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ABSTRACT
This paper introduces the Voronoi diagram-based Artificial
Immune System (VorAIS). VorAIS models the self/non-self
using a Voronoi diagram that determines which areas of
the problem domain correspond to self or to non-self. The
diagram is evolved using a multi-objective bio-inspired ap-
proach in order to conjointly optimize various classification
metrics (accuracy, recall and specificity). VorAIS is exper-
imentally validated, first on standard classification prob-
lems, then on the well-known NSL-KDD dataset for anomaly
detection where it favorably compares with other AIS ap-
proaches.
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1. PRELIMINARIES
Artificial immune systems (AISs) are bio-inspired algo-

rithms that have been derived from existing theories of the
functioning of biological immune systems. AISs are partic-
ularly appealing as they capture the ability of the biological
system of telling apart normal body cells from pathogens.

Using inspiration from representations that had been pro-
posed for evolutionary shape design, this paper proposes Vo-
rAIS, that uses a Voronoi-based representation for self- and
non-self parts of the search space. Such representation offers
a flexible and compact alternative to some common repre-
sentations used in AIS such as hyper-spheres and hyper-
rectangles.

Such partition of the space into self- and non-self-spaces is
very similar to the way one can represent shapes in some real
space, and there has been several propositions for such repre-
sentations for shapes, including hyper-rectangles [4]. Other
alternatives that have been proposed there for shapes in-
clude the so-called Voronoi representation, that is central to
this work.
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2. VORONOI DIAGRAMS-BASED AIS
In the context of classification, the target phenotypes are

partitions of the parameter space into positive and negative
examples (in the case of two classes), and can hence also
be represented by Voronoi Diagrams with Boolean labels
associated to its sites.

The genotype of Voronoi representations is a variable length
list of Voronoi sites (S1, . . . , Sp), with p ∈ [1, PMax], where
each site is defined by its n coordinates in E . Each site S
has an associated label S.ell that determines how a point
that falls within it is classified.

The crossover operator for Voronoi representation should
not simply exchange some Voronoi sites between both par-
ents, but should respect the locality of the representation.
This is achieved by the geometric crossover, that draws a
random hyperplane in the space, and exchanges the Voronoi
sites from both sides of the hyperplane.

Several mutation operators can be designed for such a
variable-length representation:

• At the individual level, a Voronoi site can be added,
at a randomly chosen position, with a random label;
or a randomly chosen Voronoi site can be removed.

• At the site level, Voronoi sites can be moved around
in the space – and the well-known self-adaptive Gaus-
sian mutation has been chosen here, inspired by Evo-
lution Strategies; or the label of a Voronoi site can be
changed.

When applying AIS to problems like classification and, in
particular, anomaly detection, no single measure can cap-
ture the different desired properties simultaneously. Accu-
racy seems the best choice in the general case, as one wants
to correctly identify all examples. But when dealing with
anomalies, the dataset is generally highly imbalanced, as
normally there are fewer anomalous instances than ‘normal’
ones. If only the classification accuracy is used, the error
contribution of the anomalies will be reduced and hence the
model will be biased to not regard them. On the other
hand, neither recall nor specificity alone, if maximized, will
lead to a satisfactory classifier. This naturally leads to the
idea of using several objectives together, in a multi-objective
approach, that will empower the algorithm with the capac-
ity to address all the requirements of the task at the same
time. Multi-objective evolutionary algorithms (MOEAs) are
a competent approach for this task.

VorAIS consolidates the previous components as an algo-
rithm that constructs a classification model. The algorithm
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Figure 1: Box plots of the experimental evaluations on the
3 classification benchmarks.

goes by creating an initial random population P0 of npop

individuals. At a given iteration t, individuals in the popu-
lation Pt are then mutated and mated using operators de-
scribed above and thus producing an offspring population
Poff that consists of noff individuals.

At this point, individuals that have not yet been evaluated
are presented with the dataset and the values of the different
objective functions are calculated. From the union of Pt and
Poff, the best npop are selected using the non-dominated
sorting selection of NSGA-II [2].

3. EXPERIMENTS
One of the main questions regarding VorAIS is at what

point a multi-objective affinity function would actually gen-
erate better results at an admissible cost. Experiments use
a three classification benchmarks: the two spirals, the full
moon/crescent moon and the half densities problems. They
have the advantage that they can be visualized in 2D while
not being excessively simple.

Clarifying these matter is the central issue of these exper-
iments. To this end, we create different instances of VorAIS:
(i) VorAIS(a), a single-objective classification accuracy one;
(ii) VorAIS(a,r), a two-objective version that computes ac-
curacy and recall and (iii) VorAIS(a,r,s) that extends the
previous by including specificity as a third objective. In or-
der to also study the influence of the mating operator we
created versions of the above instances that included the
mating operator, named VorAIS(a+m), VorAIS(a,r+m) and
VorAIS(a,r,s+m), respectively.

The results of this experiments are shown as box plots in
Figure 1. It can be inferred form those plots that the three-
objective form of VorAIS yielded the best results. Similarly,
it is also evident that including the mating operator im-
proves substantially the outcome of the experiments.

We also evaluated the proposed algorithm, in particular
VorAIS(a,r,m+m), within this context and compare the per-
formances obtained with respect to existing approaches. To
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Figure 2: Box plots of the experimental evaluations of im-
plemented approaches on NSL-KDD.

this end, we consider the NSL-KDD dataset [1] that we de-
scribe next. For comparison purposes with other AIS ap-
proaches, we implemented the negative selection algorithm
(NSA) as proposed by [3] using, on one hand, both variable-
sized hyper-spheres (NSAsp), and hyper-rectangles (NSAre)
on the other. Figure 2 shows the outcome of the experiments
as box plots for easy visualization.

4. CONCLUSIONS
In this paper we have introduced VorAIS, a multi-objetive

artificial immune system that relies on Voronoi diagrams
for its representation. It has been devised with the prob-
lem of anomaly detection in mind. VorAIS representation
is optimized by means of a bio-inspired process that mu-
tates and mates Voronoi diagrams guided by multiobjective
principles1.
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