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ABSTRACT
In this work, we have tested a new approach for evolv-
ing modular programs: Kaizen Programming (KP) with λ-
Linear Genetic Programming (λ-LGP) and a heuristic search
procedure to solve the well-known Lawn Mower problem.
KP is a novel hybrid approach that tries to efficiently com-
bine partial solutions to generate a high-quality complete so-
lution. Being a hybrid, KP may use different types of meth-
ods to generate partial solutions, assess their importance
to the complete solution, and solve the complete problem.
Experiments on the Lawn Mower problem show that the
proposed method is effective in finding the expected solu-
tion. It is a new alternative for evolving modular programs,
but further investigations are necessary to improve its per-
formance.
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1. INTRODUCTION
The Lawn Mower problem was proposed by Koza in order

to evaluate Automatically Defined Functions (ADFs), which
was proposed to deal with modularity in Genetic Program-
ming (GP) [4]. This benchmark problem has a virtual lawn
mower which must be programmed to ”virtually mow a grass
lawn” consisting of a toroidal grid with n×m squares. The
terminal set has the functions left, mow, and Rv8, while
the function set contains the functions V8A, FROG, and
PROGN, as shown in [7].
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The Lawn Mower problem has a modular nature; the rep-
etition of some blocks of code is a pattern to the mower to
cut all the grass in the rectangular area. For such reason,
most works that solve this problem try some form of module
acquisition and reuse, as can be seen in [7, 6, 8, 9].

Here, we propose a combination of the λ-Linear Genetic
Programming (λ-LGP) [5] and Kaizen Programming (KP) [2].
λ-LGP is an LGP [1] that applies λ operations (mutations)
on each individual at each generation, replacing them in the
population according to certain criteria; thus, promoting a
kind of ”intensive” search. KP is a hybrid approach that
uses specialist procedures to generate partial solutions, and
combines them to construct a complete solution to a given
problem, such as regression [3]. The partial solutions that
contribute the most to the complete solution are chosen to
the next iteration, resulting in a continuous improvement
cycle. In this work, we use λ-LGP to provide the specialists
to KP.

With the proposed approach, we introduce modularity
to improve the performance of LGP for solving the Lawn
Mower problem. It works as follows: 1) A population (called
standard) of size N is initialized; each individual - (partial
solution) is a module, a block of code; 2) At each genera-
tion, λ mutations are applied to each individual, resulting
in an intermediate population of size N*λ; 3) A trial solu-
tion is greedly constructed by testing which individual of this
population better improves the performance when concate-
nated to the current Trial Solution (initially empty), until
reaching a size L of individuals; 4) If the new Trial Solu-
tion is better than the current standard, it substitutes it,
and N individuals are chosen to pass to the next cycle; 5)
Half of the individuals are the ones that contribute the most
when concatenated to the Trial Solution (calculated during
its construction), and half are the best fitted individuals -
ignoring the combination.

2. EXPERIMENTS
We first implemented the standard LGP with effective

macro and micro-mutations, with a 75% rate for the former
and 25% for the latter. We implemented λ-LGP and KP
using LGP, varying the standard’s size (maximum number
of individuals that can compose the complete solution) as 3,
5, and 7. An individual’s size starts with 20 and can grow
up to 200 instructions. For KP, as one wishes to evolve
smaller modules, the size varied between 10 and 15. We
tested population sizes of 10, 50, and 100. We present results
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for population=10 as it showed the best results. We used
λ = 10 and maximum number of generations= 200. We
tested the techniques in lawns of four sizes: 8x8, 12x12,
14x14, 16x16. The maximum fitness for each map is its total
area, while the maximum number of steps allowed obeys the
relation MaxS = 1.5625∗area, as used in [7]. Table 1 shows
the results obtained by regular LGP and KP λ-LGP over 100
executions.

Table 1: Mean fitness, success rate, minimum effort
(I/1000), and generation in which the minimum ef-
fort was obtained using LGP and KP λ-LGP (mul-
tiplied by λ ∗N) with different solution sizes (N ) in
different map sizes.

Map/MaxS Method/N Fitness Success I/1000 Gen

8x8/100

LGP 64 1 7.4 36
KP λ-LGP/3 64 1 15.3 16
KP λ-LGP/5 64 1 25 24
KP λ-LGP/7 63.99 0.99 39.9 18

12x12/225

LGP 143.99 0.99 18.8 93
KP λ-LGP/3 143.99 0.99 27.9 30
KP λ-LGP/5 143.83 0.97 57.5 22
KP λ-LGP/7 143.99 0.99 63 44

14x14/306

LGP 195.98 0.99 14.6 72
KP λ-LGP/3 195.65 0.95 40.5 26
KP λ-LGP/5 195.90 0.99 58.5 38
KP λ-LGP/7 195.47 0.93 100.8 23

16x16/400

LGP 255.96 0.99 17.8 88
KP λ-LGP/3 255.98 0.99 27.9 30
KP λ-LGP/5 256 1 62.5 24
KP λ-LGP/7 255.71 0.98 65.8 46

As Table 1 suggests, the two techniques were successful in
finding the optimal solution, achieving the maximum mean
fitness or very near to it (see the success rate). LGP alone
was able to solve the problem, but using KP to combine and
evolve individual modules, one intends to solve the problem
faster. As shown in the Generations (Gen) column, KP finds
the solutions earlier - sometimes 3 times earlier when using
a standard of size 3. Nevertheless, the computational ef-
forts were greater than the obtained by LGP. The reason is
that KP tests the Trial Solution after each individual is con-
catenated. As the maximum size influences this mechanism,
bigger values for such parameter deteriorated the perfor-
mance. However, even though it is not in this report, KP
outperformed several related works from the literature.

Figure 1 shows the evolution curves for the best individual
(partial solution) in the population and the complete solu-
tion. The curves are shown only for the 16x16 map due to
the short page limit of this paper, but other maps follow the
same pattern. It is clear that the complete solution gets fast
to the global optimum, while the best individual improves
slowly.

3. CONCLUSIONS
We confirmed that, for the investigated problem, KP

demonstrates a good potential of finding high-quality solu-
tions earlier than LGP by combining partial solutions. Fur-
ther developments, like using smaller values for λ, or modi-
fying the mechanism for constructing the Trial Solution, are
to be investigated in order to improve the performance of
the method.
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Figure 1: Evolution curves (mean of 100 indepen-
dent runs).
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