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ABSTRACT
Many evolutionary multi-objective algorithms rely heavily
on non-dominated sorting, the procedure of assigning ranks
to individuals according to Pareto domination relation. The
steady-state versions of these algorithms need efficient im-
plementations of incremental non-dominated sorting, an al-
gorithm or data structure which supports efficient addition
of a new individual and deletion of the worst individual.

Recent research brought new advanced algorithms, but
none of them can be cheaply adapted to sublinear location of
the point having the smallest crowding distance, a measure
used in the NSGA-II algorithm. In this paper we address
this issue by reducing it to a series of extreme point queries
to certain convex polygons. We present theoretical estima-
tion of the worst-case running time, as well as experimental
results which show that the proposed modifications reduce
the running time significantly on benchmark problems for
large population sizes.

Keywords
Multi-objective optimization, crowding distance,
performance evaluation, non-dominated sorting,
steady-state algorithms.

1. INTRODUCTION
Many well-known and widely used evolutionary multi-

objective algorithms use the procedure of non-dominated
sorting for ranking solutions. Such algorithms include the
famous NSGA-II [7], NSGA-III [6], DM1 [1], MOPSO [5] and
many more. The time complexity of these algorithms is often
dominated by the time complexity of non-dominated sorting,
which is especially true for large generation sizes [10]. One
can often make these evolutionary algorithms work faster
without changing the quality of results by using a faster im-
plementation of non-dominated sorting.
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Evolutionary algorithms are typically thought to be effi-
cient when running on parallel computers. However, most of
then are generational, which means that they typically have
to wait for fitness evaluation of the entire population in order
to perform the next task. In turn, this reduces the efficiency
of using a parallel computer or cluster. To utilize the full
power of such a machine, asynchronous algorithms seem to
be better. Steady-state evolutionary algorithms are closer
to being asynchronous, since they are designed to support
insertion, deletion and querying of single individuals.

Steady-state versions of some evolutionary multi-objective
algorithms are known. For instance, a steady-state version
of the NSGA-II algorithm [17] is reported to have a good
convergence rate and high quality of Pareto front approxi-
mation on benchmark problems. However, it runs the non-
dominated sorting procedure each time a new individual
is added, which increases the running time from O(N2K)
for a population of Θ(N) individuals and K objectives, to
O(N2K) for a single individual, which is Θ(N) times slower.
These running times hold for fast non-dominated sorting [7]
and many sequential algorithms for non-dominated sort-
ing [15, 20, 22]; for certain algorithms based on the divide-
and-conquer approach [3, 9, 12], the corresponding bound is
O(N(logN)K−1), but it nevertheless becomes Θ(N) times
slower for the steady-state algorithms. Thus, there is a
need for an efficient method of updating the state of non-
dominated sorting each time a new individual arrives or one
existing individual, typically from the last layer, is deleted.
Such a method would allow many possible steady-state vari-
ations of evolutionary algorithms to be implemented and
analyzed, which may open a door for better algorithms [2].

The first algorithm for efficient handling of incremental in-
sertions and deletions, the “Efficient Non-dominated Level
Update” (or ENLU for short), was proposed in 2014 in a
technical report by Ke Li et al [13], see also the later ver-
sion [14]. Its main idea is to maintain the set of points which
are changing their layer from k to k + 1 and, based on this
set, construct the next set from points which change their
layer from k+ 1 to k+ 2. Although its worst-case time com-
plexity is Θ(N2K) for a single insertion, its average time
complexity is typically much smaller. The paper [16] sug-
gests some improvements on the ideas of ENLU by using
binary search trees in appropriate places, but without an
asymptotic improvement in the worst case.

A slightly different approach is used in the papers by Buz-
dalov et al. [4, 21]. This approach currently covers only
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the two-dimensional case, but it brings a remarkable O(N)
worst-case complexity of a single insertion or a single dele-
tion. The key idea of this approach is that in two dimen-
sions the pieces of non-dominated layers are manipulated in
contiguous fragments, which results in O(1) operations per
layer. These operations can be handled efficiently by using
binary search trees augmented with some appropriate infor-
mation in the nodes. As [4] mentions, the implementation is
quite efficient even for N ≈ 100 – the running times are ap-
proximately 50% smaller than those of ENLU for these N .
What is more, the conditions for Θ(N) insertion time are
quite rare; for example, for the constant number of fronts,
the insertion time can be proven to be O(logN).

In NSGA-II, a measure called the crowding distance is
used to choose the worst point(s) to remove from the last
Pareto layer. To evaluate the worst point in the steady-
state setting for the two-dimensional case, a straightforward
algorithm with Θ(Nlast) = O(N) time is used, where Nlast

is the size of the last layer, assuming that the data struc-
ture keeps the last layer sorted by one of the coordinates.
This O(N) looks the same as the O(N) insertion time. How-
ever, the worst cases happen in radically different conditions:
Θ(N) insertions happen in rare conditions when there are
Θ(N) specifically aligned layers, while Θ(N) removals hap-
pen when the last layer has the Θ(N) size, which is a usual
condition in multi-objective optimization, especially when
some noticeable optimization time has been spent. This
leads to the idea that the overall running time may be re-
duced by speeding up the removal part, probably even at a
slight expense of slowing down the insertion.

This paper is dedicated to reduction of the running time
of the removal part. Note that the removal part consists
of location of the worst point and of actual deletion of that
point. While deletion is trivial and can be done in O(logN),
location is significantly harder. The crowding distance of a
point is computed in the two-dimensional case as dx

DX
+ dy

DY
,

where dx and dy are the coordinate-wise distances between
the point’s neighbors, while DX and DY are the coordinate-
wise spans of the whole layer. While dx and dy, being lo-
cal properties, can be easily tracked for each point during
updates, DX and DY are global properties and may also
change. We reduce the number of points which have to be
checked for being the worst point using convex hulls. More
precisely, we associate with every point in the last layer an-
other derivative point (dx; dy) with dx and dy defined as
above. The points inside the convex hull of any point set
will never correspond to the worst points. What is more,
the location of the worst point in the convex hull can be
done in O(logL), where L is the convex hull size, as it re-
duces to minimization of the crowding distance, which is a
linear function, in a convex polygon.

The rest of the paper is structured as follows. Section 2
recalls the necessary definitions, briefly describes the in-
cremental non-dominated sorting algorithm from [4, 21], or
INDS for short, which is used as the base algorithm, and ex-
plains the idea of the algorithm for finding extreme points in
a convex polygon, which is the same as minimizing a linear
function. In Section 3, the algorithm is given which aug-
ments INDS in order to maintain the necessary data. Sec-
tion 4 contains the results of experiments on certain bench-
mark problems and their discussion. Finally, Section 5 con-
cludes.

2. PRELIMINARIES
This section introduces the necessary definitions and re-

calls the algorithms which are used in this paper.

2.1 Pareto Domination and Non-dominated
Sorting

In the K-dimensional space, a point A = (a1, . . . , aK)
is said to dominate a point B = (b1, . . . , bK) (denoted as
A ≺ B) when for all 1 ≤ i ≤ K it holds that ai ≤ bi and
there exists j such that aj < bj . Non-dominated sorting of
points in the K-dimensional space is a procedure of marking
all points which are not dominated by any other point with
the rank of 0, all points which are dominated by at least
one point of the rank of 0 are marked with the rank of 1,
all points which are dominated by at least one point of the
rank of i − 1 are marked with the rank of i. In this paper,
we call a set of all points having the rank of i the i-th layer.

In most evolutionary multi-objective algorithms based on
non-dominated sorting, only offline non-dominated sorting
is used, where all points are known a priori. For steady-state
algorithms, online non-dominated sorting is needed. The
problem of online non-dominated sorting can be formulated
as maintaining a data structure which supports (efficiently)
at least the following operations:

• insert an arbitrary point;

• query the k-th point (in certain arbitrary but fixed or-
der, for example, lexicographical) along with its rank;

• remove a point from the last layer (typically the worst
point according to certain criterion).

These operations (the last one refined to the point with
the smallest crowding distance) are already enough to imple-
ment NSGA-II [7], or its steady-state version [17]. However,
for other algorithms the following operations may be neces-
sary as well:

• return the total number of layers;

• iterate over all points from the given layer;

• return the minimum or the maximum from all points
from the given layer by the given coordinate;

• return the rank of a given point without inserting it;

• evaluate a certain measure (for example, crowding dis-
tance) for a given point;

• remove a given point (if it exists).

2.2 Two-dimensional Incremental
Non-dominated Sorting

In [21], a data structure for two-dimensional incremental
non-dominated sorting was proposed. The main idea of this
data structure is as follows: when a new point is inserted,
the layers exchange possibly large but contiguous fragments
(see Fig. 1 for an example). If an appropriate data structure
is used, layers can be cut in pieces and glued together for
just O(logN) per single operation. The paper [21] suggests
using Cartesian trees for storing points in each layer, and
another Cartesian tree is used for storing layers themselves
(consult Fig. 2 for the illustration of the idea).
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Figure 1: In two dimensions, insertion of a point
makes layers exchange contiguous fragments.
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Figure 2: The tree-of-trees data structure from the
paper [21].

Let there be N points contained in M layers. When a new
point is inserted, the worst-case time for locating the layer
for this point is:

O

(
logM · log

N

logM

)
.

The time for the actual point insertion can be bounded in
the worst case as follows:

O

(
M ·

(
1 + log

N

M

))
.

These bounds are not worse than O((logN)2) and O(N),
correspondingly [21]. A query of the k-th point in the prede-
fined order – namely, first the points are compared by rank,
then by first coordinate, finally by second coordinate – takes
O(logN) worst-case time [4].

2.3 Convex Hulls and Extreme Points
of a Convex Polygon

A convex hull of the set of points S is the smallest subset
H ⊆ S such that the convex closure of H contains all points
from S. Many efficient algorithms are known which find
the convex hull of the set of N two- and three-dimensional
points in O(N logN) [18]. In these dimensions, a convex
hull of two already built convex hulls can be built in O(N)
time [18].

Assume a linear function F (s) = F ({s1, . . . , sK}) = a0 +
a1s1 + . . . + aKsK is given. For any given set of points S,
F reaches its minimum on its convex hull: mins∈S F (s) =
mins∈H(S) F (s). Indeed, for every point p inside the convex
hull, there are t > 1 points P1, . . . , Pt from the convex hull
such that p = α1P1+. . .+αtPt where αi ≥ 0 and

∑t
i=1 αi =

1 (the fact known as Carathéodory’s theorem). The same
will hold for the linear function F : F (p) = α1F (P1) + . . .+
αtF (Pt), which means that F (p) ≥ mins∈H(S) F (s). Thus,

we may skip the points inside the convex hull when we search
for a point which minimizes any linear function.

For two-dimensional spaces, the algorithm exists which
finds the extreme point (a point with the minimum value of a
linear function) in O(log |H(S)|) = O(log |S|) time [19, Sec-
tion 7.9]. The idea of the algorithm is to perform binary
search on the points of the convex hull ordered counter-
clockwise: assuming that the extreme point is contained
between the indices l and r of the convex hull, we choose
m = b(l + r)/2c and determine (by analyzing the six possi-
ble cases of relative locations of points Pl, Pm and the vector
(α1, α2)) which of the segments, [l;m] or [m; r], contains the
extreme point. The algorithm starts with l = 1, r = |H(S)|.

3. ALGORITHM
In this section, the proposed ways to modify the INDS

algorithm from the paper [21] are explained. First, we ex-
plain how the search of the point with the smallest crowding
distance can be reduced to the search of extreme point in
a convex polygon. Second, we describe a technique which
builds the convex hulls only when necessary and maintains
their sizes in desired limits, so that the better running times
are experienced and can be proven.

3.1 Reduction of Worst Point to
Extreme Point of a Convex Polygon

Recall the definition of the crowding distance in two di-
mensions, assuming that we have a layer P sorted in in-
creasing order of the x-coordinates, which is the same as
decreasing order of the y-coordinate:

D(Pi) =
XPi+1 −XPi−1

XP|P | −XP1

+
YPi−1 − YPi+1

YP1 − YP|P |

.

We denote for brevity the point-dependent values dx(Pi) =
XPi+1 − XPi−1 and dy(Pi) = YPi−1 − YPi+1 , as well as
the front-depending values DX = XP|P | −XP1 and DY =
YP1 − YP|P | . In this notation we get that

D(Pi) =
dx(Pi)

DX
+
dy(Pi)

DY
.

In the data structure of INDS, points belonging to each
layer are stored in a single binary search tree, for exam-
ple, Cartesian tree. We augment each node of such tree
with pointers to the next-in-order and the previous-in-order
nodes, such that these pointers are updated when the tree is
rebuilt without disrupting the O(logN) complexity of basic
operations. With these pointers, we may evaluate dx(Pi)
and dy(Pi) in O(1) time. However, DX and DY , being
front-depending values, cannot be easily reconstructed dur-
ing tree updates, especially splits and merges, so tracking
D(Pi) for all points during updates seems infeasible.

However, when one needs to find the point with the small-
est crowding distance, the values of DX and DY can be
obtained in two queries to the tree of the last layer, each
having O(logN) time complexity. With these known DX
and DY , crowding distance becomes a linear function de-
fined on dx(Pi) and dy(Pi). Thus if we store for each point
Pi the derivative point Di = (dx(Pi), dy(Pi)), and main-
tain a convex hull for a certain subset L of the layer P , the
point with the smallest crowding distance can be found in
this subset L in O(log |L|) time. Note that Di can be easily
maintained for all the points stored in the data structure.
Consult Fig. 3 for an illustrative example of this approach.
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Figure 3: Illustration to searching for the point with
the smallest crowding distance using convex hulls
of derivative points. The current layer is given on
the left plot. The boundary points have the coordi-
nates of (1; 10) and (10; 2), so the crowding distance

has the form of D(Pi) = dx(Pi)
9

+ dy(Pi)
8

. We seek the
smallest crowding distance among the gray points
only. Their derivative points are given on the right
plot. The convex hull of these derivative points is
{A,C,E}. The slanted dashed lines on the right plot
indicate lines with equal values of the crowding dis-
tance function, which indicates that the point with
the minimum crowding distance is E.

3.2 Algorithm for Maintaining Hulls
If one maintains a convex hull for all the points for the

last layer, finding the point with the smallest crowding dis-
tance (the “worst point” for simplicity) will require as few as
O(logN) operations. Unfortunately, maintaining such a hull
may require O(N logN) operations every time the contents
of the last layer change, which renders the whole approach
unusable. Indeed, on every insertion an arbitrary big set
of points from the next-to-last layer may come to the last
layer. This may change some of the crowding distance com-
ponents of the existing points and subsequently may force
to rebuild the convex hull. What is more, the last layer may
be exhausted, and the next-to-last layer may become the
new last layer – but only for a couple of steps. So we need
to keep the balance between the complexity of convex hull
maintaining and the ease of worst point query.

Our algorithm selects a number L and splits the last layer
into several point groups of size at most L (but mostly close
to L). This way, the running time of the worst point query

would be O(Nlast
L

logL), where Nlast is the size of the last
layer. As we already have the points in a layer contained in
a tree, we augment every node which has its subtree size of
at most L with the convex hull of derivative points from its
subtree (see Fig. 4).

When a tree is split or merged, the derivative points of
some points change because either their neighbors change.
Because of this, some hulls are typically invalidated on split
and merge events. Fig. 4 illustrates this fact on the example
of tree splitting.

Splitting and merging may happen not only in the last
layer, but in all other layers too. In fact, if there is a decent
number of layers, most convex hulls are built only to be
subsequently invalidated. Our solution to this problem is to
build convex hulls lazily: a hull is constructed only the first
time it is accessed during search of the worst point. However,
all hulls in the subtree of the corresponding tree vertex are

Figure 4: Convex hulls for tree vertices. The tree
represents a single layer. White color is for the ver-
tices without hulls. The maximum hull size is L = 5,
so hulls are not built for the white vertices. Black
color is for the vertices whose hulls are invalidated if
the tree is split along the vertical line. All vertices
colored gray preserve their hulls after the split.

built too. More precisely, we use the earlier mentioned fact
that, for two dimensions, the convex hull of two convex hulls
can be built in O(N). This allows us to build the hulls in
the entire subtree in O(N logN) time.

Due to this design choice, it is possible to prove that in
each split or merge event the total expected size of invali-
dated hulls is bounded by O(L). Indeed, for every tree node
with changed derivative point the maximum containing hull
has the size of H = O(L). The corresponding node has only
one “broken” child, because the other subtree is not affected.
As the tree is binary and balanced, the average size of the
hull in the “broken” child is at most H/2. When descending
towards the deepest “broken” node, the hull sizes are cut in
half for each layer, which brings the total expected size of
“broken” hulls to be at most H +H/2 +H/4 + . . . < 2H =
O(L). In our implementation we use Cartesian trees, but a
similar bound with possibly different constant factors holds
for any other binary balanced search tree.

It is clear that the proposed modification does not in-
crease the running time during insertion, as convex hulls are
never built in this phase. As the total number of points
in invalidated hulls is at most O(L) for each layer, and the
subsequent work required to restore these broken hulls, if
all of them are needed, is O(L) as well, the average cost of
building hulls at each deletion can be roughly estimated as
O(LM), where M is the number of layers. This cost grows
as L grows. However, we actually expect this cost to be
O(L) in average, as when the number of layers M is big,
most invalidated hulls were not built and will never be used.

The following observation motivates our expectation. If
the problem is encoded sufficiently well, new individuals
mostly appear in smaller layers. Thus, a typical flow of
a solution is from smaller layers to larger ones, and the mi-
gration in the reverse direction can occur for only a constant
number of layers. As hulls are only build at the last layer,
most alive hulls reside in a constant number of last layers.
Unfortunately, we do not yet have a proof for this.

The complexity of the worst point query is O(Nlast
L

logL),
and it decreases as L grows. The most natural way to
achieve a trade-off, in our opinion, is to equate the run-
ning times of the two phases by choosing an appropriate L:
O(L) = O(Nlast

L
logL). In the algorithm we track Nmax, the

maximum seen value of Nlast, and dynamically adjust L to
be the maximum value which satisfies L2/ logL ≤ Nmax.
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Table 1: Experiment results. For each benchmark problem, the table has two rows. For each combination of
computational budget and generation size, the first row presents the running times, in seconds, of the basic
INDS algorithm and of the proposed convex hull based algorithm. The second row presents the hypervolume
at the end of the run and the ratio of the running time of INDS to the time of the hull based algorithm. Light
gray cells correspond to situations when running times were similar (interquartile ranges overlap), dark gray
cells signify that the hull based algorithm was faster, white cells signify that INDS was faster.

Prob. Budget: 25000 Budget: 250000 Budget: 2500000
Gen. size: 100 Gen. size: 1000 Gen. size: 10000 Gen. size: 100000

INDS/HV Hull/Ratio INDS/HV Hull/Ratio INDS/HV Hull/Ratio INDS/HV Hull/Ratio INDS/HV Hull/Ratio INDS/HV Hull/Ratio

DTLZ1 1.01 · 10−1 1.19 · 10−1 1.80 · 10−1 2.23 · 10−1 3.27 · 100 1.74 · 100 2.82 · 100 3.09 · 100 4.03 · 102 2.19 · 101 9.29 · 101 1.12 · 102
4.92 · 10−1 8.53 · 10−1 0.00 · 100 8.08 · 10−1 5.00 · 10−1 1.88 · 100 3.29 · 10−3 9.12 · 10−1 5.00 · 10−1 1.84 · 101 1.60 · 10−1 8.33 · 10−1

DTLZ2 1.03 · 10−1 2.85 · 10−1 2.23 · 10−1 2.94 · 10−1 4.32 · 100 1.45 · 100 6.23 · 100 3.91 · 100 4.56 · 102 2.49 · 101 2.95 · 102 1.17 · 102
2.11 · 10−1 3.62 · 10−1 2.13 · 10−1 7.58 · 10−1 2.14 · 10−1 2.99 · 100 2.14 · 10−1 1.59 · 100 2.15 · 10−1 1.83 · 101 2.15 · 10−1 2.51 · 100

DTLZ3 9.40 · 10−2 1.18 · 10−1 1.65 · 10−1 2.75 · 10−1 2.20 · 100 1.43 · 100 3.13 · 100 3.28 · 100 2.60 · 102 2.50 · 101 1.02 · 102 1.18 · 102
1.51 · 10−1 7.99 · 10−1 0.00 · 100 6.01 · 10−1 2.14 · 10−1 1.54 · 100 0.00 · 100 9.54 · 10−1 2.15 · 10−1 1.04 · 101 0.00 · 100 8.66 · 10−1

DTLZ4 1.45 · 10−1 1.88 · 10−1 2.26 · 10−1 2.95 · 10−1 4.20 · 100 1.70 · 100 5.46 · 100 3.72 · 100 4.37 · 102 2.31 · 101 2.21 · 102 1.05 · 102
2.11 · 10−1 7.74 · 10−1 2.13 · 10−1 7.64 · 10−1 2.14 · 10−1 2.47 · 100 2.14 · 10−1 1.47 · 100 2.15 · 10−1 1.89 · 101 2.15 · 10−1 2.10 · 100

DTLZ5 1.39 · 10−1 2.15 · 10−1 2.27 · 10−1 2.86 · 10−1 4.32 · 100 1.96 · 100 6.16 · 100 3.89 · 100 4.55 · 102 2.33 · 101 2.87 · 102 1.18 · 102
2.11 · 10−1 6.45 · 10−1 2.13 · 10−1 7.92 · 10−1 2.14 · 10−1 2.20 · 100 2.14 · 10−1 1.58 · 100 2.15 · 10−1 1.96 · 101 2.15 · 10−1 2.44 · 100

DTLZ6 7.91 · 10−2 2.21 · 10−1 2.02 · 10−1 2.85 · 10−1 5.76 · 100 1.71 · 100 4.14 · 100 4.71 · 100 1.15 · 103 5.43 · 101 1.37 · 102 1.61 · 102
2.11 · 10−1 3.58 · 10−1 0.00 · 100 7.09 · 10−1 2.14 · 10−1 3.37 · 100 0.00 · 100 8.79 · 10−1 2.15 · 10−1 2.11 · 101 0.00 · 100 8.50 · 10−1

DTLZ7 1.05 · 10−1 1.69 · 10−1 2.27 · 10−1 3.18 · 10−1 4.54 · 100 1.92 · 100 4.75 · 100 5.18 · 100 5.05 · 102 3.03 · 101 1.62 · 102 1.78 · 102
3.09 · 10−1 6.22 · 10−1 2.94 · 10−1 7.13 · 10−1 3.09 · 10−1 2.36 · 100 3.02 · 10−1 9.16 · 10−1 3.09 · 10−1 1.67 · 101 3.04 · 10−1 9.14 · 10−1

WFG1 1.28 · 10−1 2.69 · 10−1 2.01 · 10−1 2.44 · 10−1 4.94 · 100 1.98 · 100 3.83 · 100 3.76 · 100 8.45 · 102 3.77 · 101 1.28 · 102 1.39 · 102
2.16 · 10−1 4.75 · 10−1 4.72 · 10−2 8.22 · 10−1 4.61 · 10−1 2.50 · 100 8.90 · 10−2 1.02 · 100 4.66 · 10−1 2.24 · 101 1.53 · 10−1 9.18 · 10−1

WFG2 1.79 · 10−1 2.54 · 10−1 6.44 · 10−1 2.52 · 10−1 9.88 · 100 3.03 · 100 7.86 · 101 4.68 · 100 1.52 · 103 3.71 · 101 3.01 · 104 1.64 · 102
5.58 · 10−1 7.06 · 10−1 5.59 · 10−1 2.56 · 100 5.59 · 10−1 3.26 · 100 5.59 · 10−1 1.68 · 101 5.59 · 10−1 4.09 · 101 5.59 · 10−1 1.83 · 102

WFG3 2.28 · 10−1 2.51 · 10−1 2.23 · 10−1 2.01 · 10−1 5.82 · 100 2.03 · 100 5.93 · 100 4.39 · 100 8.30 · 102 3.06 · 101 2.94 · 102 1.20 · 102
4.42 · 10−1 9.07 · 10−1 4.43 · 10−1 1.11 · 100 4.44 · 10−1 2.86 · 100 4.44 · 10−1 1.35 · 100 4.44 · 10−1 2.71 · 101 4.44 · 10−1 2.45 · 100

WFG4 1.27 · 10−1 2.63 · 10−1 2.06 · 10−1 2.55 · 10−1 5.76 · 100 1.95 · 100 5.22 · 100 3.62 · 100 8.65 · 102 3.28 · 101 2.38 · 102 9.37 · 101
2.11 · 10−1 4.83 · 10−1 2.13 · 10−1 8.07 · 10−1 2.14 · 10−1 2.95 · 100 2.14 · 10−1 1.44 · 100 2.15 · 10−1 2.64 · 101 2.15 · 10−1 2.54 · 100

WFG5 1.80 · 10−1 4.60 · 10−1 3.41 · 10−1 2.77 · 10−1 8.58 · 100 3.08 · 100 2.42 · 101 3.60 · 100 1.26 · 103 4.25 · 101 8.32 · 102 1.04 · 102
1.79 · 10−1 3.92 · 10−1 1.82 · 10−1 1.23 · 100 1.82 · 10−1 2.79 · 100 1.82 · 10−1 6.73 · 100 1.82 · 10−1 2.97 · 101 1.88 · 10−1 7.97 · 100

WFG6 1.49 · 10−1 3.55 · 10−1 2.05 · 10−1 3.20 · 10−1 5.02 · 100 2.26 · 100 4.50 · 100 3.61 · 100 5.65 · 102 3.31 · 101 1.61 · 102 1.14 · 102
1.91 · 10−1 4.19 · 10−1 2.09 · 10−1 6.40 · 10−1 2.13 · 10−1 2.22 · 100 2.12 · 10−1 1.24 · 100 2.14 · 10−1 1.71 · 101 2.13 · 10−1 1.41 · 100

WFG7 1.71 · 10−1 3.30 · 10−1 2.61 · 10−1 2.43 · 10−1 6.45 · 100 2.65 · 100 8.33 · 100 3.26 · 100 9.87 · 102 3.38 · 101 7.99 · 102 1.13 · 102
2.11 · 10−1 5.18 · 10−1 2.14 · 10−1 1.07 · 100 2.14 · 10−1 2.44 · 100 2.14 · 10−1 2.56 · 100 2.15 · 10−1 2.93 · 101 2.15 · 10−1 7.05 · 100

WFG8 6.61 · 10−2 1.45 · 10−1 1.44 · 10−1 1.93 · 10−1 1.25 · 100 1.11 · 100 2.71 · 100 2.84 · 100 3.86 · 101 1.63 · 101 8.86 · 101 8.60 · 101
1.49 · 10−1 4.56 · 10−1 1.45 · 10−1 7.45 · 10−1 1.55 · 10−1 1.13 · 100 1.74 · 10−1 9.56 · 10−1 2.10 · 10−1 2.36 · 100 1.93 · 10−1 1.03 · 100

WFG9 2.05 · 10−1 2.19 · 10−1 1.95 · 10−1 2.27 · 10−1 5.70 · 100 1.87 · 100 4.28 · 100 2.87 · 100 9.39 · 102 3.16 · 101 1.42 · 102 9.06 · 101
2.09 · 10−1 9.36 · 10−1 2.11 · 10−1 8.57 · 10−1 2.14 · 10−1 3.05 · 100 2.13 · 10−1 1.49 · 100 2.14 · 10−1 2.97 · 101 2.14 · 10−1 1.56 · 100

ZDT1 1.01 · 10−1 1.47 · 10−1 2.05 · 10−1 3.08 · 10−1 4.07 · 100 2.02 · 100 4.61 · 100 4.87 · 100 4.78 · 102 3.19 · 101 1.69 · 102 1.72 · 102
6.62 · 10−1 6.91 · 10−1 6.13 · 10−1 6.65 · 10−1 6.66 · 10−1 2.02 · 100 6.41 · 10−1 9.47 · 10−1 6.67 · 10−1 1.50 · 101 6.47 · 10−1 9.83 · 10−1

ZDT2 1.17 · 10−1 1.41 · 10−1 2.15 · 10−1 2.72 · 10−1 4.44 · 100 1.82 · 100 4.79 · 100 5.19 · 100 4.36 · 102 3.01 · 101 1.74 · 102 1.96 · 102
3.28 · 10−1 8.31 · 10−1 2.19 · 10−1 7.92 · 10−1 3.33 · 10−1 2.44 · 100 2.72 · 10−1 9.23 · 10−1 3.33 · 10−1 1.45 · 101 2.82 · 10−1 8.88 · 10−1

ZDT3 1.09 · 10−1 1.39 · 10−1 2.15 · 10−1 2.91 · 10−1 4.10 · 100 1.83 · 100 4.95 · 100 4.94 · 100 3.82 · 102 2.82 · 101 1.62 · 102 1.64 · 102
5.16 · 10−1 7.84 · 10−1 4.78 · 10−1 7.39 · 10−1 5.17 · 10−1 2.23 · 100 4.98 · 10−1 1.00 · 100 5.17 · 10−1 1.36 · 101 5.03 · 10−1 9.90 · 10−1

ZDT4 8.56 · 10−2 1.29 · 10−1 1.83 · 10−1 2.57 · 10−1 2.82 · 100 1.20 · 100 3.64 · 100 3.82 · 100 3.16 · 102 2.22 · 101 1.30 · 102 1.51 · 102
6.59 · 10−1 6.65 · 10−1 0.00 · 100 7.14 · 10−1 6.66 · 10−1 2.35 · 100 0.00 · 100 9.53 · 10−1 6.67 · 10−1 1.42 · 101 0.00 · 100 8.62 · 10−1

ZDT6 1.35 · 10−1 1.97 · 10−1 2.30 · 10−1 3.21 · 10−1 3.90 · 100 2.75 · 100 4.39 · 100 4.49 · 100 7.52 · 102 3.09 · 101 1.62 · 102 1.91 · 102
3.97 · 10−1 6.85 · 10−1 0.00 · 100 7.15 · 10−1 4.06 · 10−1 1.42 · 100 0.00 · 100 9.78 · 10−1 4.06 · 10−1 2.44 · 101 0.00 · 100 8.47 · 10−1

4. EXPERIMENTS
To compare the performance of the proposed algorithm

to that of the basic INDS algorithm, we ran a series of ex-
periments similar to the ones in [4], which, in turn, derive
from the experiments in [17]. Namely, we use several bench-
mark problems: DTLZ1–DTLZ7 [8], WFG1–WFG9 [11],
and ZDT1–ZDT6 except for ZDT5 [23]. The parameters
of these problems are the same as in the corresponding pa-
pers, with the one exception: evaluation of fitness functions
in WFG problems is done using double-precision floating-
point numbers, which influences properties of some of these
functions significantly. We considered only two-dimensional
versions of these problems.

We use the steady-state version of NSGA-II, described
in [4], to optimize the problems, but instead of fast non-
dominated sorting we use the INDS algorithm and the pro-

posed hull-based modification. To analyze the performance
of the algorithms depending on various generation sizes and
various convergence, we considered computational budgets
from the set {2.5 · 104, 2.5 · 105, 2.5 · 106} individual evalua-
tions and for each budget T two values for generation size:
{T/250, T/25}. These values were chosen based on a some-
what default setting (budget 25000, generation size 100) and
were further scaled up while maintaining the average number
of improvements per a single individual. We compensated
the time spend by NSGA-II in fitness evaluation and genetic
operations by performing the same number of these opera-
tions, measuring the running time and subtracting it from
the overall running time of the full-blown algorithms.

For each problem, each budget/size combination and each
algorithm, 25 runs were performed. The median results are
presented in Table 1 along with the final hypervolume values.
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4.1 Result Analysis
The first thing to note is that the proposed hull-based

modification never loses too much. The worst seen case
is the DTLZ6 problem, budget 25000, generation size 100,
where INDS runs for 7.91 · 10−2 seconds and the hull-based
algorithm for 2.21 ·10−1 seconds, which is approximately 2.8
times slower. For budget 25000 and generation size 100, the
average ratio of the runtime of the hull algorithm to that of
INDS is 1.72 and the median one is 1.5. For generation size
1000, the corresponding numbers are 1.24 and 1.31. From
these observations we can conclude that the proposed algo-
rithm can rarely be slower than INDS for more than two
times.

As computational budget increases, the hull-based algo-
rithm starts to become better. For budgets 2.5 · 105 and
2.5 · 106, it is never worse significantly (except for DTLZ1,
budget 2.5 · 106 and generation size 105) and is often statis-
tically better. For nearly all runs with budget 2.5 · 105 and
generation size 1000 the hull-based algorithm is 1.5–2 times
faster than INDS. This trend continues for budget 2.5 · 106

and generation size 10000, where the hull-based algorithm is
15–30 times faster. In one especially noticeable case (WFG2,
budget 2.5 ·106 and generation size 105) the hull-based algo-
rithm is 180 times (!) faster than INDS. Coincidentally, this
was the case of the largest running time of INDS among all
tested cases.

A brief look at Table 1 reveals, among two already dis-
cussed features (the hull-based algorithm is generally faster
for two combinations of budget and generation size), that
certain problems seem to give advantage to the hull algo-
rithm while others do not. However, there are exceptions to
this rule as well: for example, DTLZ1 seems to be a “simple”
problem for the hull algorithm, but the 2.5 ·106/105 configu-
ration is different from this trend. This suggests that neither
configuration parameters nor the problem are good predic-
tors to the running time of the hull algorithm (related to the
running time of INDS).

Our current hypothesis is that the hypervolume – more
precisely, how close it is to the theoretically maximum hyper-
volume of the particular problem – better predicts whether
the hull algorithm will be faster than INDS. We did not
check this hypothesis statistically, because, in our opinion,
more data should be collected, including the running times
of the algorithms and the hypervolumes at various compu-
tational budgets spend to optimization. However, basic val-
idation can be performed using the existing data.

One can see that the most stable configuration which
makes the hull algorithm performs better (budget 2.5 · 106

and generation size 10000) features maximum hypervolume
values for each problem among all other configurations (ex-
cept for WFG5). The failed case for DTLZ1 at budget
2.5 · 106 and generation size 105 features small hypervolume
(0.16 compared to the maximum of 0.5). The problems that
are“simple”to the hull algorithm typically reach the near-to-
maximum hypervolume value quite fast (see DTLZ4, WFG2
and WFG3). The difficulty of WFG2 for budget 2.5·106 and
generation size 105 to INDS may be attributed to reaching
the maximum hypervolume in the very beginning of opti-
mization. This may result in only one non-dominated layer
existing most of the time without even temporal appearance
of the second layer, which makes INDS check all the points
to find the one with the smallest crowding distance on every
iteration.

If the hypervolume is nearly maximal, the next order
trends may arise. If one checks configurations of the same
budget-to-generation-size ratio for WFG2, WFG3 and pos-
sibly some other problems, one can see that the relative
efficiency of the hull algorithm grows as the generation size
grows. This illustrates the asymptotic difference in the run-
ning times of worst point search in INDS and in the hull
algorithm for O(1) layers – namely, Θ(N) for INDS versus

o(
√
N) for the hull algorithm.

4.2 A Note to Possible Users
on Reproducibility and Correctness

The source code of the algorithm presented in the pa-
per, along with experimental setup, is available at GitHub 1

along with the algorithms from earlier GECCO-2015 papers.
When one runs the experiments for this paper, one may

see that the reported hypervolumes differ for the basic INDS
algorithm and the hull algorithm (unlike all other experi-
ments from the same codebase), however, most of times this
difference is not significant. This is explained by the fact
that, if several points from the last layer have equal crowd-
ing distance, a random one should be chosen, and for all
algorithms this random choice should be exactly the same
throughout the entire experimentation. While this was pos-
sible to achieve for all algorithms except for the hull-based
one, it was found out to be difficult for the latter.

The key is that an implementation which strictly follows
the rules requires to collect all points with the given crowd-
ing distance, ordered lexicographically according to the ob-
jectives, and to choose a random one from them. To achieve
this when using convex hull algorithms, one needs to ensure
that:

• all points which produce equal derivative points should
be stored together (instead of a random one being se-
lected), which requires storing a list of points where
otherwise a single point would be enough;

• an extreme line may touch not one point of the convex
hull, but its edge, which, apart from two points of the
hull, would require keeping all points belonging to the
edges of the hull.

In our opinion, handling of all these requirements would not
only complicate the implementation, but reduce its overall
speed by a constant factor. On the other hand, most of these
conditions are quite rare, except for having a layer of size
two, which is handled separately. We decided to keep our
implementation fast and less complicated at the price of not
repeating the results of other algorithms precisely. We do
believe, however, that the distribution of results produced by
our algorithm is the same as the ones for other algorithms.

5. CONCLUSION
We presented a modification of the algorithm for incre-

mental non-dominated sorting which speeds up finding a
point with the smallest crowding distance on the last front.
The idea of this modification is based on reduction to find-
ing an extreme point in the convex hull. Certain work has
been done on understanding when to build convex hulls and

1https://github.com/mbuzdalov/papers/tree/convex/
2015-gecco-nsga-ii-ss
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when not to build, resulting in an algorithm lazily construct-
ing convex hulls up to size L, where L2 logL ≈ Nmax and
Nmax is the maximum observed size of the last layer.

Experimental evaluation shows that the proposed mod-
ification is slightly (approximately 1.5–3 times) slower for
somewhat standard combinations of computational budget
and generation size, but quickly overtakes for larger bud-
gets and generation sizes. While the actual dependency of
the speedup on computational budget, generation size and
problem features is complicated, one of the most noticeable
trends is that the closer the population is to the Pareto op-
timal set, the bigger is the speedup. Most probably, this
makes the last layer size become Θ(N) in size, which slows
down the original INDS algorithm, but the proposed modifi-
cation does not suffer from this. This observation, especially
if validated statistically, hints that the convex hull based
modification should be turned on not from the very begin-
ning, but at the last stages of optimization, where it would
definitely save time.

There are a couple of known shortcomings of this work.
First of all, it is really limited to two dimensions: first, be-
cause the base INDS algorithm has not been yet developed
to more than two dimensions, and second, because of the
simplicity of crowding distance definition, in terms of neigh-
borhood in layers, when the layer itself is one-dimensional.
Second, the approach is tailored to the definition of the
crowding distance, and is not seen to be easily extendable
to other commonly used measures. These two shortcom-
ings may be seen to compensate each other: for two di-
mensions, NSGA-II is good enough, while many-objective
evolutionary algorithms do not use crowding distance, so it
is not extremely necessary to seek the way of fast search of
the worst crowding distance point in higher dimensions and
steady-state setup. However, our algorithm opens a way for
much larger generation sizes, which may reintroduce selec-
tion pressure for higher dimensions, and thus switch on the
necessity of working with crowding distance again.

The real aim of this paper is to demonstrate that advanced
algorithmic techniques from classic computer science, such
as computation geometry, can really help speeding up var-
ious parts of algorithms in evolutionary computation. Al-
though the presented convex hull based modification may
hardly be seen in any practitioner’s code in probably next
five years, it may inspire researchers in evolutionary com-
putation to look at their algorithm implementations from a
different point of view, and to improve them, making evolu-
tionary computation more appealing to industry practition-
ers worldwide.
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