child by combining the par-
ents with a selected technique is called crossover. It is one of
the core concepts in the GA. The principle here is to inherit
the characteristics of the parents to the new child. As one
can create two children from a crossover, in this study the
crossover produces one child. It is aimed for one thread to
be responsible for one index in the population and replace
it with the new generation individuals through the itera-
tions. For the simplicity of its implementation, the 1-point
crossover technique is selected. In 1-point crossover, start-
ing with the first field, a randomly selected portion of the
first parent is directly put to the new child and the remain-
ing blank fields are then filled in by the second parent. To
prevent the duplications in the newly created child chromo-

1083

some, only the unselected parts of the first parent is chosen
from the second one.

Mutation: As the iterations continue, there is a possi-
bility for the chromosomes to converge to a local optimum
value. This happens when a poor quality of the initial pop-
ulation is used or when the random selections are not ran-
dom enough as explained in the previous sections. Even the
structure of the problem or the point sequence in the prob-
lem may be inclined to be converged to a local optimum.
In such cases (including the scenarios where everything goes
well, as it is supposed to be) a jumping operator, which the
individuals are changed according to a technique is used.
This step is called mutation. In mutation step, the individ-
ual is mutated by a possibility. By mutating some individu-
als, the diversity between the generations tends to be high.
In this study, an individual is simply mutated by randomly
selecting its two points and swap them. Swapping the points
may result in a small or a big change in the fitness of the
individual. The individual may have better or worse fitness
after the mutation. However, there is a local optimization
to prevent the generations getting worse.

Local Optimization: The conventional GA saves the
elites of each iteration and it guarantees that the best so-
lutions stay there, thus it keeps the diversity of the gener-
ations. The steps explained above are very promising with
the aim of optimizing the problems. However, the experi-
ments showed that sticking with the conventional approach
requires so many iterations to reach a feasible error rate and
it is likely to converge to a sub optimal solution. To keep
from converging immediately, a local optimization technique
can be applied to a few chromosomes.

In this study, 2-opt local optimization technique is adapted
to fine-tune the newly generated chromosomes from the GA
operators. 2-opt takes a chromosome that has a path crosses
over itself and re-constructs it to delete the cross. It does the
job by iterating over the path of chromosome N times and
checking whether there exists a hidden pair of nodes that is
better than an actual one [9]. The procedure behind the 2-
opt is straightforward. If distance(i, i+1)+distance(j, j+1)
is smaller than distance(i, j +1)+distance(j, i+1) then re-
move the connection between i and j + 1 and connect i with
i + 1. Similar connection is made on j and j + 1.

Figure 7: 2-opt local optimization technique.

Just to be able to use the underlying massively parallel
architecture to the utmost, we applied a 2-opt local opti-
mization technique for the first 32 generations in the whole
iterations. It is experienced that having 2-opt enabled for
the generations turns into a time consuming (BigO(N2))
event and no significant quality difference is observed com-
paring to its usage on the first 32 generations. The number
32 comes from the GPU warps that are explained in the ear-
lier sub sections. So, applying 2-opt for a few generations
turns each of those generations better. So from where it

left off, continuing the conventional approach without local
optimization still brings better results but in a shorter time.

Sorting Mechanism: Recall that the elite individuals
are kept from the ongoing evolving process. To apply the
elitism step in GA, there is a need for a sorting mechanism
that moves the best individuals to a specific location. For
this aim, a library called Thrust in the CUDA SDK is used.
Thrust library uses the GPU power to sort custom vector
types such as vector of chromosomes as they are the indi-
viduals in the current population. Since the new individuals
may be better than the previous elite ones, the sorting mech-
anism works at the end of each evolution to pick the new
elites.

Stopping Criteria: One of the important factors is to
decide when the GA should be stopped. In this study when
there are 100 iterations (for both parallel and serial versions
of the algorithm) the GA stops and the best-so-far individual
is considered as the result.

4. EXPERIMENTAL RESULTS
Simple UAV path planning problem is a TSP-like prob-

lem in case of its limitation. Both the serial and parallel
equivalent versions of the proposed algorithm used the same
problems. The results are compared and discussed by their
speedups and solution qualities as well as the gains that hav-
ing a multi-UAV system has brought. The problem sets and
their parameters are shown in Table 1.

Table 1: Problem sets and experimental parameters
Parameters Values

of visiting CPs 100 / 255 / 439
(+ 1 airport) 575 / 1002 / 2392

Population Size 1024
K (partition size) 1 / 2 / 3 / 4 (UAVs)

Elitism First 32 chromosomes
in each generation

Parent Selection Tournament
(select 4 and get the best)

Crossover type 1-point
Mutation type Swap
Mutation rate 0.08

Local Search Type 2-opt
Local Search Applied First 32 generations

of Iteration 100

In this study, the parallel model of K-Means and GA is
implemented on NVIDIA GeForce GTX 970 graphics card.
The Operating System is Ubuntu 15.10 where it runs CUDA
SDK 7.5 and the programming language is CUDA C. The
serial versions of the algorithms are run on an Intel i5 2.7
GHz CPU and the algorithms are written in C++. Table 2
shows the detailed underlying CPU and GPU architectures.

In the parallel algorithm, the first step is to apply K-
Means to partition the problem set into K solvable pieces.
The 100-CPs problem, as an example, is partitioned into 2
sub problems after the K-Means applied. After partitioning
the data, each partition is solved by the GA separately. At
this point, each UAV takes one portion of the problem and
is required to complete its task. The UAVs take off from an
airport point and to return to the depot point (they are as-
sumed to be same point). Figure 8 shows the routed version
of the previously partitioned problem.

1084

Table 2: Hardware Features for the CPU and the
GPU used in this study

CPU GPU
Manufacturer Intel NVIDIA
Model i5 Geforce GTX 970
Architecture Haswell Maxwell
Clock-frequency 2700 MHz 1228 MHz
Cores 4 1664
DRAM Memory 8 GB DDR3 4 GB DDR5

Figure 8: The result of 100-CPs problem when there
are obstacles

In the experiments, there are 4 scenarios taken into ac-
count. The first one is when only one UAV gets the mission.
The other scenarios are when there are 2, 3 and 4 UAVs
respectively. In each scenario, the number of UAV is equal
to K in the K-Means algorithm.

The experiments show that increasing K yields 1) less
computation time of running GA in total and 2) shorter du-
ration of completing the problem assigned to the UAVs. As
an example, Figure 9 shows that one UAV with the speed of
40 km/h completes the 2392-point problem in 277 minutes.
Using one UAV for this type of mission seems infeasible. As
of the year 2016, small UAVs reach the capability of speed
up to 60 km/h with approximately 60 to 80 minutes of flight
time [3]. If we try to solve the problem with 2 UAVs, then
the problem traversed in 135 minutes. Three UAVs tra-
verse it in 115 minutes and 4 UAVs in 66 minutes. The
traversal time is determined by the least recently completed
path. Considering that 2392-CPs problem is located in a
large space, 1 UAV may not finish visiting all the CPs in
such a long time. Instead, letting 4 UAVs visit all the par-
titioned CPs is more feasible and the time it takes to finish
the whole area has 4.20x speed up. The other problem sets
show similar results where increasing K decreases the path
completion time. As an overall view, the detailed computa-
tion times for different number of control points are shown
in Figure 10.

In the experiments, two versions of the same multi-UAV
path finding algorithm are designed and implemented. These
are the parallel and the equivalent serial versions. They are
compared in terms of the execution times where K-Means
partitions the problems and the GA solves them. In this
scenario, the computation time comparison is made with re-
spect to the Equation 1.

Speedup(solution) =
Texec(serial)

Texec(parallel)
(1)

Figure 9: Flight time comparison for 1-2-3-4 UAVs
to finish the 2392-CPs problem.

Figure 10: GPU computation time comparison of
different number of control points.

According to the Equation 1, the speedup gains of par-
allel implementation are calculated. The experiments show
that the speedup of parallel version, varying from 1 UAV
to 4 UAVs is very promising. The gains differ from 100x
to 558x for 1 UAV, 67x to 358x for 2 UAVs, 79x to 335x
for 3 UAVs and 185x to 223x. The computation time differ-
ence depends on the problem domain where the points are
located in specific locations. So, K-means Algorithm may
produce an undesirable partition that makes one part of the
problem very big comparing to other parts. As an example
for this, there is a speedup loose in 100-CPs problem as the
K increases, because the sub problems K-Means generated
have a big difference in size. However, in 225-CPs problem,
as the K increases, it gains speedup. That is because the
sub problems are almost in equal size. On the other hand,
considering the 439-CPs problem, increasing K gives an ir-
regular behavior in the result. The reason is having the sub
problems in different portion in size as the K changes. As
another aspect, there also seems a general decrease in the
speedup when the problem size gets bigger. Because as they
get bigger, they require much more computation power to
be solved, so the free slots of the GPU are fulfilled and the
process is continued serially at some point. This exposes the
limits of the underlying hardware.

To depict a clear distinction between the GPU and CPU
implementations of the proposed algorithm, execution times
of the serial runs are shown in Figure 11 and the parallel
runs are shown in Figure 12 It is clearly seen that in the
proposed parallel model there is a substantial improvement
on the execution time.

1085

Figure 11: Serial computation times for different
number of control points.

Figure 12: Parallel computation times for different
number of control points.

5. CONCLUSION
In conclusion, this paper mainly discusses how to plan

feasible paths for multi-UAVs by using a parallel Genetic
Algorithm on CUDA architecture. While the number of con-
trol points and constraints are increased, the path planning
for a single UAV is a trivial issue. According to mission
needs, the use of multi-UAVs is inevitable in many cases,
and this also increases the complexity of the problem. So, it
is aimed to solve the problem in a parallel programming and
computing platform: CUDA. In the proposed algorithm, we
first use a clustering approach to find the subsets of control
points. And then, a parallel genetic algorithm is used to
solve each cluster. The proposed approach remarkably re-
duces the computational time and gives much better results
than serial algorithms.

6. ACKNOWLEDGMENTS
We would like to thank the Aeronautics and Space Tech-

nologies Institute, Turkish Air Force Academy for letting us
to use their GPUs in the Parallel Programming Lab.

7. REFERENCES
[1] J. d. S. Arantes, M. d. S. Arantes, C. F. M. Toledo,

and B. C. Williams. A multi-population genetic
algorithm for uav path re-planning under critical
situation. In Tools with Artificial Intelligence (ICTAI),
27th International Conference on, pages 486–493.
IEEE, 2015.

[2] Y. Bao, X. Fu, and X. Gao. Path planning for
reconnaissance uav based on particle swarm
optimization. In Computational Intelligence and

Natural Computing, Second International Conference
on, volume 2, pages 28–32. IEEE, 2010.

[3] Baykar. Technical Features of Bayraktar Mini UAS.
http://baykarmakina.com/en/sistemler-2/
bayraktar-mini-iha/#1458634622425-7f20b8f9-b28c.
Accessed: 2016-04-03.

[4] U. Cekmez, M. Ozsiginan, and O. K. Sahingoz.
Adapting the ga approach to solve traveling salesman
problems on cuda. In Computational Intelligence and
Informatics (CINTI), 14th International Symposium
on, pages 423–428. IEEE, 2013.

[5] U. Cekmez, M. Ozsiginan, and O. K. Sahingoz. A uav
path planning with parallel aco algorithm on cuda. In
Unmanned Aircraft Systems, International Conference
on, pages 347–354. IEEE, 2014.

[6] Y. Lu, L. Zheng, L. Li, and M. Guo. Parallelism vs.
speculation: exploiting speculative genetic algorithm
on gpu. In Sixth International Workshop on
Programming Models and Applications for Multicores
and Manycores, pages 68–74. ACM, 2015.

[7] F. Neumann and C. Witt. Bioinspired computation in
combinatorial optimization: algorithms and their
computational complexity. In 15th annual conference
companion on Genetic and evolutionary computation,
pages 567–590. ACM, 2013.

[8] T. Phienthrakul. Clustering evolutionary computation
for solving travelling salesman problems. International
Journal of Advanced Computer Science and
Information Technology, 3(3):243–262, 2014.

[9] K. Rocki and R. Suda. Accelerating 2-opt and 3-opt
local search using gpu in the travelling salesman
problem. In High Performance Computing and
Simulation (HPCS), 2012 International Conference
on, pages 489–495. IEEE, 2012.

[10] O. K. Sahingoz. Flyable path planning for a multi-uav
system with genetic algorithms and bezier curves. In
Unmanned Aircraft Systems (ICUAS), International
Conference on, pages 41–48, May 2013.

[11] S. Sancı and V. İşler. A parallel algorithm for uav
flight route planning on gpu. International Journal of
Parallel Programming, 39(6):809–837, 2011.

[12] A. Sathyan, N. Boone, and K. Cohen. Comparison of
approximate approaches to solving the travelling
salesman problem & its application to uav swarming.
Int. J. Unmanned Syst. Eng, 3(1):1–16, 2015.

[13] B. M. Sathyaraj, L. C. Jain, A. Finn, and S. Drake.
Multiple uavs path planning algorithms: a
comparative study. Fuzzy Optimization and Decision
Making, 7(3):257–267, 2008.

1086

