
An Incremental Ensemble Evolved by using Genetic
Programming to Efficiently Detect Drifts in Cyber Security

Datasets

Gianluigi Folino
Institute of High Performance
Computing and Networking

(ICAR-CNR)
Rende, Italy

folino@icar.cnr.it

Francesco Sergio Pisani
Institute of High Performance
Computing and Networking

(ICAR-CNR)
Rende, Italy

fspisani@icar.cnr.it

Pietro Sabatino
Institute of High Performance
Computing and Networking

(ICAR-CNR)
Rende, Italy

pietro.sabatino@icar.cnr.it

ABSTRACT
Unbalanced classes, the ability to detect changes in real-time, the
speed of the streams and other peculiar characteristics make most
of the data mining algorithms not apt to operate with datasets in
the cyber security domain. To overcome these issues, we propose
an ensemble-based algorithm, using a distributed Genetic Program-
ming framework to generate the function to combine the classifiers
and efficient strategies to react to changes in data. After that the
base classifiers are trained, the combining function of the ensem-
ble, based on non-trainable functions, can be generated without any
extra phase of training, while the drift detection function adopted,
together with a strategy for replacing classifiers, permits to respond
in an efficient way to changes.

Preliminary experiments conducted on an artificial dataset and
on a real intrusion detection dataset show the effectiveness of the
approach.

1. INTRODUCTION
In the last few years, cyber security problems are gaining inter-

est, as cyber crime seriously threatens national governments and
the economy of many industries [3]. In this domain, computer and
network technologies have intrinsic security weaknesses, i.e., pro-
tocol, operating system weaknesses, etc. In addition, computer net-
work activities, human actions, etc. generate large amounts of data,
hard to handle without using ad-hoc designed algorithms and dis-
tributed machines.

Intrusion Detection Systems (IDS) cope with the issue of detect-
ing unauthorized accesses to computer systems and computer net-
works. An intrusion can be defined as an attempt by an outsider
to gain access to the target system (local or network system). Data
Mining methods and algorithms can support the detection phase
of known attacks and indeed, from this research trend, a plethora
of proposals appeared in recent years. Despite this, classical se-
quential algorithms are not suitable to capture in real time new
trends and changes in streaming data, which may denote a net-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931682

work intrusion, as they assume that data are static and not changing
due to external modifications. In this specific application scenario,
ensemble-based algorithms (e.g., [13]) supply some specific char-
acteristics of great interest in the context of intrusion detection, and,
as a consequence, several ensemble-based intrusion detection tech-
niques have been proposed recently [9]. Among well-recognized
characteristics of such class of Data Mining algorithms, some that
make them particularly suitable for supporting intrusion detection
systems are the following ones: (i) they can be easily implemented
in parallel/distributed architectures; (ii) they can improve the accu-
racy of a weak learner; (iii) they can be specialized for the detection
of a particular class; (iv) they are particularly suitable to the spe-
cial case of unbalanced datasets. However, building the ensemble
could be computationally expensive as, when new data arrives, it is
necessary to restart the training phase.

To overcome these issues, we extend the approach presented in
[8], in order to handle data streams, to detect in an efficient way
changes in the data and to build in an incremental way the ensem-
ble of classifiers used to recognize the attacks. The above-cited
approach, named CAGE-MetaCombiner (CMC for short), is a dis-
tributed intrusion detection framework, based on a well-known dis-
tributed GP tool [6], which is used to generate the combining func-
tion of the ensemble, composed by non-trainable functions. The
main characteristic of the non-trainable functions is that they can
be evolved without any extra phase of training and, therefore, they
are particularly apt to handle concept drifts, also in the case of real-
time constraints. In this work, we added to the framework a drift
detection module, based on a detection function and on a clever
strategy to replace the classifiers in the ensemble, which permits to
respond in an efficient way to changes in the data.

Evolutionary algorithms have been used mainly to evolve and
select the base classifiers composing the ensemble [4][7] or adopt-
ing some time-expensive algorithms to combine the ensemble [18];
however a limited number of papers concerns the evolution of the
combining function of the ensemble by using GP and, to the best
of our knowledge none of these works is able to cope with drifts.
Chawla et al. [19] propose an evolutionary algorithm to combine
the ensemble, based on a weighted linear combination of classifiers
predictions, using many well-known data mining algorithm as base
classifiers, i.e. J48, NBTree, JRip, etc. Yan Wang et al. [21] use
multiple ensembles to classify incomplete datasets. Their strategy
consists in partitioning the incomplete datasets in multiple com-
plete sets and to train the different classifier on each sample. Then,
the predictions of all the classifiers could be combined according
to the ratio between the number of features in this subsample and
the total features of the original dataset. A similar approach could

1103

http://dx.doi.org/10.1145/2908961.2931682

be included in our system. In [1], the authors develop a GP-based
framework to evolve the fusion function of the ensemble both for
heterogeneous and homogeneous ensemble. The approach is com-
pared with other ensemble-based algorithms and the generalization
properties of the approach are analyzed together with the frequency
and the type of the classifiers presents in the solutions.

The rest of the paper is structured as follows. Section 2 shows
how to use the GP tool to evolve the combining function of the
ensemble. Section 3 illustrates the software architecture used in
the system and shows the drift detection techniques employed and
the strategies for the replacement of the classifiers of the ensem-
ble. Section 4 presents some experiments conducted to verify the
effectiveness of the approach and to compare it with other similar
approaches. Finally, Section 5 concludes the work.

2. USING NON-TRAINABLE FUNCTIONS
IN A GP-BASED ENSEMBLE

This section introduces the ensemble of classifiers and the "non-
trainable combiner functions" and illustrates how the GP tool is
used to evolve the combiner function of the ensemble.

2.1 Background: ensemble and non-trainable
functions

Ensemble permits to combine multiple (heterogeneous or homo-
geneous) models in order to classify new unseen instances. In prac-
tice, after a number of classifiers are built usually using part of the
dataset, the predictions of the different classifiers are combined and
a common decision is taken. Different schemas can be considered
to generate the classifiers and to combine the classifiers in the en-
semble, i.e. the same learning algorithm can be trained on differ-
ent datasets or/and different algorithms can be trained on the same
dataset. In this work, different algorithms are used on the same
dataset in order to build the different classifiers/models.

Let S = {(xi,yi)|i = 1, . . . ,N} be a training set where xi, called
example or tuple or instance, is an attribute vector with m attributes
and yi is the class label associated with xi. A predictor (classifier),
given a new example, has the task to predict the class label for it.

Ensemble techniques build g predictors, each on a different train-
ing set, then combine them together to classify the test set. As an al-
ternative, the g predictors could be built using different algorithms
on the same/different training set.

The largely used boosting algorithm, introduced by Schapire [15]
and Freund [16], follows a different schema; in order to boost the
performance of any “weak" learning algorithm, i.e. an algorithm
that “generates classifiers which need only be a little bit better than
random guessing" [16], the method adaptively changes the distri-
bution of the training set depending on how difficult each example
is to classify.

This approach was successfully applied to a large number and
types of datasets; however, it has the drawback of needing to re-
peat the training phase for a number of rounds and that could be
really time-consuming for large datasets. The applications and the
datasets in hard domains, as cyber security, have real-time require-
ments, which do not permit to re-train again the base models. On
the contrary, ensemble strategies do not need any further phase of
training, whether the functions used can be combined without using
the original training set. The majority vote is a classical example
of this kind of combiner function. Some types of combiner have
no extra parameters that need to be trained and consequently, the
ensemble is ready for operation as soon as the base classifiers are
trained. These are named non-trainable combiners [13] and could
be used as functions in a genetic programming tree.

Before describing the GP framework used, here, we introduce
some definitions useful to understand how the algorithm works.

Let x ∈ RN be a feature vector and Ω = {ω1,ω2 ...,ωc} be the
set of the possible class labels. Each classifier hi in the ensemble
outputs c degrees of support, i.e., for each class, it will give the
probability that the tuple belongs to that class. Without loss of
generality, we can assume that all the c degrees are in the interval
[0,1], that is, hi : RN → [0,1]c. Denote by Hi, j(x) the support that
classifier hi gives to the hypothesis that x comes from class ω j.
The larger the support, the more likely the class label ω j. A non-
trainable combiner calculates the support for a class combining the
support values of all the classifiers. For each tuple x of the training
set, and considering g classifiers and c classes, a Decision Profile
matrix DP can be build as follow:

DP(x) =

H1,1(x) ... H1, j(x) ... H1,c(x)
Hi,1(x) ... Hi, j(x) ... Hi,c(x)
Hg,1(x) ... Hg, j(x) ... Hg,c(x)

where the element Hi, j(x) is the support for j-th class of i-th classi-
fier.

The functions used in our approach simply combine the values
of a single column to compute the support for j− th class and can
be defined as follow:

µ j(x) = F [H1, j(x),H2, j(x), ...,Hg, j(x)]
For instance, the most simple function we can consider is the

average, which can be computed as: µ j(x) = 1
g ∑

g
i=1 Hi, j(x)

The class label of x is the class with maximum support µ .

2.2 Using GP to generate the combining func-
tion

In this work, we adopt as GP engine, the CellulAr GEnetic pro-
gramming (CAGE) [6], running both on distributed-memory paral-
lel computers and on distributed environments, based on the fine-
grained cellular model. The generation of the population, the differ-
ent operators (i.e., crossover, mutation, etc.) are the same defined
in the classical GP introduced by Koza [12]. Differently from clas-
sical models in which the GP tool is used to evolve the base clas-
sifiers, in our approach, the classifiers (with an associated weight
previously computed on the training set) are the leaves of the tree,
while the combiner functions are placed on the nodes. In practice,
GP is used to evolve the combiner function, which the ensemble
will adopt to classify new tuples. Implicitly, the function selects
the more suitable classifiers/models to the specific datasets consid-
ered.

In particular, the functions chosen to combine the classifiers com-
posing the ensemble are non-trainable functions and are listed in
the following: average, weighted average, multiplication, maxi-
mum and median. They can be applied to a different number of
classifiers, i.e. each function is replicated with a different arity,
typically from 2 to 5. The choice of this set of functions is due
to the fact that most of the papers adopting non-trainable functions
use these combiners and obtain good experimental results [13]. The
only function we do not include in this set was the product, which
obviously does not perform well in the multi-class case. in the fol-
lowing, we specified better the functions used:

The average function, used with an arity of 2, 3 and 5, is defined
as: µ j(x) = 1

g ∑
g
i=1 Hi, j(x).

The maximum function returns the maximum support for 2, 3
and 5 classifiers and can be computed as: µ j(x) = maxi

{
Hi, j(x)

}
.

The median function (arity 3 and 5) can be computed as: µ j(x)=
mediani

{
Hi, j(x)

}
.

1104

Figure 1: An example of the combiner function generated from
the GP tool.

In order to better clarify, how the tree is built, in Figure 1, an
example of tree generated from the tool is illustrated. As for the
fitness function, it is simply computed as the error of the ensemble
on the validation set, i.e. the ratio between the tuples not correctly
classified and the total number of tuples. However, in the particular
case of unbalanced datasets, a weighted fitness is adopted. In prac-
tice, if a tuple belonging to a minority class is misclassified, the
fitness function is penalized by a weight equal to the ratio between
the total number of tuples and the total number of tuples belonging
to that class (to avoid really high weights, if the weight exceeds the
threshold value of 10, it is fixed to this threshold). For the tuple
belonging to the majority class, the penalty weight is fixed to 1, as
in the case of balanced datasets.

3. THE SOFTWARE ARCHITECTURE OF
THE FRAMEWORK

This section introduces a general architecture for processing and
classifying intrusion detection datasets and details the main mod-
ule of this architecture used to classify the attacks and the clever
strategy adopted to detect the drift and to replace the classifiers
composing the ensemble.

3.1 A general architecture for IDS
In Figure 2, a general architecture for an innovative intrusion

detection system is described. Typically, the stream of data in in-
put can originate from different sources: network traffic coming
from a particular interface or coming from a router, system logs,
application logs concerning the software installed on the system,
etc. After the preprocessing phase, the features are extracted and
the data stream is ready for further analysis. The next stage of the
elaboration is performed by the module called Change Detector. It
performs an analysis of the data stream seeking qualitative devia-
tions from the normal behavior. Indeed, as it must perform a real
time analysis, it typically divides the data stream in time windows
of prefixed duration and then some functions are computed on the
values of aggregated features coming from the window considered.
The set of the values of these functions captures qualitative char-
acteristics of the data stream; if an anomaly is detected in these
sequences, or in the initial training phase of the system, the mod-
ule Model Generator is activated in order to generate new models
for the analysis of the data stream, performed by the Distributed
Ensemble module. These new models are used to update the en-
semble by using some replacement strategies or simply by adding

them to the current ensemble. Finally, the overall ensemble is used
to classify the new incoming tuples and to generate some alerts to
be processed in some way.

3.2 The ensemble-based classifier
Following the schema illustrated in Subsection 3.1, our ensemble-

based framework, which must operate in order to quickly detect
and manage drift, must be composed by some main modules: a
drift (change) detector, a generator of classifiers (models), a module
to replace old/inefficient/overlapping classifiers. In addition, our
framework also includes a module to generate the combiner func-
tion of the ensemble by using a genetic programming approach.

The tool used to evolve the combining function is a distributed
GP implementation, named CellulAr GEnetic programming (CAGE)
[6], running both on distributed-memory parallel computers and on
distributed environments. The tool is based on the fine-grained cel-
lular model. The overall population of the GP algorithm is parti-
tioned into subpopulations of the same size. Each subpopulation
can be assigned to one processor and a standard (panmictic) GP
algorithm is executed on it. Occasionally, migration process be-
tween subpopulations is carried out after a fixed number of gen-
erations. For example, the n best individuals from one subpopu-
lation are copied into the other subpopulations, thus allowing the
exchange of genetic information between populations. The model
is hybrid and modifies the island model by substituting the standard
GP algorithm with a cellular GP (cGP) algorithm. In the cellular
model each individual has a spatial location, a small neighborhood
and interacts only within its neighborhood. The main difference in
a cellular GP, with respect to a panmictic algorithm, is its decen-
tralized selection mechanism and the genetic operators (crossover,
mutation) adopted.

This tool is used to evolve the combiner functions and obtain an
overall combiner function, which the ensemble will adopt to clas-
sify new tuples. Implicitly, the function selects the classifiers/models
more apt to the particular datasets considered. More details on how
the combiner function of the ensemble is evolved are reported in
[8]. Briefly, as nodes of the GP tree, some non-trainable functions
are chosen, better specified in the experimental section, while the
leafs of the tree are the different classifiers selected in the previous
phase (see Figure 1) and the fitness function is simply the error of
the ensemble computed on the validation set. It is worth to remem-
ber that no extra computation on the data is necessary to build the
GP trees, as the validation set is only used to verify the correct class
is assigned and consequently to compute the fitness function.

The model generator is built on the well-known Massive Online
Analysis (MOA) toolbox1, adopted to handle the data streams and
also used for the implementation of the classifier algorithms and
for the drift detection strategies described in the Subsection 3.3.
Finally, the module to replace old/inefficient/overlapping classifiers
adopts the strategies also described in the Subsection 3.3.

The way in which the overall algorithm works is better illustrated
in the pseudocode of Figure 3. For the sake of simplicity, we sup-
pose that the detection method is based on a window of prefixed
length of tuples; however, the methodology can be applied to most
of the drift detection methods present in the MOA framework. It is
beyond the aim of this paper to compare different strategy of drift
detections. We refer to [11], for a comprehensive comparison and
on the basis of the experiments reported in this paper, we choose
the detection algorithm used in our experiments.

An infinite stream of tuples is the input of the model generator
and they are analyzed in windows of pre-fixed length n. On each

1MOA release 2014.11; http://moa.cms.waikato.ac.nz/.

1105

Figure 2: A general architecture for classifying large streams of attacks and normal connections.

window, a function verifies whether a drift occurred; only in the
positive case, the labelled tuples of the current window are par-
titioned equally into training and validation set. The training set
is used to train the base classifier algorithms selected among the
available in the MOA tool and better specified in the experimental
section. Among them, the l classifiers having the better accuracy
on the training set are chosen and added to the current ensemble.
A replacing strategy is used to remove some classifiers from the
ensemble, whether the maximum number of elements is reached.
Afterwards, the GP tool is run to generate the combiner function,
which will be applied to the ensemble, by using the validation set.

Finally, if no drift is detected, the new incoming tuples are clas-
sified using the following schema: for each tuple x, for each possi-
ble class j, the supports are computed using the formula: µ j(x) =
∑Hi j(x). and the final classification is obtained by using the for-
mula class(x) = argmax j(µ j(x))

3.3 Drift detection and replacement strategies
In this work, we are not particularly interested in developing a

new drift detection strategy, but we used that included in the MOA
tool. In particular, on the basis of the experiments reported in [11],
which analyze the performance of the most important drift detec-
tion strategies, we choose STEPD and ADWIN strategies.

Statistical Test of Equal Proportions (STEPD) [14] is a drift de-
tection algorithm based on the accuracy. It computes two statis-
tics: the overall accuracy from the beginning of the stream and the
accuracy of the model computed on a testing window W. If the
difference between the accuracy computed on W and the overall
accuracy is greater than a threshold, then a drift is detected and the
model must be rebuilt/updated. In the implementation described in
the above-cited paper, the instances stored in memory are used to
update the classifier when a drift is detected. Our algorithm updates
the models by using the instances of the last window. The window
size is fixed, and it contains the target instance (when STEPD de-
tects drift) and its neighbors. The threshold value P is computed as
the percentile of the standard normal distribution in order to obtain

1106

Let α be the maximum number of base classification algorithms used.
Let ł be the number of base classification selected (with l < α) .
Let M be the maximum number of classifiers composing the ensemble.
Let wind the size of the window examined.
Given T1,T2, . . .T∞, the infinite tuples composing the stream, analyze in windows of size n,
named {Tw1 ,Tw2 , . . . ,Tw∞

}.
where Ti = {Ti1 ,Ti2 , . . . ,Tim} is a tuple with associated a number of attributes m and a class.
The current ensemble E = {C1,C2, . . . ,CM}
for each (Twi)

if (drift_detection_function (Twi))
Partition the tuples composing Twi in a training set and a validation set: Traini and Validi
Train α different classification algorithms on Traini
Select the l classifiers obtaining the best accuracy on the training set.
Add these classifiers to the ensemble E
if (| E |> M)

prune the ensemble E, removing M−|E| classifiers, by using a strategy of pruning.
end if
Build l decision profile matrixes, one for each of the classifiers, DP1,DP2, . . . ,DPl using the validation set,
one for each classifier of dimension k× c, where k is the number of tuples and c the number of classes.
Run the distributed GP tool on the validation set Validi in order to obtain the combiner function of the ensemble.
Obtain an Ensemble E, a combiner function FC ,

else
Build the decision profile matrix DP of the entire ensemble E,
where each element Hi, j(x) is the support that classifier hi gives to the hypothesis that the tuple x comes from class ω j.
Compute for each class j: µ j(x) = ∑Hi j(x).
Compute the class by using the formula class(x) = argmax j(µ j(x)).

end if
end for each

Figure 3: The pseudo-code of the algorithm.

the observed significance level. STEPD uses three parameters: the
window value to detect recent changes (we are using 20 instances,
as in original paper) and the significance levels αw and αd . In prac-
tice, STEPD stores the instances in its memory when P < αw and
it resets all the variables (i.e., clear its memory, reset the window
accuracy, etc.) when P < αd . As suggested in the original paper,
we use a value of 0.03 for αd and 0.08 for αw.

The ADaptative WINDdowing method [2] keeps a sliding win-
dow W with the most recent examples and compares the distribu-
tion on two sub-windows of W. When the difference of the average
value of the two sub-windows is greater than a threshold, then the
older sub-window is dropped and a change in the distribution of
examples is assigned. However, this idea is computationally inten-
sive and requires a huge amount of memory. Therefore, the cur-
rent implementation is based on a different data structure. The in-
put records are stored in exponential histograms, a data structure
that maintains an approximation of the number of 1 contained in a
sliding window of length W using logarithmic memory and update
time. The length W is update to fit stream variations. The input
of the algorithm are real numbers in the interval [0,1] and to detect
drift, only values of 0 and 1 are processed: wrong predictions are
marked as 1, good one as 0. A confidence parameter δ with value
of 0.002 is used to control the false positive rate, i.e. if the expected
value of distribution remains constant within W, the probability that
ADWIN shrinks the window at this step is at most δ .

As for the strategies for replacing the classifiers composing the
ensemble with the new generated by the algorithm, we developed
three strategies, named old, best and wheel selection. In the training
phase, the dataset is partitioned into two parts: 50% of the instances

are selected to train classifiers and the remaining instances compose
a validation set to build the ensemble model. The old strategy re-
places 1/3 of classifiers in the ensemble with the new generated.
The classifiers are removed considering the insertion time in the
ensemble model, i.e. the oldest are removed. The new classifier
is chosen by considering the accuracy result on the validation set.
The best strategy works as the previous one, but it removes classi-
fiers having the worst accuracy on the validation set and it inserts
the best ones. As in the previous case, only a 1/3 of classifiers are
replaced. Finally, the wheel selection strategy is a selection algo-
rithm based on the wheel mechanism. When a drift is detected, all
the classifiers in the repository are trained on the training dataset.
Then, classifiers are replaced with a roulette wheel selection algo-
rithm. The performance on validation set is used as a probability,
then 1/3 classifiers are selected with probability pi using formula
pi =

fi

∑
N
j=1 f j

where fi is the accuracy on the validation set.

4. EXPERIMENTAL SECTION
Two set of experiments were performed, by using an artificial

dataset and an intrusion detection dataset, in order to verify the
goodness of the approach. In the next two subsections, the datasets
and the parameters used in the experiments are illustrated.

4.1 Parameter Settings
All the experiments were performed on a Linux cluster with 16

Itanium2 1.4 GHz nodes, each having 2 GBytes of main memory
and connected by a Myrinet high performance network. No tuning
phase has been conducted for the GP tool, but the same parame-

1107

ters used in the original paper were used, listed in the following: a
probability of crossover equal to 0.7 and of mutation equal to 0.1,
a maximum depth equal to 7, a population of 120 individuals and
500 as number of generations. All the results were obtained by
averaging 30 runs.

Among the many metrics for evaluating classifier systems, in this
paper we choose recall and precision, because they give an idea of
the capacity of the system in individuating the attacks and in re-
ducing the number of false alarms; indeed, recall represents the
proportion of correctly predicted attack cases to the actual size of
the attack class (a value of 100% indicate we detect all the attacks,
however, we can individuate also a large number of false attacks);
precision represents the proportion of attack cases that were cor-
rectly predicted relative to the predicted size of the attack class (a
value of 100% indicates that no false alarms were signaled, how-
ever a large number of alarms could be not detected).

The AUC metric is the value of the area under the ROC curve.
The ROC curve is computed comparing the false positive rate and
the true positive rate. The first term measures the capacity to cor-
rectly detect attacks (i.e. recall). The second term measures the
rate between the false alarm signaled above all normal connections
processed. Computing the area, we have a number to describe the
goodness of classifier. An AUC close to 1 means an optimal recog-
nition rate.

The different classifiers composing the ensemble are trained on
the same training set. In practice, for each window of the stream,
50% is used to train the base classifiers, the remaining 50% is is
used as validation set. The validation part is used by the evolution-
ary algorithm to evolve the combination function. The maximum
number of classifiers is fixed to 20 and the number of classifiers
composing the ensemble are 10.

CAGE-MetaCombiner (CMC for short) uses many learner as
base classifiers, then it makes a selection using a strategy chosen
among best, old and wheel selection as described in the previous
section.

The algorithms used as base classifiers in the experiments are
based on the WEKA implementation2 and are listed in the follow-
ing: J48 (decision trees), JRIP rule learner (Ripper rule learning
algorithm), NBTree (Naive Bayes tree), Naive Bayes, 1R classifier,
logistic model trees, logistic regression, decision stumps and 1BK
(k-nearest neighbor algorithm).

4.2 Description of the datasets
The performances of CAGE-MetaCombiner are evaluated on an

artificial dataset and on a real dataset of the cyber security domain.
To generate the artificial dataset, we use the HyperPlane generator
available in MOA. This generator is very popular as benchmark for
drift detection algorithms. It was originally used in (Hulten et al.
2001) [10]. It generates data for a binary classification problem,
taking a random hyperplane in d-dimensional Euclidean space as
a decision boundary. The user can customize the number of at-
tributes generated, the attributes used to generate drift (the others
can be considered as irrelevant), the magnitude of changes and the
percentage of noise to add to the data.

DARPA and KDD are two very popular datasets used in the clas-
sification in the IDS domain, see Travallaee et al. [20]; however,
they have been thoroughly criticized for being unable to provide a
realistic scenario. To overcome this issue, we choose to conduct
our experiments on the ISCX IDS dataset from the Information Se-
curity Centre of Excellence of the University of New Brunswick
[17]. This dataset is the result of capturing seven days of network

2http://www.cs.waikato.ac.nz/ml/weka

traffic in a controlled testbed made of a subnetwork placed behind
a firewall. Normal traffic was generated with the aid of agents that
simulated normal requests of human users following some proba-
bility distributions extrapolated from real traffic. Attack were gen-
erated with the aid of human operators. The result is a fully labelled
dataset containing realistic traffic scenarios. Indeed, the dataset
consists of standards pcap (packet capture) files one for each day
containing the relative network traffic, as illustrated in Table 1. Dif-
ferent days contain different attack scenarios, ranging from HTTP
Denial of Service, DDos, Brute Force SSH and attempts of infil-
trating the subnetwork from the inside. The main characteristics of
this dataset are summarized in Table 1.

4.3 Experiments on the artificial dataset
In order to evaluate the effectiveness of the replacement strate-

gies, of the drift detection techniques used and, in general, of all
the approach, we conducted our experiments by varying the size
of the evaluation window of the stream. In addition, our approach
is compared with the well-known incremental algorithm Hoeffd-
ingTree using the same drift detection algorithm of our approach
and with a boosted version of the HoeffdingTree. As for the win-
dow size, we want to remark that it is the number of records used to
train the base classifiers and to build the base classifier. The met-
rics of recall, precision and AUC are computed for each window
and averaged over all the windows.

In all the tables of this section and of the next one, we report
in bold the values that are not statistically significant using the
Friedman test (note that we made this choice, as most of the dif-
ferences are significative). The critical value of the Friedman test
[5] is obtained from a chi-square distribution with two degree of
freedom and a significancy level of 5%. The Friedman test is a
non-parametric statistical test and it is used to detect differences
across multiple test. The null hypothesis of this test is that the me-
dian value of all the populations is equal.

In Tables 2, 3 and 4, are shown respectively the precision, the re-
call and the AUC metrics concerning the HoeffdingTree algorithm
(classic and boosted version) and the different replacement strate-
gies used in our approach: old, best and wheel. The experiments
show that the size of the evaluation window does not affect signifi-
cantly the performance of the algorithms. Our approach is slightly
better than the others and the better strategy of replacement is that
replaces the worst trees with the best ones. This behavior can be
referred to nature of the generated dataset. The same conclusions
can be drawn for the AUC metric.

4.4 Experiments on the real dataset
Generally, in the intrusion detection datasets, most of the in-

stances represent normal connections, while the attacks represent
the minority classes, often with different orders of magnitudo. There-
fore, the ISCX dataset, described in the Subsection 4.2, which is
representative of this situation, was used for the experiments of this
section.

Analyzing Table 1 and the relative dataset, it is evident that the
attacks are grouped in a small range of windows and, for different
days, different kinds of attack can be observed. It worth to notice
that drifts (changes in the data) can be detected when a new type of
attack appears for the first time. Therefore, this dataset is appropri-
ate in order to test our approach.

In Tables 5, 6 and 7 the experimental results for the ISCX dataset
are shown and the behavior of our approach is examined with the
different replacement strategies.

1108

Day Description Size of the pcap file (GB) Number of Flows Percentage of Attacks

Day 1 Normal traffic without malicious activities 16.1 359,673 0.000 %
Day 2 Normal traffic with some malicious activities 4.22 134,752 1.545 %
Day 3 Infiltrating the network from the inside & Normal traffic 3.95 153,409 6.395 %
Day 4 HTTP Denial of Service & Normal traffic 6.85 178,825 1.855 %
Day 5 Distributed Denial of Service using an IRC Botnet 23.4 554,659 6.686 %
Day 6 Normal traffic without malicious activities 17.6 505,057 0.000 %
Day 7 Brute Force SSH + Normal activities 12.3 344,245 1.435 %

Table 1: Main characteristics of the ISCX IDS dataset.

In this case, the wheel selection strategy has the better perfor-
mance for both the precision and recall metrics. The same behavior
is observable in Table 7 for the AUC metric.

Table 2: Precision for CMC and HoeffdingTree (classic and
boosted version) (HyperPlane dataset).

Precision
1k 2k 5k 10k

STEPD
HT boosted 87.66±2.12 87.66±2.93 87.80±1.97 87.97±0.68
HoeffdingTree 87.48±1.75 87.56±0.27 87.64±2.97 87.86±2.81
CMC wheel 87.68±1.52 87.87±2.61 87.39±1.26 87.49±2.98
CMC best 87.68±2.72 90.01±0.81 93.28±0.74 85.52±0.99
CMC old 87.47±2.61 89.78±1.78 90.28±2.35 85.55±1.27

ADWIN
HT boosted 84.83±0.05 85.00±1.54 83.52±0.33 83.52±0.78
HoeffdingTree 86.44±0.46 85.99±0.07 86.25±0.06 85.41±0.59
CMC wheel 87.68±2.46 85.48±2.19 83.83±0.92 84.72±1.38
CMC best 87.68±2.53 90.01±0.41 91.92±2.71 85.52±0.21
CMC old 87.13±1.71 89.29±1.41 90.63±1.77 84.23±2.06

Table 3: Recall for CMC and HoeffdingTree (classic and
boosted version) (HyperPlane dataset).

Recall
1k 2k 5k 10k

STEPD
HT boosted 87.30±2.69 87.37±0.85 87.53±2.07 87.59±0.58
HoeffdingTree 87.25±0.50 87.51±2.66 87.55±2.90 87.82±1.04
CMC wheel 87.33±0.32 87.48±0.71 88.59±1.17 87.98±1.17
CMC best 91.32±1.31 91.40±2.67 85.86±0.69 87.55±0.15
CMC old 90.56±2.77 89.01±2.89 85.48±0.83 87.32±0.43

ADWIN
HT boosted 84.11±1.40 84.16±2.46 83.47±1.85 83.77±2.66
HoeffdingTree 86.48±1.62 86.39±1.62 85.45±2.94 84.67±1.70
CMC wheel 91.32±0.84 85.36±1.72 84.41±1.59 83.79±1.35
CMC best 91.32±1.55 91.40±1.16 91.66±1.06 87.55±1.92
CMC old 89.72±2.75 89.80±2.76 89.66±2.13 85.55±2.48

Table 4: AUC metric for CMC and HoeffdingTree (classic and
boosted version) (HyperPlane dataset).

AUC
1k 2k 5k 10k

STEPD
HT boosted 0.87± .029 0.88± .013 0.88± .012 0.88± .025

HoeffdingTree 0.87± .010 0.88± .022 0.88± .015 0.88± .001
CMC wheel 0.89± .019 0.89± .023 0.90± .002 0.89± .018
CMC best 0.89± .003 0.91± .001 0.90± .006 0.86± .019
CMC old 0.89± .013 0.90± .012 0.89± .004 0.86± .025

ADWIN
HT boosted 0.86± .014 0.84± .010 0.83± .015 0.83± .029

HoeffdingTree 0.86± .078 0.86± .029 0.86± .007 0.85± .025
CMC wheel 0.89± .030 0.85± .010 0.84± .025 0.82± .015
CMC best 0.89± .016 0.91± .014 0.92± .026 0.86± .028
CMC old 0.88± .094 0.90± .012 0.92± .013 0.85± .022

In Tables 8, 9 and 10 are shown respectively the recall and pre-
cision and the AUC metrics concerning the comparison between
the HoeffdingTree algorithm (classic and boosted version) and our
approach (CMC) with the wheel selection strategy. We use the AD-
WIN algorithm as drift detection because it has equivalent perfor-
mance (better in some cases) in comparison with STEPD. Further-
more, considering only the AUC metric, ADWIN has a slight ad-
vantage on the performance of the STEPD algorithm for the ISCX

Table 5: Precision for different replacement strategies for CMC
(ISCX dataset).

Precision
1k 2k 5k 10k

STEPD
CMC wheel 83.46±0.29 89.40±0.31 87.75±2.24 89.97±0.11
CMC best 79.19±0.19 82.31±2.65 74.30±0.36 84.67±2.29
CMC old 70.99±0.95 75.98±0.32 75.25±0.59 78.98±0.29

ADWIN
CMC wheel 83.46±0.81 87.59±1.07 92.42±0.77 88.28±2.71
CMC best 57.98±2.01 61.90±0.79 65.90±0.15 58.67±1.92
CMC old 56.75±2.73 63.65±0.12 63.83±1.99 59.80±2.67

Table 6: Recall for different replacement strategies for CMC
(ISCX dataset).

Recall
1k 2k 5k 10k

STEPD
CMC wheel 88.39±2.75 85.47±1.62 85.10±2.71 80.41±2.38
CMC best 65.98±2.51 66.56±2.40 82.85±0.33 71.70±2.96
CMC old 59.34±1.63 62.35±0.26 63.35±1.09 67.98±0.16

ADWIN
CMC wheel 88.39±2.51 88.25±2.38 82.44±2.44 80.79±0.08
CMC best 67.44±1.82 67.62±0.60 73.90±1.56 62.82±0.69
CMC old 63.54±2.82 64.34±2.12 64.90±0.71 61.98±2.41

Table 7: AUC metric for different replacement strategies for
CMC (ISCX dataset).

AUC
1k 2k 5k 10k

STEPD
CMC wheel 0.84± .019 0.86± .018 0.87± .007 0.87± .018
CMC best 0.72± .029 0.79± .016 0.86± .013 0.84± .008
CMC old 0.59± .009 0.60± .002 0.60± .007 0.62± .017

ADWIN
CMC wheel 0.84± .014 0.87± .017 0.89± .007 0.89± .002
CMC best 0.51± .026 0.51± .018 0.55± .019 0.52± .015
CMC old 0.53± .003 0.53± .015 0.53± .001 0.52± .017

dataset. Note that, the HoeffdingTree algorithm updates more fre-
quently its model, and therefore, also for small windows, it can
improve quickly the predictive capacity. However, our approach
has performance close to the HoeffdingTree for small windows
and it performs sensibly better when the window size grows. Fur-
thermore, comparing the performance for both the version of the
HoeffdingTree, a performance degradation of the ensemble-based
algorithm can be observed. This behavior does not affect our ap-
proach, probably because when a drift is detected, it updates/replaces
the models and re-weights the classifiers (by recomputing the com-
bination function).

Table 8: Precision for the comparison among our approach, the
Hoeffding tree (classical and boosted version) on ISCX dataset.

Precision
1k 2k 5k 10k

ADWIN
CMC wheel 83.46±0.28 87.59±0.03 92.42±2.20 88.28±2.69
HT boosted 84.72±2.67 81.79±2.82 79.50±0.14 75.29±2.82
HoeffdingTree 89.22±1.67 87.51±2.23 87.23±1.80 87.48±1.51

1109

Table 9: Recall for the comparison among our approach, the
Hoeffding tree (classical and boosted version) on ISCX dataset.

Recall
1k 2k 5k 10k

ADWIN
CMC wheel 88.39±0.69 88.25±1.08 82.44±0.69 80.79±0.26
HT boosted 85.20±1.04 81.35±2.14 70.62±1.15 58.72±1.90
HoeffdingTree 92.66±0.92 87.76±2.86 79.69±0.53 75.62±2.10

Table 10: AUC metric for the comparison among our approach,
the Hoeffding tree (classical and boosted version) on ISCX
dataset.

AUC
1k 2k 5k 10k

ADWIN
CMC wheel 0.84± .022 0.87± .003 0.89± .001 0.89± .007
HT boosted 0.82± .021 0.79± .007 0.75± .009 0.69± .003
HoeffdingTree 0.89± .014 0.88± .001 0.85± .012 0.83± .013

5. CONCLUSIONS AND FUTURE WORKS
A framework for classifying streaming intrusion detection datasets

based on the ensemble model, is presented. The system evolves a
combiner function, which does not need additional phases of train-
ing, after the heterogeneous classifiers composing the ensemble are
trained. The framework includes a drift detection function to detect
changes in the data and a strategy for replacing classifiers, which
permits to build the ensemble in an incremental way. Preliminary
experiments showed that the framework is apt to cope with large
streams of normal connections and attacks and that the wheel selec-
tion strategy obtains encouraging results in comparison with other
replacement strategies. In future works, we intend to better inves-
tigate the ability of the algorithm to handle large real-world datas-
treams in the cyber security domain.

Acknowledgment
This work has been partially supported by MIUR-PON under project
PON03PE_00032_2 within the framework of the Technological Dis-
trict on Cyber Security.

6. REFERENCES
[1] N. Acosta-Mendoza, A. Morales-Reyes, H. J. Escalante, and

A. Gago-Alonso. Learning to assemble classifiers via genetic
programming. IJPRAI, 28(7), 2014.

[2] Albert Bifet and Ricard Gavalda. Learning from
time-changing data with adaptive windowing. In SDM,
volume 7, page 2007. SIAM, 2007.

[3] CERT Australia. Cyber crime and security survey report.
Technical report, 2012.

[4] D. F. de Oliveira, A. M. P. Canuto, and M. C. P. de Souto.
Use of multi-objective genetic algorithms to investigate the
diversity/accuracy dilemma in heterogeneous ensembles. In
International Joint Conference on Neural Networks, pages
2339–2346. IEEE, 2009.

[5] Janez Demsar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning Research,
7:1–30, 2006.

[6] G. Folino, C. Pizzuti, and G. Spezzano. A scalable cellular
implementation of parallel genetic programming. IEEE
Transactions on Evolutionary Computation, 7(1):37–53,
February 2003.

[7] G. Folino, C. Pizzuti, and G. Spezzano. Training Distributed
GP Ensemble With a Selective Algorithm Based on
Clustering and Pruning for Pattern Classification. IEEE
Trans. Evolutionary Computation, 12(4):458–468, 2008.

[8] Gianluigi Folino, Francesco Sergio Pisani, and Pietro
Sabatino. A distributed intrusion detection framework based
on evolved specialized ensembles of classifiers. In Giovanni
Squillero and Paolo Burelli, editors, Applications of
Evolutionary Computation - 19th European Conference,
EvoApplications 2016, Porto, Portugal, March 30 - April 1,
2016, Proceedings, Part I, volume 9597 of Lecture Notes in
Computer Science, pages 315–331. Springer, 2016.

[9] Gianluigi Folino and Pietro Sabatino. Ensemble based
collaborative and distributed intrusion detection systems: A
survey. J. Netw. Comput. Appl., 66(C):1–16, May 2016.

[10] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining
time-changing data streams. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 97–106. ACM, 2001.

[11] Paulo Mauricio Gonçalves Jr., Silas Garrido Teixeira
de Carvalho Santos, Roberto Souto Maior de Barros, and
Davi Carnauba De Lima Vieira. A comparative study on
concept drift detectors. Expert Syst. Appl.,
41(18):8144–8156, 2014.

[12] J. R. Koza. Genetic Programming: On the Programming of
Computers by means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[13] L. Kuncheva. Combining Pattern Classifiers: Methods and
Algorithms. Wiley-Interscience, 2004.

[14] Kyosuke Nishida and Koichiro Yamauchi. Detecting concept
drift using statistical testing. In Discovery Science, pages
264–269. Springer, 2007.

[15] R. E. Schapire. The strength of weak learnability. Machine
Learning, 5(2):197–227, 1990.

[16] R. E. Schapire. Boosting a weak learning by majority.
Information and Computation, 121(2):256–285, 1995.

[17] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A.
Ghorbani. Toward developing a systematic approach to
generate benchmark datasets for intrusion detection.
Computers & Security, 31(3):357 – 374, 2012.

[18] C. De Stefano, G. Folino, F. Fontanella, and A. Scotto
di Freca. Using bayesian networks for selecting classifiers in
GP ensembles. Information Sciences, 258:200–216, 2014.

[19] J. Sylvester and N. V. Chawla. Evolutionary ensembles:
Combining learning agents using genetic algorithms. In
AAAI Workshop on Multiagent Learning, pages 46–51, 2005.

[20] M. Tavallaee, N. Stakhanova, and A.A. Ghorbani. Toward
credible evaluation of anomaly-based intrusion-detection
methods. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on,
40(5):516–524, Sept 2010.

[21] Y. Wang, Y. Gao, R. Shen, and F. Yang. Selective ensemble
approach for classification of datasets with incomplete
values. In Foundations of Intelligent Systems, pages
281–286. Springer, 2012.

1110

	Introduction
	Using non-trainable functions in a GP-based ensemble
	Background: ensemble and non-trainable functions
	Using GP to generate the combining function

	The software architecture of the framework
	A general architecture for IDS
	The ensemble-based classifier
	Drift detection and replacement strategies

	Experimental section
	Parameter Settings
	Description of the datasets
	Experiments on the artificial dataset
	Experiments on the real dataset

	Conclusions and Future works
	References

