
Initiating a Moving Target Network Defense with a
Real-time Neuro-evolutionary Detector

Robert J. Smith
Dalhousie University,

6050 University Av., Halifax,
NS, Canada

rsmith@cs.dal.ca

A. Nur Zincir-Heywood
Dalhousie University,

6050 University Av., Halifax,
NS, Canada

zincir@cs.dal.ca

Malcolm I. Heywood
Dalhousie University,

6050 University Av., Halifax,
NS, Canada

mheywood@cs.dal.ca
John T. Jacobs

Raytheon Space and Airborne
Systems,

6380 Hollister Av. Goleta,
California 93117-3114

John_T_Jacobs@raytheon.com

ABSTRACT
The moving network target defense (MTD) based approach
to security aims to design and develop capabilities to dy-
namically change the attack surfaces to make it more dif-
ficult for attackers to strike. One such capability is to dy-
namically change the IP addresses of subnetworks in un-
predictable ways in an attempt to disrupt the ability of an
attacker to collect the necessary reconnaissance information
to launch successful attacks. In particular, Denial of Ser-
vice (DoS) and worms represent examples of distributed at-
tacks that can potentially propagate through networks very
quickly, but could also be disrupted by MTD. Conversely,
MTD are also disruptive to regular users. For example,
when IP addresses are changed dynamically it is no longer
effective to use DNS caches for IP address resolutions be-
fore any communication can be performed. In this work we
take another approach. We note that the deployment of
MTD could be triggered through the use of light-weight in-
trusion detection. We demonstrate that the neuro-evolution
of augmented topologies algorithm (NEAT) has the capac-
ity to construct detectors that operate on packet data and
produce sparse topologies, hence are real-time in operation.
Benchmarking under examples of DoS and worm attacks
indicates that NEAT detectors can be constructed from rel-
atively small amounts of data and detect attacks ≈ 90%
accuracy. Additional experiments with the open-ended evo-
lution of code modules through genetic program teams pro-
vided detection rates approaching 100%. We believe that
adopting such an approach to MTB a more specific deploy-
ment strategy that is less invasive to legitimate users, while
disrupting the actions of malicious users.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20 - 24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931681

CCS Concepts
•Computing methodologies → Generative and de-
velopmental approaches; •Security and privacy →
Denial-of-service attacks; Firewalls;

Keywords
Neural Evolution; Network Security; Moving Target De-
fense; Software Defined Networks; Genetic Programming

1. INTRODUCTION
Network security metaphors often take the form of walls,

the more walls that are involved the more secure the system,
i.e. defense in depth. Systems are secured by surrounding
themselves by, say, two walls with varying degrees of secu-
rity at each. Getting messages to the users of the inner
wall requires a verification and obfuscation process typically
handled by a firewall with designated messengers (proxies)
speaking for the outside and inside worlds separately. How-
ever, even virtual walls tend to be difficult to adapt to new
circumstances over time. Thus, while network technology is
evolving at a rapid pace, the walls by which we secure that
technology still tend to operate on the same notions from
prior technological generations: sometimes operating effi-
ciently is more important than protecting against attacks
targeting the system. The notion of securing networks has
become more important over time as the number of potential
attack vectors increased through the proliferation of ubiq-
uitous computing and globalized networking (such as the
Internet). Thus even modern network configurations are
largely static. Digital network components such as addresses
and subnet configurations continue to be largely unchanged
due to the convenience of having a fixed parameter set.

A Moving Target (Network) Defense (MTD) attempts to
embody the concept that a malleable, changing system is
more effective for combating attackers than a largely sta-
tionary one [1, 3, 16]. Different forms of ‘moving target’ de-
fence have been proposed, for example, searching for ‘good’
computer configurations that are deemed more secure rel-
ative to a prior set of criteria [7]. In this research, given
the overheads of performing MTD at the network level, we
concentrate on identifying the condition(s) under which to

1095

initiate a MTD for network reconfiguration under a soft-
ware defined networking (SDN) approach. Thus, from the
big picture perspective, having a static network configura-
tion confers many advantages to the attacker, giving them
time for planning attacks and gathering network informa-
tion. However, if we provide our network with some form
of effective MTD, we should be able to narrow the tempo-
ral factors of the information gathering process [5, 6]. That
is to say, assuming that information for planning an attack
has been collected, by the time that the attack is initiated,
the network ‘connectivity’ has changed. Increasing product
support for ‘software defined networks’ provides the oppor-
tunity to carry the concept of a malleable, changing network
closer to that of an autonomous system.

In this research, we propose to treat the MTD as a pol-
icy which is enacted once suspicious behaviour is identified.
The MTD is only initiated relative to the detection of spe-
cific network behaviours. Recent demonstrations of MTD
have focused on the capacity to resist Worm attacks (e.g.,
[5, 6]). Hence, if we can demonstrate robust detection of
such attacks, a software defined network can then explic-
itly introduce defensive actions such as a complete MTD (or
MTD targeting specific services / ports) depending on the
policy assumptions. To do so, we construct a packet gener-
ator for a cross-section of packet ‘types’, and then assume a
neuro-evolutionary approach for constructing detectors. We
demonstrate that rather than aiming to learn everything,
we can build ‘expert’ detectors which can identify different
types of attacks. An analysis of possible contradictions in
the labels provided by each detector is then used to construct
a detector for resolving exceptions, or real-time forensics.
Adopting such a strategy enables us to incrementally build
new detectors for different types of attacks and specifically
resolve exceptions when they appear. The resulting frame-
work is benchmarked through a simulated SDN, where an
SDN provides the flexibility necessary to support the au-
tomation of network counter-measures in practice.

2. BACKGROUND
Moving Target Defense (MTD) attempts to address key

issues with static network configuration [3]. One of the ma-
jor criticisms of classic network design and security is that
the addresses are typically statically assigned by a naming
service (e.g. DNS). This issue is likely due in part to the
limited IPv4 address space. However, there are several pro-
posed solutions to overcome the static addressing issue. One
such work attempted to create a temporal naming system
which would create identifiers for host pairs on a network
and regularly rotate identifiers which have been in use for
extended periods of time [1, 3, 16]. By creating a real-time
unique mapping for hosts and IP addresses they could limit
the exposure of intra-network information gathering by rear-
ranging the way hosts communicate within a given network
based on pre-determined temporal parameters. Another ap-
proach is to provide rotational addressing using software de-
fined networks and OpenFlow controllers [5].

The bottom line is that each host is associated with dif-
ferent unique subsets of (pseudo) IP addresses. This implies
that only host X may communicate with host Y using this
IP address. Moreover, the interval of time for which this
host-IP ‘binding’ holds is also a stochastic parameter. Ear-
lier works for MTD also introduced a temporal scheme for
‘IP hopping’ [1] or were incompatible with current network

protocols [16]. Conversely, Jafar et al. maintain compatibil-
ity with current IPv4 and IPv6 networks and also introduce
a spatial element to the randomization process for construct-
ing (pseudo) IP addresses.

The underlying approach of [5, 6] is to create a name-to-
address mapping that is a function of both source identity as
well as time of the request. In their work, each source needs
a range of addresses for the temporal hops. The wider the
range of such addresses is the greater the potential for hid-
ing the true identity of network structure. Conversely, if
addresses are just periodically switched, the same associa-
tion between nodes exists. Jafar et al. avoid this because
hosts are also subject to different periods of time during
which their name-to-address mapping holds. This is based
on the host spatial locations.

The network infrastructure to support such a process, con-
sists of two components, a controller and a gateway. A
gateway performs the translation from real IP to pseudo
IP addresses used on a subnet. It is the controller that acts
as the name server responsible for distributing spatiotem-
poral mappings between host pairs and their (pseudo) IP
addresses. Thus, each time that communication between a
pair of hosts is necessary, the gateway is contacted in order
to find the relevant pseudo address. Every message sent has
to be verified by the name server before communication can
take place. The penalty for this is the extra cost of having
to repeatedly communicate with gateways due to the tem-
poral nature of the translation between real to pseudo IP
addresses, i.e. the changing of addresses on the institutional
(local) network quickly becomes irrelevant. Moreover, even
under a MTD, the gateway has to assume a static address
in order for each host to contact it. This means, that the
gateway can always be identified, turning it into a static
target.

3. METHODOLOGY
Previous research with a MTD articulated a basic goal of

reacting to Worm attacks, but without actually simulating
the action of the proposed framework on a network [5, 6].
Hence, a policy is established for modifying the network (the
MTD), but as a consequence introduce limitations in terms
of responsiveness (as reviewed in Section 2). In this work, we
will take a data driven approach to first detecting the types
of attack and then on detection, we will initiate a MTD as a
policy decision using a simulated SDN. Given the emphasis
of MTD with regards to combating Worm attacks we will
use the detection of such attacks as the basis for evaluating
our MTD initiator.

Detectors will operate on TCP packet header and payload
information in order to provide real-time operation for the
detectors. Detectors will be developed for specific classes of
attacks using the data formats discussed in Section 3.1

3.1 Packet Format
TCP packet format is modelled in terms of 5 categories of

information:

1. Source IP – 4 bytes

2. Destination IP – 4 bytes

3. Source Port – 4 bytes

4. Destination Port – 4 Bytes

1096

Figure 1: Architecture of a SDN-based simulated
network for data generation and evaluation. Detec-
tors (or ‘AI’) appear at each host. Gateway node
represents the location for a name server (DNS).
Under MTD all requests for (pseudo) IP would first
have to visit the gateway as no caching at a host is
possible.

5. Payload – 32 Bytes (8× 4)

Thus, from a detector’s perspective packets consist of 48
bytes or 12 integers. Potentially these values provide 12
attributes from which to construct the detector. However,
a neural representation will be assumed for the detector in
which case each neurone performs the operation: y = f(net)
and net =

∑
wixi where f(·) is the sigmoid activation func-

tion. Learning gradients will only exist if the attributes
are normalized such that most of the variation in attributes
appears in the transition region of the activation function.
With this in mind, all 12 attributes are normalized to the
interval [−1.0, 1.0].

Three classes of packets will be generated: Normal, LAND,
and Worm. Normal traffic packets were designed to com-
municate data between hosts on a 10.0.0.X network where
1 ≤ X ≤ 17. Specifically, four hosts appear on each of three
routers and one router has five hosts: 4×3 + 5 = 17 (Figure
1). This corresponds to the complexity that might appear in
a class C network within a university campus or government
/ commercial organization. The ports could be anything in
the port range, the IPs were always on the network, and the
payload represented hashes on a database of text phases.

LAND packets represent DoS attacks in which the ob-
jective is to trick host(s) into opening all their ports. At the
packet level this amounts to explicitly requesting a source
and destination IP address with the same value.1 All the re-
maining attributes assumed properties that overlapped with
the definitions used for a normal packet. Worm packets
were designed to specifically attack port 139 (i.e. as per the
Sasser worm) with a buffer overflow, i.e. an internal prop-
agation or IntProp exploit.2 The payload in this case takes
the form of ASCII character sequences (as opposed to the

1http://www.juniper.net/techpubs/
en US/junos12.1/topics/concept/
denial-of-service-network-land-attack-understanding.html
2http://www.iss.net/threats/172.html

hashed text of normal or LAND packets). In short, we are
emphasizing light-weight detection at the packet level. More
detailed detection could take place at the behavioural level
(say, in terms of network flow preprocessing), but only at the
expense of no longer supporting real-time operation. More-
over, features might also be designed to ‘recognize’ specific
attacks, however, doing so also potentially leads to brittle
‘signature style’ detectors that can be evaded by mimicry
style attacks (e.g., [8]). In this work, we therefore require our
light-weight detector to recognize general properties within
single packets that can potentially mark it as malicious.
Given that flagging an attack would then initiate a MTD,
additional forensic analysis could be performed in parallel
to resolve the nature of attacks in greater detail.

3.2 Neuro-evolution
Two independent detectors are evolved one for detecting

each threat. In this case, the NEAT framework was assumed
for each detector (Section 3.2.1). The question then arises as
to how to combine the two detectors (building a combined
detector is possible, but implies that any updates to the
detector requires a complete reconstruction). One possible
approach could be to evolve a third network, the gate, which
learns under what conditions to switch/mix between either
of the ‘experts’. In practice, a simpler solution was found
by using the output of each expert to explicitly flag ambigu-
ity. That is to say, a committee architecture using gating is
appropriate when ambiguity exists between the expert out-
comes. However, in this setting the cases corresponding to
erroneous detection were most likely to be flagged by the
ability of detectors to actually flag ambiguity.

In the following, we first summarize the properties that
make neuro-evolution through NEAT particularly useful. Then,
we establish the design approach adopted for disambiguation
of detectors. Section 4 will present the empirical findings
within the context of the system design established below.

3.2.1 NEAT
Neuro-evolution of Augmenting Topologies (NEAT) is an

approach to neuro-evolution in which crossover context is
explicitly supported [12, 13], i.e. previous to the NEAT
algorithm, there was no basis for contextual information.
Thus, arbitrary switching groups of neurones between two
parents would result in children with very ineffectual be-
haviours. Conversely, NEAT makes use of a genotype that
explicitly marks unique links (between nodes) and therefore
provides the basis for enforcing minimal levels of structural
context between pairs of parents. Moreover, the NEAT algo-
rithm leverages the concept of complexification, where the
initial population is limited to single neurones, and incre-
mentally lets the neural network (NN) topology ‘complex-
ify’ as the search process progresses. In short, instead of
relying on user-made neural networks with which the algo-
rithm attempts to properly re-weight, the algorithm begins
with some base neurone (typically a fully connected bipar-
tite graph between input nodes and output nodes) and at-
tempts to incrementally modify the network structure by
adding nodes throughout the learning process. This means
that if the task is linearly separable, then such solutions will
be found first. Conversely, if the task is not linearly separa-
ble, then NEAT will incrementally ‘complexify’ the topology
as opposed to the user having to guess an appropriate non-
linear representation.

1097

Table 1: Interpreting the outcome from the LAND
(DoS) and Internal Propagation (worm) detection
‘expert’ neural networks. As long as both experts
do not label the same packet as an attack no cor-
rective action is necessary. If both experts label the
packet as an attack a third ‘disambiguation’ network
is deployed

NEAT expert Interpretation Action
LAND (DoS) Int Prop (Worm)

0 0 Normal packet valid
0 1 Worm packet valid
1 0 LAND packet valid
1 1 Ambiguous invalid

Since the initial development of NEAT, there have been
multiple frameworks developed for evolving neural networks
with contextual information (e.g., EANT [10], rtNEAT [11]).
However, in this research the original NEAT algorithm is
considered complex enough for the purposes of this task.
The specific code distribution assumed in this work is that
of jNEAT.3

3.2.2 Committee machines
Real-time operation requires a ‘light-weight’ detector, im-

plying that the detectors should be as efficient as possible.
Thus, increasing accuracy of the detector(s) by large num-
bers of classifiers in parallel to construct an ensemble against
which majority voting is performed would not be appropri-
ate. Conversely, assuming a gating architecture as popular-
ized by the ‘mixtures-of-experts’ framework (e.g., [4]) could
potentially represent a viable approach that also remains
light-weight. The gate represents a neural network that
learns under what conditions to switch and / or mix be-
tween the labels suggested by the experts. However, such ar-
chitectures provide most leverage when experts consistently
disagree over a significant portion of the classification task.
Instead, for the most part the experts – NEAT trained to
recognize single attack types – are accurate. What poten-
tially could also be corrected, without reference to some ex-
ternal oracle, is the case when they both attempt to label a
packet as different types of attack, see Table 1, or a form of
forensic disambiguation.

Training of the expert networks is performed using 320
training packets and 400 validation packets each. At the end
of this process the ambiguous scenario from Table 1 accounts
for ≤ 6% of the data expert networks employed for training.
We can then use the trained expert networks to bootstrap
the data generation process such that 40, 000 packets are
created that conform to the ‘ambiguous’ expert outcome.4

These packets were then divided into 10, 000 each for train-
ing and validation and 20, 000 for test purposes. Training
of each expert network was performed for 400 generations
whereas 1, 000 generations were used to evolve the disam-
biguation neural network.

3http://nn.cs.utexas.edu/?jneat
4Implies that roughly 800, 000 packets were created to do
so.

In all cases the fitness function takes the form of the multi-
class detection rate, where the per class detection rate has
the form:

DRc =
tpc

tpc + fnc
(1)

where tpc, fnc are the counts for true positive and false
negative rates w.r.t. class c.

The multi-class detection rate now has the form:

DR =
1

C

∑
c=[1,...,C]

DRc (2)

Under the expert networks the C = 2 or normal and ma-
licious, whereas under the disambiguation network the two
classes take the form of LAND and IntProp.

3.3 Teams of Programs
A second framework in which task decomposition forms a

central theme is that of teams of programs (a genetic pro-
gramming paradigm). Specifically, the SBB framework will
be assumed where this enables the size of teams to be dis-
covered as well as the programs [2].5 SBB employs two
populations, a team population and a program population.
Each individual from the team population (tmi) defines a
candidate team by indexing a subset of programs from the
program population. In assuming a variable length represen-
tation, team size is evolved. Programs (symj) learn context
for suggesting a class label. With respect to team, tmi, and
packet, pk, only program sym ∈ tmi with maximum output
under packet pk wins the right to suggest its label. Such
a framework has demonstrated the capacity to decompose
classification tasks through cooperative coevolution [9].

4. EMPIRICAL STUDY

4.1 Parameterization
As detailed in Section 3.1, the state of our packet structure

is expressed as a vector of 12 floating point values derived
from the data in our custom designed packets. Each inte-
ger represents a component of the custom packet, including
source and destination IP addresses, source and destination
ports, sequence number, acknowledgement number, and a
payload. The integers were then divided by the maximum
value a signed integer could represent to produce a float in
the interval [0.0, 1.0] (see Section 3.1 for the rationale).

There is potentially a large number of parameters that
could be tuned when evolving neural networks with NEAT, a
complete declaration is provided in Table 2. However, most
of these follow from the defaults provided in the jNEAT im-
plementation. One area in which we diverged from the typ-
ical parameterization was with respect to the disambigua-
tion network. In particular, although NEAT initializes with
networks defined by a single neurone, each neurone is fully
connected. Parameters were therefore modified for the dis-
ambiguation network in order to encourage the removal of
links, thus promoting the design of neural network topolo-
gies that did not necessarily index all the attribute space.
From the larger topological perspective, this also introduced
a bias to finding sparse topologies.

5jSBB implementation employed from https://web.cs.dal.
ca/˜mheywood/Code/

1098

Table 2: NEAT Parameters. Both Expert NN and
Disambiguation NN were generated using the same
parameters.

Parameter Value
p trait param mut prob 0.5
p trait mutation power 1.0

p linktrait mut sig 1.0
p nodetrait mut sig 0.5
p weight mut power 2.5

p recur prob 0.0
p disjoint coeff 1.0
p excess coeff 1.0
p mutdiff coeff 0.4

p compat threshold 3.0
p age significance 1.0
p survival thresh 0.2

p mutate only prob 0.25
p mutate random trait prob 0.1

p mutate link trait prob 0.1
p mutate node trait prob 0.1

p mutate link weights prob 0.9
p mutate toggle enable prob 0.2
p mutate gene reenable prob 0.05

p mutate add node prob 0.03
p mutate add link prob 0.08
p interspecies mate rate 0.0010
p mate multipoint prob 0.3

p mate multipoint avg prob 0.3
p mate singlepoint prob 0.3

p mate only prob 0.2
p recur only prob 0.0

p pop size 500
p dropoff age 50

p newlink tries 50
p print every 10

p babies stolen 0
p num runs 1

p num trait params 8
epoch 1,000

Figure 2: Example fitness (upper curve) and speci-
ation (lower curve) for the LAND expert over time.
Note the periodic resetting of species as plateauing
/ stagnation is detected.

Figure 3: Example NN topology representing the
LAND expert.

4.2 Results with NEAT
As there are a total of three independent networks, we

will consider each one alone and then look at the combined
results.

4.2.1 LAND Expert
The LAND network needs to distinguish the difference

between normal and LAND (i.e., DoS) attacks (see Section
3.1). Figure 3 provides an example of a typical training
curve, and Figure 2 provides an illustrative topology of a
champion solution post training. From the resulting topol-
ogy, it is clear that the task is not linearly separable, but
likewise the resulting network is also reasonably sparse. Ta-
ble 3 summarizes the confusion matrix for test performance
in terms of the median over 20 independent runs. We also
note the performance under test of the best individual as
identified from training, where this reflects the performance
of the individual that would be deployed in practice.

4.2.2 Internal Propagation Expert
The Internal Propagation network needs to distinguish

the difference between normal and Internal Propagation or
IntProp (i.e., worm) attacks (see Section 3.1). Figure 5 pro-
vides an example of a typical training curve, and Figure 4
provides an illustrative topology of a champion solution post
training. Clearly a more complex topology results under the

1099

Table 3: Confusion matrix for LAND NN. Mean
performance (%) of 20,000 Test packets (best indi-
vidual). Results averaged over 20 runs.

Actual NEAT expert
Label LAND Normal
LAND 86.8 (93.8) 13.2 (6.2)
Normal 15.3 (9.0) 84.7 (91.0)

Figure 4: Example fitness (upper curve) and spe-
ciation (lower curve) for the Internal Propagation
expert over time. Note the periodic resetting of
species as plateauing / stagnation is detected.

LAND attack, implying that the identification of an inter-
nal propagation (IntProp) attack is a more demanding task
than detecting LAND attacks. Table 4 summarizes the con-
fusion matrix for test performance in terms of the median
over 20 independent runs. We also note the performance
under test of the best individual as identified from training,
where this reflects the performance of the individual that
would be deployed in practice.

4.2.3 Disambiguation Network
The Disambiguation network needs to distinguish the dif-

ference between LAND and Internal Propagation attacks, or
the ‘conflict’ case of Table 1, Section 3.1. Figure 7 provides
an example of a typical training curve, and Figure 6 provides
an illustrative topology of a champion solution post train-
ing. This is the most demanding task, however, sparseness
is also widely apparent. Table 5 summarizes the confusion
matrix for test performance in terms of the median over 20
independent runs. We also note the performance under test
of the best individual as identified from training, where this
reflects the performance of the individual that would be de-
ployed in practice.

Table 4: Confusion matrix for IntProp NN. Mean
performance (%) of 20,000 Test packets (best indi-
vidual). Results averaged over 20 runs.

Actual NEAT expert
Label IntProp Normal

IntProp 82.9 (92.9) 17.1 (7.1)
Normal 12.7 (7.6) 87.3 (92.4)

Figure 5: Example NN topology representing the
IntProp expert.

Figure 6: Example fitness (upper curve) and spe-
ciation (lower curve) for the Disambiguation NN
over time. Note the periodic resetting of species
as plateauing / stagnation is detected.

Table 5: Confusion matrix for Disambiguation
NN. Mean performance (%) of 20,000 Test packets
(best). Results averaged over 20 runs.

Actual NEAT expert
Label IntProp Normal

IntProp 83.3 (90.8) 16.6 (9.2)
Normal 16.6 (9.7) 83.4 (90.3)

1100

Figure 7: Example NN topology representing the Disambiguation neural network.

Table 6: Relative complexity of each NN.
Neural Network Mean node count Std. Deviation
LAND (DoS) 13.3 3.39

IntProp (worm) 17.8 2.71
Disambiguation 65.5 11.24

4.2.4 Combined performance
Sections 4.2.1 through 4.2.3 discussed performance on an

individual-wise basis. Here, we review the overall ‘system’
performance. The relative complexity of each NN compris-
ing the overall architecture is summarized in terms of the
respective node counts (Table 6). These results reinforce
the observations made in the earlier sections, with LAND
detection representing the simplest task and the final dis-
ambiguation step being the most complex.

Overall detection rates for the system under unseen test
conditions are summarized in Table 7. This reflects the aver-
age Detection rate of each class under test conditions: 10,000
normal; 5,000 LAND; 5,000 IntProp. packets. None of this
data was used to construct models. Also summarized is
the best of model performance, as in the test performance
of the best individual as identified from the training condi-
tions. In short, the model deployed would be capable of de-
tecting Normal and IntProp (worm) packets with detection
rates > 90% and LAND (DoS) packets with > 80%. Note
that this refers to attacks that are characterized (identified)
at the packet level on a packet-by-packet basis. Attacks
characterized across multiple packets would imply detection

Table 7: NEAT – Overall confusion matrix. Mean
performance (%) of 20,000 Test packets (best indi-
vidual). Results averaged over 20 runs.

Actual NEAT
Label Normal LAND IntProp

Normal 80.8 (90.8) 10.7 (0.5) 8.5 (8.7)
LAND 4.5 (10.0) 91.5 (82.1) 4.0 (7.9)
IntProp 15.9 (0.6) 14.5 (6.8) 69.5 (92.6)

through, say, flow style features (at the loss of real-time op-
eration).

4.3 Teaming GP
Section 4.2 demonstrated that the task is not linearly sep-

arable (solutions would take the form of a single neurone)
and indicated that task decomposition is beneficial (total of
three neural networks deployed in combination). As noted
in Section 3.3, the SBB framework has the potential to take
this further as the process of discovering the amount of ‘mod-
ularity’ is in itself performed through evolution.

Table 8 summarizes the resulting performance of SBB as
deployed under test conditions. Considerable benefits ap-
pear to be availed through pursuing open-ended task de-
composition as opposed to assuming a prior class wise de-
composition, as under NEAT. Naturally, we make no claims
regarding the generality of this outcome, and adopting other
forms of neuro-evolution might give similar results.

1101

Table 8: Teaming GP – Overall confusion matrix.
Mean performance (%) of 20,000 Test packets (best
individual). Results averaged over 20 runs.

Actual NEAT
Label Normal LAND IntProp

Normal 92.3 (99.8) 4.0 (0.02) 3.7 (0.14)
LAND 0.27 (0) 99.5 (100) 0.2 (0)
IntProp 0.42 (0) 0.23 (0) 99.3 (100)

5. CONCLUSION
MTD when applied to dynamically modifying the network

address space is currently assumed to be applied on a con-
tinuous basis. However, there are several costs involved, not
least that host machines can no longer cache their IP. This
implies that every IP request has to be referred to the DNS
(inserting a bottleneck in any communication) while imply-
ing that the DNS identity has to be static. In this work, we
consider MTD to be a policy deployed under conditions as
identified by a suitable light-weight detector. Light-weight
implies that the detector is required to operate from packet
data as opposed to flow data. We investigate two examples
of exploit within this context: DoS and worms (code that
self propagates). Naturally, such a detector would act as the
first wall in a multifaceted defense, with other detectors and
/ or stochastic mechanism acting as triggers for initiating a
MTD.

The NEAT algorithm is shown to be an effective frame-
work for identifying sparse neural network topologies for de-
tecting the two primary attack types. Particular attention
is paid to resolving which type of attack has been initiated.
From the MTD initiation perspective, just the two ‘expert’
networks is sufficient for determining when to initiate MTD.
Investigating the open-ended evolution of task decomposi-
tion through the coevolution of programs indicated further
improvements.

Future work could consider alternative types of detector
and benchmark with light-weight signature based detectors.
Previous research has demonstrated that various machine
learning methods are capable of providing effective detectors
[14, 15]. However, MTD represents an area in which a detec-
tor may operate more interactively with counter-measures
with the goal of providing a more autonomous system, open-
ing the opportunity to maintain the operation of a network
as opposed to merely closing ports (denying access to legit-
imate and illegitimate users alike).

6. ACKNOWLEDGEMENTS
This research is supported by Raytheon SAS. The research

is conducted as part of the Dalhousie NIMS Lab at: https:
//projects.cs.dal.ca/projectx/.

7. REFERENCES
[1] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G.

Anagnostakis. Defending against hitlist worms using
network address space randomization. Computer
Networks, 51(12):3471–3490, 2007.

[2] J. A. Doucette, A. R. McIntyre, P. Lichodzijewski,
and M. I. Heywood. Symbiotic coevolutionary genetic

programming. Genetic Programming and Evolvable
Machines, 13:71–101, 2012.

[3] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and
J. Tront. Mt6d: A moving target ipv6 defense. In
Military Communications Conference, (MILCOM),
pages 1321–1326, 2011.

[4] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E.
Hinton. Adaptive mixtures of local experts. Neural
Computation, 3:79–87, 1991.

[5] J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow
random host mutation: Transparent moving target
defense using software defined networking. In
Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, pages 127–132, 2012.

[6] J. H. H. Jafarian, E. Al-Shaer, and Q. Duan.
Spatio-temporal address mutation for proactive cyber
agility against sophisticated attackers. In Proceedings
of the First ACM Workshop on Moving Target
Defense, pages 69–78, 2014.

[7] D. J. John, R. W. Smith, W. H. T. abd D. A. Cañas,
and E. W. Fulp. Evolutionary based moving target
cyber defense. In Proceedings of the ACM Genetic and
Evolutionary Computation Conference, pages
1261–1268, 2014.

[8] H. G. Kayacik, A. N. Zincir-Heywood, and M. I.
Heywood. Evolutionary computation as an artificial
attacker: generating evasion attacks for detector
vulnerability testing. Evolutionary Intelligence,
4:243–266, 2011.

[9] P. Lichodzijewski and M. I. Heywood. Symbiosis,
complexification and simplicity under GP. In
Proceedings of the ACM Genetic and Evolutionary
Computation Conference, pages 853–860, 2010.

[10] J. H. Metzen, M. Edgington, Y. Kassahun, and
F. Kirchner. Performance evaluation of EANT in the
robocup keepaway benchmark. In IEEE International
Conference on Machine Learning and Applications,
pages 342–347, 2007.

[11] K. Stanley, B. Bryant, and R. Miikkulainen. Real-time
neuroevolution in the nero video game. IEEE
Transactions on Evolutionary Computation,
9(6):653–668, 2005.

[12] K. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[13] K. Stanley and R. Miikkulainen. Competitive
coevolution through evolutionary complexification.
Journal of Artificial Intelligence Research, 21:63–100,
2004.

[14] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin.
Intrusion detection by machine learning: A review.
Expert Systems with Applications, 36:11994–12000,
2009.

[15] S. X. Wu and W. Banzhaf. The use of computational
intelligence in intrusion detection: A review. Applied
Soft Computing, 10(1):1–35, 2010.

[16] J. Yackoskia, P. Xie, H. Bullen, J. Li, and K. Sun. A
self-shielding dynamic network architecture. In
Military Communications Conference, (MILCOM),
pages 1381–1386, 2011.

1102

