
Best Order Sort: A New Algorithm to Non-dominated
Sorting for Evolutionary Multi-objective Optimization

Proteek Chandan Roy
Computer Science and Engineering

Michigan State University
1220 Trowbridge Rd, East Lansing

Michigan, USA
royprote@msu.edu

Md. Monirul Islam
Computer Science and

Engineering
Bangladesh University of

Engineering and Technology
Dhaka-1000, Bangladesh

monirultalha@gmail.com

Kalyanmoy Deb
Electrical and Computer

Engineering
Michigan State University
1220 Trowbridge Rd, East

Lansing
Michigan, USA

kdeb@egr.msu.edu

ABSTRACT
Finding the non-dominated sorting of a given set vectors has
applications in Pareto based evolutionary multi-objective
optimization (EMO), finding convex hull, linear optimiza-
tion, nearest neighbor, skyline queries in database and many
others. Among these, EMOs use this method for survival se-
lection. The worst case complexity of this problem is found
to be O(N logM−1N) when the number of objectives M is
constant and the size of solutions N is varying. But this
bound becomes too large when M depends on N . In this pa-
per we are proposing a new algorithm with worst case com-
plexity O(MN logN +MN2), however, with reduced run-
ning time in many objective cases. This algorithm can make
use of the faster implementation of sorting algorithms. It re-
moves unnecessary comparisons among the solutions which
improves the running time. The proposed algorithm is com-
pared with four other competing algorithms on three differ-
ent datasets. Experimental results show that our approach,
namely, best order sort (BOS) is computationally more ef-
ficient than all other compared algorithms with respect to
running time.

1. INTRODUCTION
In many fields of study such as evolutionary multi-objective

optimization, computational geometry, economics, game the-
ory and databases, the concept of non-dominated sorting or
Pareto set is used. By definition, a vector valued point or
solution A = (a1, a2, . . . , aM) dominates another solution
B = (b1, b2, . . . , bM) by Pareto-dominance relation if A is bet-
ter or equal in each dimension or objective than that of B.
In other words, ai ⪰ bi ∀i = 1, . . . ,M . Here M is the number
of objectives or the dimension of a vector. Given a set of
solutions P , finding the solutions which are not dominated
by any other solutions in that set is called the problem of
finding Pareto set and these solutions are denoted as rank 1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931684

solutions. If we remove rank 1 solutions from P and find the
Pareto set again we will end up finding rank 2 solutions. We
can perform this process repeatedly until all the solutions
are ranked. This process is called non-dominated sorting or
non-dominated ranking. Each solution having rank r > 1 is
dominated by at least one solution of rank (r − 1). In Fig. 1
there are four non-dominated fronts: {a, b, c, f},{h, e},{g}
and {d} of rank 1, 2, 3 and 4 respectively.

Some of the most important EMO algorithms use the idea
of non-dominated sorting for their survival selection. Among
them, we can refer NSGA [23], NSGA-II [7], SPEA2 [28],
MOGA [21], NPGA [14], PAES [17], MOPSO [5] and re-
cently published NSGA-III [6], DM1 [1] and EPCS [22].
Non-dominated sorting takes most of the time of these opti-
mization algorithms. So it is very important to find efficient
algorithm for ranking.

The rest of the paper is organized as follows. Section 2
discusses about some of the approaches for finding Pareto set
and non-dominated sorting. Time complexities of those ap-
proaches are also discussed. In Section 3, we talk about the
main idea behind the proposed algorithm. Proof of correct-

Figure 1: An example with eight points in a two dimensional
minimization problem. It has four fronts {a, b, c, f}, {h, e},
{g} and {d} which should be found by a non-dominated
sorting algorithm.

1113

ness, best case time complexity and space complexity is also
presented in that section. The comparison with four well
known algorithms are presented in Section 4 and results are
discussed in Section 5. Section 6 concludes the paper with
overall remarks and future work.

2. RELATED WORK
The methods for finding Pareto set and non-dominated

sorting can be divided into two categories – sequential ap-
proach and divide-and-conquer approach. Given a set of
vectors, sequential brute force method for finding the Pareto
set is to compare each solution to every other solution to
check whether they dominate each other. If one solution
is dominated by another one, then it is removed from the
current set. This algorithm can be used to find the non-
dominated sorting by repeating the process and removing
the ranked solutions or points from the set [23]. The algo-
rithm has O(MN3) complexity because of repeated compar-
isons. Due to high computational complexity of [23], Deb
et al. [7] described a computationally faster version, termed
as fast non-dominated sort, whose complexity is O(MN2).
It uses the fact that pairwise comparisons can be saved and
used later to find the rank of solutions other than the Pareto
set. However, space complexity is O(N2) because it saves
pairwise comparisons.

McClymont and Keedwell [19] described a set of algo-
rithms which improves the space complexity to O(N) with
similar time complexity O(MN2). Among them deductive
sort is reported to work best. This algorithm consists of mul-
tiple passes and one pass is completed by removing domi-
nated solutions with an arbitrary unranked solution. Corner
sort [25] is a new approach to find non-dominated sorting of
vectors which works similar to deductive sort. But instead
of choosing an arbitrary vector for checking dominance, it
always chooses a vector which is guaranteed to be in cur-
rent rank. It works better than deductive sort in some cases
but has the same worst case complexity. Recently, an effi-
cient approach of non-dominated sorting called ENS [27] has
been described. This method uses the idea of sorting the
population with respect to their first objective values by in-
place heap sort. In case of tie, the authors use lexicographic
ordering. This algorithm can achieve best case complex-
ity O(MN logN) although it has O(MN2) in worst cases.
Other methods, e.g. dominance tree based non-dominated
sorting [10], non-dominated rank sort or omni-optimizer [9]
and arena’s principle [24] can also be used to improve the

best case time complexity upto O(MN
√
N). However, the

worst case time complexity remains O(MN2). Recently,
parallel GPU based NSGA-II algorithm [13] has been pro-
posed to speed up the non-dominated sorting and other steps
of the evolutionary algorithm.

Unlike the sequential algorithms, the set of divide-and-
conquer algorithms work by repeatedly dividing the data
using objective values. These methods are asymptotically
faster than sequential ones in the worst case for fixed num-
ber of objectives. The first divide-and-conquer method was
proposed by Kung et al. [18] for finding Pareto set. This
method is later analyzed by Bentley [2]. This algorithm di-
vides the data and reduces dimensions recursively. When
the remaining dimensions become less than three, a special-
case algorithm is applied that has complexity O(N logN).
If the dimension is not fixed then its complexity is bounded
by O(MN2) [4, 20]. These algorithms exhibit many un-

necessary comparisons which increases with the number of
objectives [12]. The space complexity is said to be O(N)
for Kung’s algorithm. Bentley [3] improved the average case
of this divide-and-conquer algorithm. It assumes the fact
that size of Pareto set of vectors is equal to O(logM−1N) on
average. One can find the non-dominated sorting by repeat-
ing Kung’s algorithm the number of times equal to num-
ber of ranks which gives complexity O(N2 logM−2N). By
removing the repeated comparisons, Jensen [16] and Yuk-
ish [26] both extended Kung’s algorithm to find the Pareto
set of vectors and perform non-dominated sorting in time
O(N logM−1N). Jensen’s algorithm assumes that, for any
objective, no two vectors have the same objective value [10].
Because of this assumption it generates different Pareto rank-
ing from the baseline algorithm of NSGA-II [7]. It was cor-
rected later in [4,11]. Buzdalov et al. proved the time com-
plexity of non-dominated sorting to be O(N logM−1N) for
fixed dimension. Our aim is to find better algorithms in
terms of N and M both.

3. PROPOSED METHOD

3.1 Basic Idea
In this section we propose an algorithm named best or-

der sort (BOS) which reduces the number of comparisons
for sorting. The main idea of the algorithm is described in
Fig. 2. For each solution s, we can get a set of solutions those
are not worse than s in a particular objective. So there will
be M such sets for M objectives. To find the rank of s, only
one of the sets, T is sufficient to be considered. Some mem-
bers of the set T dominate s while others are non-dominated
with s. Suppose highest rank of that dominating subset is
r. The rank of s will then be (r + 1). This is because, if a
solution is dominated by a set of points, then rank of that
solution is one plus highest rank of that set. Although any
of the M sets can be considered for sorting, our method
finds the smallest set by sorting the population with their
objective values.

Figure 2: The basic idea of the proposed method is that
there are M sets for each solution which denote the ‘not-
worse’ solutions in corresponding objective. The algorithm
finds the smallest set to compare and finds their ranks.

3.2 The Algorithm
At first, we discuss about the necessary data structures

used in this algorithm. The algorithm starts with initial-

1114

izing N ×M empty sets denoted by Lj
i (see Algorithm 1).

Here N is the size of population and M is the number of
objectives. The algorithm saves the sorted population in Qj

where j-th objective value is used for sorting. It goes over
each of the sorted lists and the solutions found in those lists
are ranked and saved in Lr

j . Here Lr
j represents the set of

solutions which have rank r and they are found in j-th ob-
jective. It maintains an objective list Cu = {1,2, . . . ,M} for
each solution u. It signifies that, if we want to check whether
a solution s is dominated by u then only the objectives in
Cu needs to be compared. The variable isRanked(s) re-
members whether the solution s is ranked yet or not. We
initialize the total number of solutions ranked SC to be zero.
Ranks of solutions are saved in R(s) for all s ∈ P . Number
of fronts found so far RC = 1 as there will be at least one
solution in the population.

At the beginning, we sort the solutions according to each
objective j and put those into sorted list Qj (see line 8 of
Algorithm 1). We use lexicographic order if two objective
values are same. In that case, if the first objective values
are same then sorting will be based on the second objective
value. Note that we just need to perform single lexicographic
ordering for the first objective. We can then use the infor-
mation of first objective to find lexicographic order of other
objectives.

Algorithm 1: Initialization

Data: Population P of size N and objective M
Result: Sorted set of solutions in Qj

// global variables

1 Li
j ← ∅, ∀ j = 1,2, . . . ,M, ∀ i = 1,2, . . . ,N ;

// Solution sets

2 Ci ← {1,2, . . . ,M} ∀ i = 1,2, . . . ,N ; // comparison

set

3 isRanked(P) ← false; // solutions ranked or not

4 SC ← 0; // number of solutions already ranked

5 RC ← 1; // at least one front

6 R(P) ← 0; // Rank of solutions

7 for j = 1 to M do
8 Qj ← Sort P by j-th objective value, use

lexicographic order in case of tie;

9 end

Algorithm 2 describes main procedure for finding the non-
dominated sorting. In each step, it takes one solution from
lexicographically sorted population Qj for objective j. It
takes the first element s from sorted list Q1 which is denoted
by Q1(1). Then it excludes objective {1} from the list Cs.
This is because, if other solution t is compared with s later,
t is already dominated in objective 1. Next, the algorithm
checks whether s is already ranked or not. If it is ranked

then it will be included to the corresponding list L
R(s)
1 . For

instance, if s has to be included in L5
2, then s’s rank is 5 and

it is found in second objective. Lj is the set of all required
solutions to find rank of s (see Algorithm 3) because they are
not worse than s in objective j. At the end of this algorithm,
each solution should appear in every objective set Lj only
once, if line 14 of Algorithm 2 is not executed.

If the solution s is not ranked then FindRank(s, j) proce-
dure is called. It saves the rank of s in R(s). After returning
from this method, we assign isRanked(s) to be true so that
it never gets ranked again. We increment the number of so-

lutions done (SC) by 1. The algorithm then goes through
the next objective to find the next solution of corresponding
list Qj . After finishing loop at line 2-12, the algorithm then
checks if number of solutions done is equal to total popula-
tion N . If it is not, then it takes the next element from lists
Qj . Once all solutions are ranked it breaks out of the loop.
Note that, a solution s is ranked when it is observed first
time in one of the lists. Therefore, it guarantees to compare
with the smallest set of solutions over all the lists obtained
from each objective.

Algorithm 2: Main Loop

Data: Sorted Population, Q
Result: Rank of each solution, R

1 for i = 1 to N do // for all solutions

2 for j = 1 to M do // for all sorted set

3 s← Qj(i) ; // Take i-th element from Qj

4 Cs ← Cs − {j}; // reduce comparison set

5 if isRanked(s) = True then

6 L
R(s)
j = LR(s)

j ∪ {s}; // Include s to L
R(s)
j

7 else
8 FindRank(s, j); // Find R(s)
9 isRanked(s) ← True; // non-dominated

sorting done

10 SC ← SC + 1// total done

11 end

12 end
13 if SC = N then // if all solutions are done

14 break; // sorting ended

15 end

16 end
17 return R; // return

Given the set of solutions already discovered in objective
j in sets Lr

j , we can use Algorithm 3 to find out the rank
of the solution found in objective j. Suppose s is discovered
first time in objective j. The algorithm starts by comparing
s with all the solutions t of first rank Lk

j (k = 1). If s is not
better in the objectives defined in Ct then it is dominated
by t (see Algorithm 4). Then s will be compared to the next
rank solutions Lk+1

j . If s is not dominated by any solution
of some rank k, then its rank will be k. If s is dominated
by at least one solution of all ranks then s is discovering a
new front and its rank will be RC + 1. At the end of this
procedure we will find rank of s, update rank count RC

and update set L
R(s)
j . Algorithm 4 describes the procedure

of checking Pareto-domination with sets C. The algorithm
finishes execution as soon as all the solutions are ranked.
In the next section, we will see an example describing this
algorithm.

3.3 Illustrative Example
In Fig. 1, population with eight individuals (namely a, b,

c, d, e, f , g and h) are shown graphically in a two objective
minimization problem. The algorithm sorts the solutions by
objectives f1 and f2 and puts them into Q sets (Fig. 3). Af-
ter sorting, the algorithm takes the elements in this order
a, f, b, c, h, e, c, b, e, a, g, h, d (see Fig. 3) to find their ranks.
Solutions are ranked only when they are discovered for the
first time in line 3 of Main Loop. The ranked solutions are
distributed in different sets L1

1, L
2
1, L

1
2 etc. For solution d,

1115

Algorithm 3: FindRank

Data: Solution s, List number j
Result: Rank of s

1 done = False; // done bit

2 for k = 1 to RC do // for all discovered ranks

3 check = False; // check bit

4 for t ∈ Lk
j do // for all solutions in Lk

j

5 check ← DominationCheck(s, t);
6 if check = True then // if dominated

7 break; // break the loop

8 end

9 end
10 if check = False then // rank found

11 R(s) ← k; // update rank

12 done = True; // update done bit

13 L
R(s)
j = LR(s)

j ∪ {s}// Include s to L
R(s)
j

14 break; // break the loop

15 end

16 end
17 if done = False then // if not done

18 RC ← RC + 1; // update fronts count

19 R(s) ← RC; // update rank

20 L
R(s)
j = LR(s)

j ∪ {s}; // Include s to L
R(s)
j

21 end
22 return

Algorithm 4: DominationCheck

Data: Solution s and t
Result: True if t dominates s, false otherwise

1 for j ∈ Ct do // for all objectives in Ct

2 if s is better than t in objective j then
3 return False; // t cannot dominate s
4 end

5 end
6 return True; // t dominates s

it will be compared with a, b, h, c, e and g which belongs to
L1

1, L
2
1 and L3

1 (see Fig. 4). By FindRank method, d will
be compared to L1

1 first and then L2
1 and finally L3

1. L4
1

will be discovered by d. While going over the solutions, the
algorithm drops the corresponding objective from the com-
parison list (C) of that solution. C entries in four successive
steps are shown in Fig. 5. After first step, objective 1 from
a and objective 2 from f is dropped. At the end of 4th step,
Cb and Cc becomes empty. It means that any solution which
is discovered after this step will be considered dominated by
b and c.

3.4 Correctness

Lemma 1. The proposed algorithm finds the correct rank
of a solution s ∈ P .

Proof. From the definition of non-dominated sorting it
is clear that if a solution s is dominated by a set of points
u ∈ U then the rank of s is one plus maximum rank of U .
When a solution is ranked (line 8, Algorithm 2) then it is
only compared to Lj sets of solutions. Lj sets contain only
those solutions which are not worse than s in objective j.
Because we know that only Lj solutions can dominate s,

Figure 3: Sorted lists of population in different objectives.
For solution b, it will be compared to only {a}, if we use
objective f1. The set becomes larger with {f, c, e} when
considering f2. The proposed algorithm will use {a} set
because b will be found in f1 for the first time.

Figure 4: Four different fronts are discovered by the algo-
rithm which are again distributed in four different fronts.
Rank 1 solutions are given by union of L1

1 and L1
2 sets etc.

The algorithm exits as soon as all the solutions are ranked,
otherwise it would have been true that L1

1 = L1
2, L

2
1 = L2

2 and
so on.

Figure 5: Four steps execution of the loop at line 1 in Al-
gorithm 2 is shown. Dropping some objectives from the list
indicates that a solution discovered later is already domi-
nated on those objectives.

the algorithm FindRank ensures that s gets the rank one
plus the highest rank of Lj . Inside FindRank algorithm,
if we find that s is dominated by a solution of rank k = 1
then the algorithm moves to higher ranks (k > 1) to check
for domination. Once a rank is found where no other so-
lution of that rank dominates s, the correct rank of s is
identified as the same rank as of those. If s is found to be
dominated by at least one solution of each rank found so
far, a new rank (RC + 1) is introduced with the solution s.
In each case, comparing solutions of s have smaller set of

1116

0 5 10 15 20
0

5

10

15
x 10

9

Number of Objectives

N
um

be
r

of
 C

om
pa

ris
on

s

fns
ds
cor
ddc
bos

(a) Comparison

0 5 10 15 20
0

2

4

6

8

10
x 10

4

Number of Objectives

T
ot

al
 R

un
tim

e
(m

s)

fns
ds
cor
ddc
bos

(b) Time

Figure 6: Number of comparisons and runtime (in millisec-
onds) for cloud dataset of size 10,000 for increasing number
of objectives. Results for fast non-dominated sort (fns), de-
ductive sort (ds), corner sort (cor), divide-and-corner sort
(ddc) and best order sort (bos) is shown.

objectives to compare. The objectives in which s is already
dominated, are dropped from the objective list. Therefore
each comparison is correct. Thus each solution finds its rank
correctly.

3.5 Time Complexity
Time complexity of the proposed method depends on the

data structure and implementation. Our method tries to
minimize the number of comparing solutions to find a rank.
This comparing set is obtained by sorting the values of each
objective. However, while we minimize the number of so-
lutions to compare, running time of sorting part can be an
overhead. Best case of this algorithm happens when the pop-
ulation has N fronts, each front having only one solution. In
this case, we will get the similar order in all Qj after sorting
by Algorithm 1. While executing line 2 of Algorithm 2 with
j = 1 up to j =M , all the objectives will be deleted (see line
4) from the objective list Cs. So there will be no objective
value comparison. Total execution time for Algorithm 2 will
be O(MN). Therefore we get the best case time complexity
O(MN logN). Average case analysis is left for future work.

4. EXPERIMENTAL RESULTS
We compared the proposed algorithm with four different

algorithms – fast non-dominated sort [7], deductive sort [19],
corner sort [25] and divide-and-conquer algorithm [4]. These
algorithms are compared in cloud dataset, fixed front dataset
and dataset obtained from multi-objective evolutionary al-
gorithm (MOEA). Cloud dataset is a uniform random data.
In fixed front data, the number of fronts (K) is controlled.
We have used the procedure described in [25] for generating
cloud and fixed front datasets. We vary size of population
N from 500 to 10,000 with an increment of 500 in cloud
dataset. In another test (Fig. 6), number of objectives are
varied from 2 to 20 to evaluate performance with population
size 10,000. For fixed front dataset, the number of fronts
(K) is varied from 1 to 10 where number of solution is kept
10,000 with objectives 5, 10, 15 and 20. MOEA dataset is
obtained by running 200 generations of NSGA-II algorithm
with 800 population in DTLZ1 and DTLZ2 [8], WFG1 and
WFG2 [15] problems with 5, 10, 15 and 20 objectives. We
saved the MOEA data in files to run the algorithms. In
these cases, all the parameter values are kept as standard
ones. For example, simulated binary crossover with poly-
nomial mutation are employed with probabilities 0.80 and

(1/number of variables) respectively. For every dataset and
every tested value of N and K, each algorithm was run on
30 different test instances to get the total running time. All
the algorithms are optimized and implemented in Java De-
velopment Kit 1.8 update 65 and run in Dell computer with
3.2 GHz Intel core i7 and 64 bit Windows 7 machine. The
source code of our algorithm can be found at GitHub 1

5. DISCUSSION
The results describe the average case behavior of the al-

gorithms in three different cases. Fig. 6 shows that with
increased number of objectives, number of comparisons and
runtime increases for deductive sort, corner sort, divide-and-
conquer sort and best order sort. Fast non-dominated sort
performs worst in two objectives compare to other number
of objectives (see Fig. 6). This is because, the number of
fronts is very high in two objective random data and fast
non-dominated sort takes most of the time (in milliseconds)
just for saving dominated solutions in a list of size O(N2).
This behavior is exhibited because of lower running time
(few hundred milliseconds) and large amount of memory
accesses (having list data structure). Best order sort per-
forms the best followed by divide-and-conquer, corner sort
and deductive sort. Log-based plots in Fig. 7 show that
fast non-dominated sort has the highest and best order sort
has the lowest order in terms of number of comparisons and
runtime in objectives 5, 10, 15 and 20. Corner sort performs
better than deductive sort in terms of comparisons in most
of the cases but the runtime performance deteriorates with
increasing number of objectives. Divide-and-conquer algo-
rithm performs better than most sequential type algorithms
in lower dimensions but it is worse when the number of ob-
jectives increases. The number of comparisons and runtime
decreases with the increasing number of fronts (Fig. 8) ex-
cept fast non-dominated sort and divide-and-conquer sort.
In those two cases, runtime and number of comparisons in-
creases with the increased number of fronts. Best order sort
performs better than all other algorithms followed by corner
sort and deductive sort respectively. In MOEAs (Table 1),
divide-and-conquer algorithm has fewest number of compar-
isons in most of the cases but running time is slightly worse
than best order sort. Best order sort becomes second in
terms of comparisons followed by corner sort and deductive
sort. Divide-and-conquer algorithm has advantage over data
having small M and small N , for example, in MOEAs. Best
order sort outperforms all the comparing algorithms in most
of the cases.

6. CONCLUSION
In this paper we have proposed a non-dominated sorting

algorithm for many objective evolutionary algorithms. Ba-
sic idea of the proposed method is to use faster sorting al-
gorithms inside non-dominated sorting. The algorithm con-
tains two distinguishable part – sorting by every dimension
and ranking of the solutions, having upper boundsO(MN log
N) and O(MN2) respectively. The experimental results
show that this algorithm is very efficient in practice. This
method can also be used to find first layer i.e. maximal vec-
tors of a set of points. One drawback is that sorting time is
increased with the number of objectives and it might exceed

1https://github.com/Proteek/Best-Order-Sort

1117

10
3

10
4

10
5

10
10

Number of Solutions

N
um

be
r

of
 C

om
pa

ris
on

s fns
ds
cor
ddc
bos

(a) M = 5

10
3

10
4

10
5

10
10

Number of Solutions

N
um

be
r

of
 C

om
pa

ris
on

s fns
ds
cor
ddc
bos

(b) M = 10

10
3

10
4

10
5

10
10

Number of Solutions

N
um

be
r

of
 C

om
pa

ris
on

s fns
ds
cor
ddc
bos

(c) M = 15

10
3

10
4

10
5

10
10

Number of Solutions

N
um

be
r

of
 C

om
pa

ris
on

s fns
ds
cor
ddc
bos

(d) M = 20

10
3

10
4

10
2

10
4

Number of Solutions

T
ot

al
 R

un
tim

e
(m

s)

fns
ds
cor
ddc
bos

(e) M = 5

10
3

10
4

10
2

10
4

Number of Solutions

T
ot

al
 R

un
tim

e
(m

s)

fns
ds
cor
ddc
bos

(f) M = 10

10
3

10
4

10
2

10
4

Number of Solutions

T
ot

al
 R

un
tim

e
(m

s)

fns
ds
cor
ddc
bos

(g) M = 15

10
3

10
4

10
2

10
4

Number of Solutions

T
ot

al
 R

un
tim

e
(m

s)

fns
ds
cor
ddc
bos

(h) M = 20

Figure 7: The number of comparisons and total runtime (in milliseconds) with increasing population size for cloud dataset in
objectives 5, 10, 15 and 20. Results for fast non-dominated sort (fns), deductive sort (ds), corner sort (cor), divide-and-conquer
sort (ddc) and best order sort (bos) are shown.

0 2 4 6 8 10
0

5

10

15
x 10

9

Number of Fronts

N
um

be
r

of
 C

om
pa

ris
on

s

fns
ds
cor
ddc
bos

(a) M = 5

0 2 4 6 8 10
0

0.5

1

1.5

2
x 10

10

Number of Fronts

N
um

be
r

of
 C

om
pa

ris
on

s

fns
ds
cor
ddc
bos

(b) M = 10

0 2 4 6 8 10
0

0.5

1

1.5

2
x 10

10

Number of Fronts

N
um

be
r

of
 C

om
pa

ris
on

s

fns
ds
cor
ddc
bos

(c) M = 15

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
x 10

10

Number of Fronts

N
um

be
r

of
 C

om
pa

ris
on

s

fns
ds
cor
ddc
bos

(d) M = 20

0 2 4 6 8 10
0

1

2

3

4
x 10

4

Number of Fronts

T
ot

al
 R

un
tim

e
(m

s) fns
ds
cor
ddc
bos

(e) M = 5

0 2 4 6 8 10
0

1

2

3

4

5
x 10

4

Number of Fronts

T
ot

al
 R

un
tim

e
(m

s)

fns
ds
cor
ddc
bos

(f) M = 10

0 2 4 6 8 10
0

1

2

3

4

5
x 10

4

Number of Fronts

T
ot

al
 R

un
tim

e
(m

s) fns
ds
cor
ddc
bos

(g) M = 15

0 2 4 6 8 10
0

1

2

3

4

5
x 10

4

Number of Fronts

T
ot

al
 R

un
tim

e
(m

s) fns
ds
cor
ddc
bos

(h) M = 20

Figure 8: The number of comparisons and total runtime (in milliseconds) of 10,000 solutions with increasing number of fronts
for fixed front dataset in objectives 5, 10, 15 and 20. Results for fast non-dominated sort (fns), deductive sort (ds), corner
sort (cor), divide-and-conquer sort (ddc) and best order sort (bos) are shown.

the time for ranking. A good balance between these two
parts should be identified. In future, the idea of this algo-
rithm can be extended to parallel architecture. We would
also like to find a progressive or incremental version of this
algorithm.

Acknowledgment
This material is based in part upon work supported by the
National Science Foundation under Cooperative Agreement
No. DBI-0939454. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the
National Science Foundation.

7. REFERENCES
[1] S. Adra and P. Fleming. Diversity management in

evolutionary many-objective optimization.
Evolutionary Computation, IEEE Transactions on,
15(2):183–195, April 2011.

[2] J. L. Bentley. Multidimensional divide-and-conquer.
Commun. ACM, 23(4):214–229, Apr. 1980.

[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D.

1118

Table 1: Total number of comparisons (#cmp) and total running time (in milliseconds) of 200 generations of data for DTLZ1,
DTLZ2, WFG1 and WFG2 problems in 5, 10, 15 and 20 objectives.

Test Problem Obj.
FNS DS COR DDC BOS

#cmp time(ms) #cmp time(ms) #cmp time(ms) #cmp time(ms) #cmp time(ms)

DTLZ1

5 3.25e+08 1.03e+03 1.02e+08 4.48e+02 7.12e+07 2.18e+02 9.41e+06 3.79e+02 7.95e+06 1.06e+02
10 5.13e+08 1.21e+03 2.74e+08 7.33e+02 1.71e+08 4.05e+02 1.44e+07 5.03e+02 2.03e+07 2.53e+02
15 7.09e+08 1.41e+03 4.23e+08 1.02e+03 2.67e+08 5.52e+02 1.50e+07 5.42e+02 2.86e+07 3.87e+02
20 8.98e+08 1.59e+03 5.67e+08 1.21e+03 3.55e+08 6.56e+02 1.56e+07 5.55e+02 3.51e+07 4.72e+02

DTLZ2
5 2.97e+08 8.59e+02 1.24e+08 4.77e+02 8.22e+07 2.58e+02 9.52e+06 3.52e+02 1.07e+07 1.17e+02
10 4.30e+08 1.11e+03 2.31e+08 6.82e+02 1.59e+08 4.36e+02 1.55e+07 5.46e+02 1.80e+07 2.35e+02
15 5.58e+08 1.27e+03 3.31e+08 8.37e+02 2.20e+08 5.41e+02 1.63e+07 5.84e+02 2.20e+07 3.15e+02
20 6.95e+08 1.40e+03 4.34e+08 1.02e+03 2.81e+08 6.36e+02 1.65e+07 5.97e+02 2.49e+07 3.73e+02

WFG1
5 2.67e+08 7.99e+02 1.12e+08 4.38e+02 6.59e+07 2.44e+02 9.89e+06 3.53e+02 1.11e+07 1.18e+02
10 2.95e+08 9.30e+02 1.47e+08 5.26e+02 1.03e+08 3.64e+02 2.19e+07 7.74e+02 2.09e+07 2.63e+02
15 3.26e+08 9.65e+02 1.75e+08 5.85e+02 1.27e+08 4.47e+02 2.41e+07 8.74e+02 2.58e+07 3.64e+02
20 3.57e+08 1.07e+03 2.00e+08 6.34e+02 1.47e+08 5.06e+02 2.46e+07 8.99e+02 2.91e+07 4.50e+02

WFG2
5 3.00e+08 9.18e+02 1.10e+08 4.69e+02 6.68e+07 2.06e+02 9.64e+06 3.55e+02 1.11e+07 1.25e+02
10 5.56e+08 1.16e+03 2.80e+08 7.19e+02 1.78e+08 3.27e+02 1.53e+07 5.30e+02 3.02e+07 3.28e+02
15 8.98e+08 1.52e+03 5.03e+08 1.06e+03 3.26e+08 4.71e+02 1.58e+07 5.53e+02 5.60e+07 5.36e+02
20 1.26e+09 1.75e+03 7.46e+08 1.47e+03 4.88e+08 6.30e+02 1.53e+07 5.40e+02 8.30e+07 7.22e+02

Thompson. On the average number of maxima in a set
of vectors and applications. J. ACM, 25(4):536–543,
Oct. 1978.

[4] M. Buzdalov and A. Shalyto. A provably
asymptotically fast version of the generalized Jensen
algorithm for non-dominated sorting. In
T. Bartz-Beielstein, J. Branke, B. Filipic, and
J. Smith, editors, Parallel Problem Solving from
Nature - PPSN XIII, volume 8672 of Lecture Notes in
Computer Science, pages 528–537. Springer
International Publishing, 2014.

[5] C. A. Coello Coello and M. Lechuga. MOPSO: a
proposal for multiple objective particle swarm
optimization. In Evolutionary Computation, 2002.
CEC ’02. Proceedings of the 2002 Congress on,
volume 2, pages 1051–1056, 2002.

[6] K. Deb and H. Jain. An evolutionary many-objective
optimization algorithm using reference-point-based
nondominated sorting approach, part I: Solving
problems with box constraints. Evolutionary
Computation, IEEE Transactions on, 18(4):577–601,
Aug 2014.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-II. Evolutionary Computation, IEEE
Transactions on, 6(2):182–197, Apr 2002.

[8] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable multi-objective optimization test problems.
In Evolutionary Computation, 2002. CEC ’02.
Proceedings of the 2002 Congress on, volume 1, pages
825–830, May 2002.

[9] K. Deb and S. Tiwari. Omni-optimizer: A procedure
for single and multi-objective optimization. In
Proceedings of the Third International Conference on
Evolutionary Multi-Criterion Optimization, EMO’05,
pages 47–61, Berlin, Heidelberg, 2005. Springer-Verlag.

[10] H. Fang, Q. Wang, Y.-C. Tu, and M. F. Horstemeyer.
An efficient non-dominated sorting method for
evolutionary algorithms. Evol. Comput.,
16(3):355–384, Sept. 2008.

[11] F.-A. Fortin, S. Grenier, and M. Parizeau.
Generalizing the improved run-time complexity

algorithm for non-dominated sorting. In Proceedings of
the 15th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’13, pages
615–622, New York, NY, USA, 2013. ACM.

[12] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In Proceedings of the
31st International Conference on Very Large Data
Bases, VLDB ’05, pages 229–240. VLDB Endowment,
2005.

[13] S. Gupta and G. Tan. A scalable parallel
implementation of evolutionary algorithms for
multi-objective optimization on gpus. In Evolutionary
Computation (CEC), 2015 IEEE Congress on, pages
1567–1574, May 2015.

[14] J. Horn, N. Nafpliotis, and D. Goldberg. A niched
Pareto genetic algorithm for multiobjective
optimization. In Evolutionary Computation, 1994.
IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on, pages
82–87 vol.1, Jun 1994.

[15] S. Huband, P. Hingston, L. Barone, and L. While. A
review of multiobjective test problems and a scalable
test problem toolkit. Evolutionary Computation, IEEE
Transactions on, 10(5):477–506, Oct 2006.

[16] M. Jensen. Reducing the run-time complexity of
multiobjective EAs: The NSGA-II and other
algorithms. Evolutionary Computation, IEEE
Transactions on, 7(5):503–515, Oct 2003.

[17] J. Knowles and D. Corne. The Pareto archived
evolution strategy: a new baseline algorithm for
Pareto multiobjective optimisation. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 1, page 105 Vol. 1, 1999.

[18] H. T. Kung, F. Luccio, and F. P. Preparata. On
finding the maxima of a set of vectors. J. ACM,
22(4):469–476, Oct. 1975.

[19] K. McClymont and E. Keedwell. Deductive sort and
climbing sort: New methods for non-dominated
sorting. Evol. Comput., 20(1):1–26, Mar. 2012.

[20] L. Monier. Combinatorial solutions of
multidimensional divide-and-conquer recurrences. J.
Algorithms, 1(1):60–74, 1980.

1119

[21] T. Murata and H. Ishibuchi. MOGA: multi-objective
genetic algorithms. In Evolutionary Computation,
1995., IEEE International Conference on, volume 1,
pages 289–294, Nov 1995.

[22] P. Roy, M. Islam, K. Murase, and X. Yao.
Evolutionary path control strategy for solving
many-objective optimization problem. Cybernetics,
IEEE Transactions on, 45(4):702–715, April 2015.

[23] N. Srinivas and K. Deb. Muiltiobjective optimization
using nondominated sorting in genetic algorithms.
Evol. Comput., 2(3):221–248, Sept. 1994.

[24] S. Tang, Z. Cai, and J. Zheng. A fast method of
constructing the non-dominated set: Arena’s principle.
In Proceedings of the 2008 Fourth International
Conference on Natural Computation - Volume 01,
ICNC ’08, pages 391–395, Washington, DC, USA,
2008. IEEE Computer Society.

[25] H. Wang and X. Yao. Corner sort for pareto-based
many-objective optimization. Cybernetics, IEEE
Transactions on, 44(1):92–102, Jan 2014.

[26] M. A. Yukish. Algorithms to Identify Pareto Points in
Multi-dimensional Data Sets. PhD thesis,
Pennsylvania State University, 2004. AAI3148694.

[27] X. Zhang, Y. Tian, R. Cheng, and Y. Jin. An efficient
approach to nondominated sorting for evolutionary
multiobjective optimization. Evolutionary
Computation, IEEE Transactions on, 19(2):201–213,
April 2015.

[28] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. In
K. Giannakoglou et al., editors, Evolutionary Methods
for Design, Optimisation and Control with Application
to Industrial Problems (EUROGEN 2001), pages
95–100. International Center for Numerical Methods
in Engineering (CIMNE), 2002.

1120

