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ABSTRACT

In cyber security there are adversarial relationships, e.g.
spammers versus spam-filter. A similar arms-race exists for
tax non-compliance. The ability of individuals to exploit
gaps in the “attack surface” of tax regulation reduces trust
in governmental equity, drains money from public goods
and reduces productivity. This relationship between utility-
maximizing tax evaders and an increasingly resource con-

strained auditing system is codependent. We present a frame-

work that allows a modest but representative area of US
partnership taxation activity to be explored as an adversar-
ial coevolutionary relationship. In this setting tax evaders
try to minimize tax by exploiting loopholes in tax code in-
consistencies and gaps. Reciprocally, auditors, with con-
strained resources, try to pinpoint strategies that shelter
evasion. The framework relies upon a) a representation of
the relevant partnership tax law b) a simulation of the au-
diting, tax calculation and compliance checking processes
and c¢) co-optimizing taxpayer and auditor behavior via dual
genetic algorithms that in turn model their coevolutionary
dynamics.
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1. INTRODUCTION

In cyber security the notion of adversaries is central. The
defender aims to reduce its attack surface to thwart an ad-
versary. Examples include spammers against spam-filters,
explored in [0] as a game between classifier and adversary
over the attack surface of email. Other examples is the arms
race in cyber attacks, e.g. some “buffer overflow” changed to
file format exploits after XP Service Pack 2 [23], and after re-
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turn instructions detection in Return-Oriented-Programming
on x86 changed attackers to use JMP instructions instead [3].

In tax evasion there also exists an adversarial arms race,
the attacker is the tax evader, the defender is the auditor and
the attack surface is the tax regulations. Financial and legal
enterprises search of ambiguities in the tax code in order to
discover abusive tax shelters. While tax auditors have his-
torical examples of tax schemes to help guide examination,
tax shelter promoters often adapt their strategies as existing
schemes are uncovered and when changes are made to the
existing tax regulations. One example is the so called BOSS
tax shelter (Bond and Options Sales Strategies) that was
widely promoted yet was ultimately disallowed. While au-
dit changes were implemented to detect BOSS they were not
able to detect the newly emerged variant “Son of BOSS” [25].

The auditor has limited resources and knows that there
will always be exploits. Thus, for the auditor in the tax
evasion arms race it becomes a matter of risk management
when altering auditing and regulations, i.e. how do changes
to auditing effect the behavior of the evader. A goal is to
replicate, with an abstraction, the oscillatory dynamics be-
tween tax evader and auditors that occurs in the context
of tax regulation. Our tax modeling framework is named
Simulating Tax Evasion And Law Through Heuristics, or
STEALTH, see Figure[l] To date STEALTH is focused on
demonstrating the dynamics around specific United States’
tax law pertaining to partnerships.

Partnership taxation has been chosen due to the evidence
of adversarial relationship between the United States Inter-
nal Revenue Service (IRS) and financial advisers with an
intricate knowledge of Subchapter K, the section of the In-
ternal Revenue Code (IRC) pertaining to partnerships. Fur-
thermore, partnerships can own an interest in another part-
nership, creating highly complex tiers of partnerships and
taxpayers. Many partnerships in the US have millions of
unitholders, and can be composed of dozens of tiers [10] [I1].
Not only does the IRS lack the resources to properly iden-
tify potentially abusive behavior that occurs within these
structures, but the many of the rules in Subchapter K are
ambiguous when it comes to more complex financial mani-
festations [21] [10].

The technical challenges to modeling partnership taxa-
tion are imposing because of the tax code’s complexity, the
behaviors available to tax evaders and the simultaneous co-
adaptive behaviors of both auditors and tax evaders. We
have decomposed the challenges by creating two modules as
represented in Figure[l] First we need to develop an abstrac-
tion of the relevant partnership tax law, which will allow us


http://dx.doi.org/10.1145/2908961.2931680

Evasion
Y B

Auditing
Tax Regulation System

Strategy Adaptation
&

<—

Coevolution

_4 Transaction Sequence
Law-Based Tax < r tion S
Calculation Tax Liability |— -
>
Regulatory Module Coevolutionary Module
|4 Audit Weight
|Score Audit Risk Risk of Audit Audit Weights
Ll

Figure 1: STEALTH modules overview

to compute both tax liability and likelihood of being audited.
Second, we have to develop a model of taxpayer and auditor
co-adaptive behavior. In this contribution we focus on how
we addressed the second challenge while we provide, brief
descriptions of our solution to the first challenge that allow
our readers to understand the framework and our approach
in their entirety.

We proceed as follows: A brief survey of previous work
in the space of quantitative tax evasion prediction and co-
evolution is provided in Section 2} Next, Section [3] describes
the two modules hinted at in the introduction, followed by
some preliminary experimentation in Section El We finish
with conclusions and future work in Section

2. BACKGROUND

This project draws on models of predicting tax evasion
and coevolutionary dynamics. Tax evasion or non-compliance,
in the academic realm, has historically been considered a
utility maximizing decision under uncertainty based on a) the
amount of tax that one is able to illegally evade and b) the
probability and consequences of getting caught doing so [1].
The research ranges from the effects of heterogeneity of in-
dividual preferences through agent based models [2] [19], and
recently to machine learning algorithms such as neural net-
works, logical regression and support vector machine [7]. All
past approaches attempt to answer the question: given some
method for evading taxes that is definitely illegal but stochas-
tically detectable, what macro-economic policies (tax rates,
education, etc.) will reduce the incidence of illegal tax eva-
sion?

Each time the IRS changes the tax code the tax evaders
react by finding new loopholes, similar to foxes and hares.
The system dynamics reflect a constant transition of com-
plementary adjustments, with each predator/prey seeking
advantage over the predator/prey under adjustment, stud-
ied in co-evolutionary algorithms, [I3]. Co-evolutionary al-
gorithms [ [§] have fitness evaluations based on interactions
between multiple individuals. Whereas conventional Ge-
netic Algorithms compute objective fitness, co-evolutionary
algorithms compute a subjective fitness. Competition (or
cooperation) arises from these interactions in or between
populations. An individual’s ranking in a population can
change depending on other individuals. Thus, the fitness is
subjective.

Some applications of coevolutionary algorithms are in bot-
net detection system analysis [I2], in the coevolutionary
agent-based network defense lightweight event system [22]
and to use evolutionary algorithms to explore the arms race
of malware evolution and exploit code for vulnerability test-
ing of anomaly detectors [14]. In moving target techniques
coevolution is used to randomize system components to re-
duce the likelihood of a successful attack and the lifetime of
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Figure 2: Tax and audit risk calculation take place in the regula-
tory system on the left, which is assigned to transaction sequence
and audit weight individuals in the dynamic right side

an attack [I7), 24, [4]. Finally, coevolution and cyber secu-
rity focused software testing explore self-regenerative archi-
tecture automatically identify software vulnerabilities and
create adaptations that shield or repair those vulnerabilities
before attackers can exploit them [I5] [16]. Next we describe
how a coevolutionary algorithm is used to detect tax non-
compliance.

3. METHODOLOGY

As mentioned in Section [I] STEALTH is composed of two
modules: one that expresses the regulatory framework per-
taining to US partnership taxation and another that sim-
ulates the adversarial dynamics that occur within such a
framework. The modules are shown in Figure[2] The regula-
tory system contains the legal logic to calculate tax liability
and assign audit risk, then passes those values to the indi-
viduals from which they were derived in the coevolutionary
module. That module then contains the algorithms which
replicate the desired dynamics. We will focus here more on
the coevolutionary module. But next background will be
provided on the regulatory system to give context to the
method.

3.1 Tax Regulatory System

Crucial to the analysis of abusive tax behavior is the abil-
ity to compute the tax consequences of financial activity.
Thus, many aspects of Subchapter K of the IRC were hand
coded from Congressional legalese into a succinct represen-
tation. This representation needs the ability to process an
arbitrary set of financial behavior for tax liability. We used,
e.g.

An asset is a tuple (b, 3,7) consisting of (1) Adjusted Basis:
A scalar b € RT (2) Book Value: A scalar § € Rt (3) Type:
A positive integer T that whether the asset is category 0 (cash),
category 1 (ordinary) and category 2 (capital).

Once we are able to calculate the tax liability resulting
from a single transaction, we must determine what computer
readable form a potentially abusive tax strategy takes, and
how also to represent a given auditing policy. The following
sections describe, respectively, our quantitative representa-
tions of tax evaders and auditors.

3.1.1 Tax Network and Transactions

We must first define the environment of interest, namely
the initial conditions of a regulated unit. In the context of
taxation, this amounts to a set of entities, each of which
have a “portfolio” of assets, the entirety of which we refer to
as the tax network. In abstract terms, we define the state of
the network as some v € I', where v = {e,a,d}. The tuple
v is composed of a set of entities e = {ei}fio, a set of assets
a= {ai}fio where k1, ke € Z4. The operator d determines



the owner of each asset, i.e d: A — E, where A is the space
of assets and F is the space of entities.

Transactions can then be thought of a specific type of
transition from one tax network state 7, to another ~,41.
A transaction is thus described as some t = {ey, es,ay,a:},
where ef,e; € E are two entities and ayf,a; € A are two
assets that are being exchanged between the two entities.
Finally we can define a transaction sequence as t = {ti}fzo,
where k € Z_ is the number of transactions.

3.1.2  Audit Score Sheets

Like a regulated unit is represented as a transaction se-
quence, there must be some abstraction of a regulator that
can be fed into the simulation to determine the likelihood
of conducting an audit. We thus conceive of a regulator
as a certain auditing policy, which is represented as a list of
events observable within a transaction sequence with numer-
ical weights associated with each type of event. When a par-
ticular observable event is fed into the simulator, the over-
all audit likelihood is incremented by its associated weight.
The list of observable events with weights is referred to as
the audit score sheet.

A key trait of the audit score sheet is that it not only
records the occurrence of each type of observable event, but
it can also optionally record every possible combination of
the behaviors. Thus, if there are m separate types of ob-
servable events, then an audit score sheet would be of length
2™ — 1, representing the entire combinatoric space. This al-
lows the detecting of more complex patterns. For a clarifying
example, consider the following passage from the Internal
Revenue Code §743(a).

The basis of partnership property shall not be adjusted as the
result of (1) a transfer of an interest in a partnership by sale
or exchange or on the death of a partner unless (2) the election
provided by §754 (relating to optional adjustment to a basis of
partnership property) is in effect with respect to such partner-
ship of (3) unless the partnership has a substantial built-in loss
immediately after such transfer.

Each number with parentheses signifies an observable event.

Namely, (1) The sale of a partnership interest in exchange
for a tazable asset. (2) The partnership whose shares are
being transferred has not made a §754 election. (3) The
seller’s basis in respect to the non-cash assets owned by the
partnership exceeds their FMV by more than $250,000. An
audit score sheet that encapsulated only the three observ-
able events listed in the passage would look as follows.

Observable Weights(w) | Freq.(f)

Partnership Interest Sale (1) w1 f1
No §754 Election (2) w2 fa
Substantial built-in Loss (3) w3 f3

1u2 W1u2 fiu2

1U3 W1u3 fius

2U3 Wau3 faus

1u2uUs3 W1U2U3 fiu2us

Table 1: Each row has three columns with 1) the type of observ-
able corresponding to the three characterized observables 2) the
associated audit weight and 3) the number of times it occurs in
a list of transactions

While the formulation of the audit score sheet is complex,
the calculation of the audit score from it is relatively simple.
Suppose that there are m specific types of events that are ob-
servable, represented by {b;}i-,, where n = 2™ — 1. Associ-
ated with each type of event are the weights {a; }i—g, @ € Ry
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and the frequency that the event occurs within a network of
transactions {fi}i—o, fi € Z+. We can then write the audit
score, s corresponding to the audit score sheet and network
of transactions as

n n
s = g a; fi where E a; =1
i=0 i=0

3.1.3  Summary

In total, the simulation is defined as a function F : T x
I'x & — RS x Ry, where T is the space of all transaction
sequences, [' is the space of all initial tax networks, & is
all audit score sheets, RS represents ¢ measures of taxable
income and Ry is the audit likelihood.

3.2 Coevolutionary Dynamics

Here we describe the module which directs the appropri-
ate adversarial dynamics. It is supported by the previously
described regulatory framework, along with the quantitative
representations of both tax-minimizing strategies (transac-
tion sequences) and auditing policies (audit score sheets).
This module has two subtasks. First, a fitness must be as-
signed to both transaction sequences and audit score sheets
based solely on the measures of taxable income and audit
score, as calculated in Section [3-I] which reflects a concrete
measure of “effectiveness”. Second, we must co-adapt the
two opposing populations, in terms of the previously de-
scribed fitness score, by searching over its highly non-linear
behavioral space.

3.2.1 Population Representation

Even though individual solutions, i.e transaction sequences
and audit score sheets, are both evaluated in the regulatory
system, we must establish a method to express and explore
the spaces of all possible transaction sequences and audit
weights. Grammatical Evolution (GE) offers an elegant so-
lution. GE is a version of the genetic algorithm with a vari-
able length integer representation and an indirect mapping
using a grammar[18], which allows us to generate complex
and valid phenotypes, which in our case take the form of
transaction sequences.

As shown in Figure the grammar is composed of a single
start symbol, terminal symbols and non-terminal symbols,
as indicated by the boxes in the figure, with the start sym-
bol at the top and terminal symbols at the bottom of each
branch. Integers are fed into the top and the direction of
the path is determined by taking the modulo of the current
integer, at which point the next integer is selected. The pro-
cess is complete when the sentence comprises only terminal
symbols.

Generating transaction sequences from an integer vector,
while the most complicated, is not the only possible map-
ping from an integer vector. Other operations can be per-
formed by merely removing a select few integers from the
vector, which is a method that we use to generate initial
tax network configurations. For example, if we would like
to determine some number of additional partnerships in the
initial configuration between 0 and k, we simply remove the
first integer and take its modulo in respect to k, then process
the rest of the vector through the grammar.

Mapping an integer sequence to an audit score sheet, on
the other hand, is a simple process due to the numerical
qualities of the audit weights. For an audit score sheet of



Grammar:

(1)<transactions>::=<transactions><transaction> | <transaction>
(2)<transaction>::=Transaction (<entity>, <entity>, <Asset>, <Asset>)

(3)<entity>: :=Brown|NewCo|Jones|JonesCo|FamilyTrust
(4)<Asset>::=<Cash>|<Material>|<Annuity>

(5)<Cash>: :=Cash (<Cvalue>)

(6)<Material>::=Material (200, Hotel)

(7)<Annuity> Annuity (<Avalue>, 30)
(8)<Cvalue>::=300/200|100

(9)<Avalue>::=300/200|100

Rewriting:

<transactions>

0:3mod2=1

<transaction>

1: No choice

X
| Transaction (<entity>,<entity>,<Asset>,<Asset>) |
rd N

3:10mod 5=0 4:4mod3=1

6:30mod 3 =0

5: No choice 7: No choice

- A
|Material(200, Hotel ) | |Cash(<CValue>) |

2:11mod5=1

e 4
INewCo I | Brown |

8:7mod3=1

200

Figure 3: Example of how GE rewrites a list of integers (Genotype) into a list of transactions (Phenotype) with a BNF grammar. The
mod value is based on the number of production choices for the non-terminal symbol.

length m we simply take an integer vector of length m and
divide each integer in the vector by the sum of all of the
elements. This creates m positive real numbers that sum to
one.

3.2.2 Objective Functions

Crucial to our analysis is the question of what makes an
effective tax strategy, taking into account both tax liability
and likelihood of being detected by various auditing poli-
cies. Similarly, what constitutes an effective auditing pol-
icy? Neither question is trivial, nor can they be generalized
to encompass every use case. That being said, a generic
heuristic for determining effectiveness in a specific scenario
can be applied to help formulate a good objective function.

By objective function, we mean some mapping between
the numerical traits associated with a transaction sequence
or audit score sheet, and some measure of effectiveness or
desirability. Section [3.1] gives us the tools to calculate tax-
able income for all ¢ of the entities in the simulation, and an
audit score. Given these two numerical constructs, we are
tasked with formulating objective functions for both trans-
action sequences and audit score sheets, respectively h. and
hs, both defined as a mapping from measure of taxable in-
come and audit likelihood, to a single real number.

An effective transaction sequence, from the perspective of
an adviser or taxpayer, is one that results in a low level of
taxable income, while attracting a low likelihood of being
audited, both outputs of the simulation described in Sec-
tion m Thus, one can conceive of a transaction sequence’s
effectiveness as shown in Figure [d] with taxable income on
the x-axis and audit likelihood on the y-axis. A highly effec-
tive transaction sequence would be in the lower left corner,
incurring relatively low levels of tax liability and attract-
ing little attention. Conversely, a transaction sequence that
produces low levels of tax liability but a high likelihood of
being audited, as shown by the top left corner, would be
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extremely undesirable. While there is nothing inherently
wrong about low levels of taxable income, we evaluate trans-
action sequences that all accomplish relatively similar eco-
nomic goals. Thus any lower variations in taxable income
can be indicative of, at the very least, tax implications that
were never intended by policy-makers.

Suspicious and :
Potentially Non-Compliant :
Transaction Sequence

Suspicious and
Likely Compliant
Transaction Sequence

Audit Likelihood

Un-suspicious and H
Potentially Non-Compliant :
Transaction Sequence

Un-suspicious and
Likely Compliant
Transaction Sequence

Relatively Low
Taxable Income

Relatively Normal
Taxable Income

Taxable Income

Figure 4: Traits of transaction sequences as a function of their
taxable income and the audit likelihood they generate in respect
to a certain audit score sheet

Auditing policies face a different heuristic for calculat-
ing effectiveness, due to their resource constraints. That is,
while transaction sequences are only concerned about a one-
off evaluation against an audit score sheet, auditing policies
must take into account the amount of resources that it takes
to audit. Figure [f] demonstrates an example of effective au-
diting policies as distinct from incorrect and wasteful ones.
A good auditing policy, indicated by the solid line, applies
a low audit likelihood to transactions sequences generated
relatively normal levels of taxable income and a high likeli-
hood to similar, low taxable income transaction sequences.
Bad auditing policies are the exact opposite, assigning high



audit likelihood to transaction sequences with normal levels
of tax liability and ignoring those resulting in low taxable
income.

. IneffeFtlve AL!C!\(II‘Ig Pg\lcy False Positive .
= Effective Auditing Policy R
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False Negative “..-"
-.-“"
sttt

Relatively Low
Taxable Income

Relatively Normal
Taxable Income

Taxable Income

Figure 5: An example of a "good” audit score sheet and a “bad”
audit score sheet, shown by the audit likelihood that they would
generate in respect to different types of taxable income

These heuristics and associated plots are merely a means

to formulate proper objective functions for both a tax-minimizing

strategy and an audit plan, given a transaction sequence,
initial tax network and audit score sheet.

3.2.3 Adaptation — Coevolutionary Genetic Algorithm

The second subtask is to specify a means by which a large
and highly non-linear space of transaction sequence-audit
score sheet pairs can be co-adapted. Once objectives es-
tablish a notion of effectiveness, the evolutionary algorithm
determines a) which transaction sequences can minimize tax
liability while circumventing an audit and b) which audit-
ing policies assign high audit likelihood to relatively low tax
liability schemes while ignoring non-suspicious behavior. It
thus attempts to anticipate new forms of potentially abusive
tax behavior as well as desirable, or at least likely, regulator
response to it.

Upon establishing these mappings, any non-linear search
can be performed on the space. Because of the predator-prey
relationship between non-compliance schemes and auditing
policy, we chose to use a co-evolutionary genetic algorithm.
Specifically, we evolve with a so-called one-to-many interac-
tion scheme, in which the two populations evolve in parallel.
Each individual in the two populations are evaluated against
a subset of the opposing population, which can be chosen by
a number of different decision heuristics.

Our coevolutionary algorithm:

1) initializes both populations

2) evaluates each individual against a subset of of the
other population to determine their objective score

3) selects the best individuals in each population

4) creates new populations by crossing over(combining)
the chosen individuals

5) introduces slight mutation into that new population

6) repeats steps 2 — 5 over some generations until there
is some halting condition.

Specifically, every generation, each individual in the trans-
action sequence population selects a subset of the audit score
sheet of the population to evaluate against. After all se-
quences are evaluated, the process is repeated with the op-
posite population: each audit score sheet chooses a subset
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of the transaction sequence population to evaluate, see [20]
for more details.

Recall from Section that the regulatory system is a
function F : T x I' x ¥ — R¢ x R, that takes as input a
sequence of transactions, an initial network state and au-
diting observables, and generates the taxable income for all
relevant entities and audit score. In other words, for any
t € T and 70 € T' generated from the same vector of in-
tegers x and accompanying auditing observables ¢ € W,
F (t,v0,%) = (£, s), where £ is a vector of real numbers of
length ¢ that represents taxable income for all entities and
s is the audit score.

The function F can be broken up into a network of tran-
sition functions that has the same length as the number
of transactions in the transaction set contained within the
function call (k). Each transition function generates a new
network state and an audit score. So for all ¢ € [0,k],
Fi (i, i, ) = (Yi41,8i) where s=s;

3.2.4  Summary

Recall from Section [3.2:2 that the objective functions for
transaction sequences and audit score sheets are, respec-
tively, he and hs, both maps from RS x Ry. Additionally,
define =y : Z} — T x I' and Z, : Z — RY as, respec-
tively, the transaction sequence and audit score sheet map-
ping functions described in Section[3:2.1] Now it is possible to
fully define the maximizing objectives of networks of trans-
actions as

arg max [he (F (B¢ (x*), Za ()] = argt*e%q?%er [h,e (1- (*. v 1/;))}

over all y € B(y,r1) for some y € ZJ', where B(y,r1)
is a ball of radius 71 € R4 around y. This represents the
fact that the goal of the GA is to find local maxima around
some subset of auditing behavior, rather than attempting to
search the entire ¢ space. Conversely, the objective for the
auditing behaviors is to maximize the positive h, function,
the opposite of the objective for the transactions, i.e. the
goal is

al‘gyg)eaz:cT [ha (F (B¢ (x), Ea(¥y™)))] = argwn*)?g(\lf [ha (F (t, 70, ¥*))]

over all x € B(%,rs) for some X € X, where B(%,r2) is
a ball of radius ro € Ry around %x. Similar to the previous
objective function, this represents the fact that the EA only
searches for local maxima around a subset of all transaction
sets and initial model states.

4. RESULTS

Ideally, we would like to be able to show that, with the
proper specifications, dynamics between dominant tax strate-
gies and dominant auditing policies can be replicated in a
computational setting. That is, we see audit score sheets
changing to assign high audit likelihood to certain transac-
tion sequence behavior that produces relatively low taxable
income. Then in turn, we see the population of transac-
tion sequences changing to favor transaction sequences that
continue to produce low levels of taxable income, but using
techniques that are not deemed suspicious by the dominant
audit score sheets in the opposing population.



4.1 iBOB Description
We demonstrate STEALTH using a particular known tax

evasion scheme called Installment Bogus Optional Basis (iBOB).

In iBOB, a taxpayer arranges a network of transactions de-
signed to reduce his tax liability upon the eventual sale of
an asset owned by one of his subsidiaries [9]. He does this by
stepping up the basis of this asset according to the rules set
forth in §755 of the IRC. In this way, he manages to eliminate
taxable gain while ostensibly remaining within the bounds
of the tax law [25].

The sequence of transactions, shown graphically in Fig-
ure [6] for the iBOB scheme are enumerated:

0. In the initial ownership network Mr. Jones is a 99% partner
in JonesCo and FamilyTrust, whereas JonesCo is itself a
99% partner in another partnership, NewCo. NewCo owns
a hotel with a current fair market value (FMV) of $200. If
NewCo decides to sell the hotel at time step 1, Mr. Jones
will incur a tax from this sale. The tax that Mr. Jones owes
is the difference between the FMV at which the hotel was
sold and his share of inside basis in this hotel, i.e. $199-
$119 = $80. Mr. Jones can evade this tax by artificially
stepping up the inside basis of the hotel to $199.

1. In the first transaction, we see that FamilyTrust, which Mr.
Jones controls, decides to buy JonesCo’s partnership share
in NewCo for a promissory note with a current value of
$199. Of course, FamilyTrust has no intention of paying off
this note, as any such payments entail a tax burden upon
NewCo. Having already made a 754 election, FamilyTrust
steps up its inside basis in the hotel to $199.

. When NewCo sells the Hotel to Mr.Brown for $200, Mr.
Jones does not incur any tax, as the difference between the
current market value and his share of inside basis in the
hotel is now zero.

4.2 Setup

We ran 100 independent iterations of the co-evolutionary
GA for 100 generations each with tax scheme and audit score
populations of size 100. We chose 0.5 of the tax scheme
population for evaluating the fitness of the solution in the
other audit score population and vice-versa. The parameters
that govern the GA simulation are displayed in Table

Table 2: Parameters for STEALTH iBOB experiments

Parameter Description Value

Mutation rate probability of integer change in | 0.1
individual

Crossover rate probability of combining two | 0.7
individual integer strings

Tournament Size [ number of competitors when | 2
selecting individuals

Number chosen fraction of other population | 0.5
each individual is evaluated

Population size | number of individuals in each | 100
population

Generations number of times populations | 100
are evaluated

We are doing an initial exploration of the problem and
the choice of parameters and operators are a first attempt.
Each population has the same operator and parameter set-
tings. In the initialization integers are randomly chosen.
Individuals are selected from the population using tourna-
ment selection. In the crossover operation two individuals
are combined into two new individual by randomly picking a
single point and swap after the point. The grammar used to
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map the integers in an individual is shown in Figure|3] The
mutation operation of an individual chooses a new random
integer at a random position. The fitness of an individual is
the average over a number of randomly chosen individuals
from the other population. The objectives functions used for
these experiments were simple single objective and opposites
of one another. Given that Jones’s taxable income was the
only one of interest, ¢ = 1, and we can define his taxable in-
come as just £. Thus the objective function for a transaction
sequence is he(¢,s) = —¢(1 — s). Conversely, the objective
function for audit score sheets are hq(¢,s) = —£(1 — s).

4.3 Coevolution of Auditors & Evaders iniBOB

Fitnesses from various subpopulations of the transaction
sequence population from a selected run we investigate are
shown in Figure [7]] A sharp increase in the fitness of the
”best” transaction sequence indicated the discovery of new
way to minimize the payment of taxes. As soon as that
occurs, the fitness of the best 10% of transaction sequences
increases to the maximum, shortly followed by the fitness
of all of the sequences in the population. This agrees with
the real-life observations of abusive tax shelters, where tax-
minimizing schemes quickly propagate amongst the industry
once discovered [25] 21]. Also encouraging is the combined
decline amongst all subpopulation fitnesses, indicative of the
evolution of an audit score (not shown) sheet that increases
the audit likelihood of a transaction sequence exhibiting the
previously discovered scheme
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Figure 7: From a selected run. Fitness of best transaction se-
quences (red), mean of top ten sequences (green) and mean of
population (blue). The dots signify points at which a novel tax-
minimizing strategy is evolved.

Figure 8 below shows a nuanced picture of the audit score
sheet population’s response to the general trend in the trans-
action sequence population from the selected run. The col-
ored background shows the audit weight distribution of the
most fit audit score sheet in the population. Conversely,
colored the lines show the proportion of the transaction se-
quence population that uses the scheme of the correspond-
ing color. Thus we can see how the proportion of certain
tax schemes follow the existence of the highest fitness audit
score sheet.

We observe that an audit score sheet capable of sufficiently
auditing a certain type of tax scheme can co-exist with that
scheme for some time until the frequency of that tax strat-
egy starts to decline. This demonstrates a) the successful
audit score sheet taking time to propagate amongst its pop-
ulation and b) the jagged fitness landscape of the transaction
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Figure 6: The steps in the iBOB tax evasion scheme. The basis of an asset is artificially stepped up and tax is avoided by

using “pass-through” entities.

sequences, both of which are mildly reminiscent of the fast-
slow dynamics mentioned in Section [I| That is, audit score
sheets have a shallow but smooth fitness landscape, allow-
ing successful auditing policies to be "seen” easily, but with a
slow dissemination. Conversely, dominant tax-minimization
strategies have a jagged and more stochastic discovery pro-
cess, but successful schemes propagate rapidly once found.
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Figure 8: From a selected run. Audit weights of best audit score
sheet and proportions of various transaction sequence scheme
types in population

Thus the dynamics we set out to prove our model was
capable of replicating were achieved. Successful transaction
sequences are those that generate low levels of taxable in-
come for Jones, as well as exhibiting behavior that is not
adequately represented in the audit score sheet population.
Soon enough, the objective functions of the auditing policies
begin to associated that behavior with low taxable income
relative to other transaction sequences that accomplish the
same economic purpose and assign an audit weight to that
behavior. The effectiveness of that tax strategy then de-
creases until a new tax-minimizing strategy is found which
once again evades all (or most) existing auditing policies.
That strategy then rapidly spreads amongst the transaction
sequence population and the process continues.

There are calibrations that can improve the fidelity of the
experiments. For example, while transaction sequences are
clearly more responsive to a successful individual in their
population than audit score sheets, the time scale gives too
much credit to the propagation of audit score sheets. For
example, Figuremshows that a successful tax strategy enjoys
only about 5 — 10 generations of unbridled prosperity until
an auditing policy evolves and propagates that reduces its
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effectiveness. Transaction sequences take about the same
amount of generations to figure out a new dominant tax
strategy, the only tangible difference is the speed at which
it propagates through the population. Thus, there must be
further calibration in the model to reflect the differences in
time scale.

5. CONCLUSION AND FUTURE WORK

The purpose of the presented methodology is to replicate
the co-evolutionary relationship between tax evaders and au-
ditors, using US partnership taxation as an initial example.
This was accomplished by separating the effort into three
parts: (1) representing the rule system in order to calculate
benefit that the advisor can offer to their client (2) simu-
lating interactions between the advisor’s strategy and the
relevant regulatory authority, and () optimizing for behav-
ior on both ends of the relationship to investigate potential
areas of exploration.

Through experimentation, we show that the co-evolutionary
relationship can indeed be replicated, given the proper spec-
ifications. Some further parameter calibrations are required
in order to capture certain time scale effects, but the qual-
itative dynamics are present. Transaction sequences can be
shown to respond to both tax minimizing behavior and risk
of being audited. Similarly, auditing policies respond to and
isolate behavior which generates lower than expected tax-
able income.

There is still much to explore of this methodology. While
our representation of US partnership tax code is in itself a
novel discovery, its most exploited aspects remain the most
crudely approximated by our formulations. Specifically we
would like to explore non-recourse liabilities and deprecia-
tion deduction schedules as a means to minimize taxable in-
come. Another key aspect of validating the co-evolutionary
search method is by gaining access to actual auditing data.
This is a non-trivial process that requires security clearance.

Additional future work is in analyzing the dynamics of the
algorithm, i.e. how the solutions in the populations are co-
evolving during the co-evolutionary search, e.g. longer runs
in terms of generations, comparisons with previous popu-
lations. One feature of co-evolutionary algorithms which is
important to investigate further is it generates intricate run-
time behaviors and makes it difficult to monitor progress to-
wards the goal, e.g. over-specialization, under specialization
and stalling. Finally, we need to explore the parameters and
operators of the coevlutionary algorithm, use of multiple ob-



jectives and archives in the coevolution, e.g. the number of
individuals chosen for evaluation in the opposing population,
reduce elitism.
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