
Grammar-based Selection Hyper-heuristics for Solving
Irregular Bin Packing Problems

Alejandro Sosa-Ascencio
Tecnologico de Monterrey
Eugenio Garza Sada 2501

Monterrey, NL. México
a01061994@itesm.mx

Hugo Terashima-Marín
Tecnologico de Monterrey
Eugenio Garza Sada 2501

Monterrey, NL. México
terashima@itesm.mx

José C. Ortiz-Bayliss
Tecnologico de Monterrey
Eugenio Garza Sada 2501

Monterrey, NL. México
jcobayliss@itesm.mx

Santiago E. Conant-Pablos
Tecnologico de Monterrey
Eugenio Garza Sada 2501

Monterrey, NL. México
sconant@itesm.mx

ABSTRACT
This article describes a grammar-based hyper-heuristic model
for selecting heuristics to solve the two-dimensional bin pack-
ing problem (2D-PBB) with irregular pieces and regular ob-
jects. We propose to use a genetic programming approach
to generate rules for selecting one suitable heuristic accord-
ing to the features that characterize the problem state. The
experiments confirm the idea that the results produced by
the proposed approach are able to rival those obtained by
some heuristics described in the literature.

Keywords
Hyper-heuristics, Grammar-based Genetic Programming, Bin
Packing

1. INTRODUCTION
Cutting and packing are general problems with many vari-

ants that include the 2D-BPP. Because of its complexity,
this problem is usually solved by using heuristics. But,
such heuristics tend to be very specialized to certain types
or classes of instances of the problem. A recent trend to
improve the performance of heuristics considers the use of
hyper-heuristics [2]. In the context of our investigation,
hyper-heuristics are methods that manage a set of heuris-
tics and suggest which one to apply based on the current
problem state under exploration.

We used genetic programming (GP) as the high-level strat-
egy to generate rules that decide which heuristic to apply at
each moment of the solution process.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2908970

2. RELATED WORK
Several heuristics have been designed for the 2D-BPP. Se-

lection heuristics determine the piece to be packaged and
the object in which the current piece should be packed. The
available selection heuristics for our framework are first fit
decreasing (FFD), filler (FIL), best fit decreasing (BFD) and
Djang and Fitch (DJD). A second type of heuristics, known
as placement heuristics, states the way in which the piece is
located inside the object. In this investigation we have used
a constructive approach wit maximum adjacency (CAD) as
placement heuristic. More details on these heuristics can be
consulted at [6, 7].

Ross et al. [7] proposed a hyper-heuristic system for tack-
ling one-dimensional bin packing benchmark problems us-
ing an XCS classifier that associates characteristics of the
current state of a problem with a specific heuristic. Burke
et al. [3] proposed a genetic programming hyper-heuristic
approach that generates constructive heuristics for the two-
dimensional strip packing problem.

The application of grammar-based approaches as hyper-
heuristic methods is a relatively new trend. Bader-El-Den
and Poli [1] developed a GP framework that evolves gram-
mar components to generate effective incremental SAT solvers.
Burke et al. [4] used grammatical evolution (GE) for evolv-
ing local search heuristics for 1D-BPP.

3. HYPER-HEURISTIC FRAMEWORK
Our framework relies on a genetic programming module

that evolves rules that determine when to apply a particular
heuristic during the solution process. The initial population
of the evolutionary algorithm is randomly generated. Unlike
other grammar-based systems, our genotype is directly rep-
resented as a tree structure that is recursively constructed
when the individual is evaluated.

We designed a grammar composed of two main types of
components: non-terminal functions and terminal functions.
Non-terminal functions can be decision functions (if then
else) or relational operators (>, ≥, <, ≤, =). Terminal
functions may return numerical constants, selection heuris-
tics, placement heuristics, combined heuristics, or feature
extractors. Feature extractors return a value related to some
feature that describes the current problem state, which may

111



if

≥

fpieces 0.5

FIL(CAD) BFD(CAD)

Figure 1: An example of a rule that may be gener-
ated by the proposed framework.

change every time a new piece is packed into an object. We
chose eight problem extractors used in a similar work to
describe the 2D-BPP instances [6] considered for this inves-
tigation. In all the cases, the values returned by the feature
extractors were normalized in the range [0,1]. For example,
Fig. 1 depicts a an example rule that may be generated by
our framework. In this example, if at least half of the pieces
in the problem are pending for packing, the algorithm will
use BFD and CAD. Otherwise it will use FIL and CAD.

4. EXPERIMENTS
The solver used in this investigation is fully implemented

in Java. The algorithm generates a solution from scratch by
packing one piece at a time into objects that are empty at the
beginning. Once a piece is packed it will not be revised for
further improvements. When the solver tries to pack a piece
into an object, it will try rotating the piece by multiples of
90 degrees (0, 90, 180 and 270). All the objects are squares
and have the same size.

540 two-dimensional randomly generated instances [5] that
contain only convex polygonal pieces were divided into a
training and a testing set. The training set is composed of
half of the instances while the remaining instances compose
the testing set. The instances have been balanced according
to their features to produce two similar sets of 270 instances
each.

Each run of the hyper-heuristic framework results in one
new rule for applying the heuristics. In each run, we used a
steady-state evolutionary process with a population size of
30 individuals along 80 generations. The individuals have
a crossover probability of 0.9 and a mutation probability of
0.05. The maximum depth of trees in the grammar-based
GP system was set to six levels. We produced 15 rules as
the result of 15 runs of the framework.

5. RESULTS
We used the usage (the number of open objects for each in-

stance) as metric to evaluate the performance of the heuris-
tics in this investigation. Every rule produced by our frame-
work was compared against the best performer among the
heuristics described in Sect. 2.

The rules produced by our framework tend to replicate
the best heuristic per instance on the testing set. The worst
rule produced was able to use as few objects as the best
heuristic per instance on 95.93% of the instances. 33% of
the rules generated by our approach were as competent as
the best performing heuristic per instance in 97.04% of the
instances in the testing set. These results confirm our ini-
tial idea that a grammar-based hyper-heuristic framework
is a feasible strategy to combine the strengths of existing

heuristics into one single method for covering a wider range
of instances than with traditional approaches.

6. CONCLUSION
This work presents the first ideas on a grammar-based

hyper-heuristic framework for tackling the 2D-BPP with
irregular pieces and regular objects. The rules generated
with our approach have a competitive performance com-
pared with the best performing heuristic for each particular
instance in a testing set. More investigation is needed to
understand the consequences of the grammar in the quality
of the results. At this point, we expect that grammars de-
signed with a greater diversity of functions should provide a
better performance than those with a more restricted set of
functions. As future work, we want to explore other hyper-
heuristic approaches for the 2D-BPP, for example, the ap-
proach that decomposes heuristics to produce new heuristics
without the intervention of human experts.

7. ACKNOWLEDGMENTS
This research was supported in part by ITESM Research

Group with Strategic Focus in Intelligent Systems and CONA-
CyT Basic Science Project under grant 241461.

8. REFERENCES
[1] M. Bader-El-Den and R. Poli. A GP-based

hyper-heuristic framework for evolving 3-SAT
heuristics. Proceedings of the 9th annual conference on
Evolutionary Computation, page 1749, 2007.

[2] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,
E. Ozcan, and R. Qu. Hyper-heuristics: A survey of the
state of the art. Journal of the Operational Research
Society, pages 1–30, 2013.

[3] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa,
E. Özcan, and J. Woodward. A classification of
hyper-heuristic approaches. In M. Gendreau and J.-Y.
Potvin, editors, Handbook of Metaheuristics, volume
146 of International Series in Operations Research &
Management Science, pages 449–468. Springer US,
2010.

[4] E. K. Burke, M. R. Hyde, G. Kendall, and
J. Woodward. Automating the packing heuristic design
process with genetic programming. Evolutionary
Computation, 20(1):63–89, 2012.

[5] E. López-Camacho, H. Terashima-Maŕın, and P. Ross.
A hyper-heuristic for solving one and two-dimensional
bin packing problems. In 13th annual conference
companion on Genetic and evolutionary computation,
GECCO ’11, pages 257–258, New York, NY, USA,
2011. ACM.

[6] E. López-Camacho, H. Terashima-Maŕın, P. Ross, and
G. Ochoa. A unified hyper-heuristic framework for
solving bin packing problems. Expert Syst. Appl.,
41(15):6876–6889, 2014.

[7] P. Ross, J. G. Maŕın-Blázquez, S. Schulenburg, and
E. Hart. Learning a procedure that can solve hard
bin-packing problems: A new GA-based approach to
hyper-heuristics. In Conference on Genetic and
Evolutionary Computation. Lecture Notes in Computer
Science, volume 2724, pages 1295–1306.
Springer-Verlag, 2003.

112




