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ABSTRACT

This paper argues that the potential for arbitrary transfor-
mation is what differentiates GI from other program trans-
formation work. With great expressive power comes great
responsibility, and GI has had mixed success finding effec-
tive program repairs and optimisations. The search must be
better guided in order to improve solution quality.
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1. ARBITRARY TRANSFORMATIONS

What separates GI from other bug-fixing and program op-
timisation methods? It is often assumed that the answer to
this question is “test-based evaluation”, but in fact testing is
ultimately relied upon for validation in much repair and op-
timisation work employing formal techniques and template-
based transformations [4, 5]. Formal specifications and pro-
gram annotations are not usually available for existing code,
forcing automated methods to rely on test suites in most
cases. GI is therefore not unique in this regard. Current
formal approaches are limited in terms of the size and type
of improvement required, providing higher quality results at
the cost of generality and scalability, e.g. [4].

In truth what separates GI is that the search operators
usually allow for arbitrary transformations of code: the trans-
formations are not heavily constrained, for example, to sim-
ple template application. Ultimately, this is what makes the
fields of Genetic Programming (GP) and GI exciting in their
potential: they may produce any code that a programmer
could consider. Unfortunately, another consequence of their
expressive freedom is that they may produce code that a
programmer would have good reason not to consider, and in
conjunction with a reliance on test cases, this can lead to the
problem of overfitting and bug-fixes that break more func-
tionality than they improve [9]. Unconstrained optimisation
is GI’s greatest strength and yet also its greatest weakness.
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Arbitrary transformations are excluded from most pro-
gram repair and optimisation work for two reasons: first,
they result in a vast space of possible program changes; sec-
ond, most methods for increasing our confidence in the cor-
rectness of a change do not scale to support the creation
of arbitrary code, i.e. a wide variety of changes in both
type and size. Past experience of success in exploring vast
combinatorial spaces tells us that the first problem may be
solved approximately using search and other Al methods;
the second problem appears to be more unique. Recently,
the limitations of allowing arbitrary transforms have been
underlined by close examination of patches generated by the
popular GenProg tool [7]. If Gl is to progress and be adopted
by those outside the evolutionary computation community,
the problem of low-quality patches and optimisations must
be addressed.

2. WHITE-BOX GI

It appears likely that treating GI as a black box — or
treating GP in the same way, for that matter — is insuf-
ficient to avoid overfitting. There are many programs that
will satisfy any given set of test cases, but the correctness of
a patch or a program lies in its generality, which cannot for
most problems be evaluated simply by examining program
output on a set of test cases; consider how we are to clas-
sify an unseen input as belonging to the set of positive or
negative test cases when bug-fixing, for example. When cre-
ating software, we cannot reason via analogy with Machine
Learning: programming is not a classification problem.

The fault-finding efficacy of test generation can be im-
proved by employing metrics that describe how well a test
suite exercises source code under test. Regardless, relying
on testing alone is still post-hoc; we are reliant entirely on
testing to identify any damage caused to useful program be-
haviour. Our testing procedure thus needs to be watertight,
for arbitrary transformations. Witnessing the continued vol-
ume of bugs in deployed software should give us little hope
that this can be achieved.

So we cannot rely on testing that results in high-quality
solutions, yet we may not wish to abandon the arbitrary
transformations that give GI its great potential. Without
restricting the search space, how can we hope to bridge the
gap between such an expressive tool and the demand for
solutions that are at least likely to be correct? I propose
that we allow the gemeration of arbitrary transformations,
but encourage the selection of high-quality ones.



3. PATCH QUALITY HEURISTICS

Which possible heuristics should we consider? The most
obvious heuristic, already employed in bug-fixing work, is to
use Occam’s Razor: to minimise the size of a patch. Unfor-
tunately, this principle combined with test-based evaluation
is akin to the converse of mutation testing: it invites the
search process to find patches that minimise the number of
changes to a program to improve some behaviour in the test
suite, whilst also breaking any behaviour the test suite does
not encapsulate. Insertion of dead code or removal of small
amounts of code are good strategies for such a search, and
indeed this behaviour has been observed [7]. A problem here
is that we are considering syntactic change size.

More generally, the implementation of such a parsimony
objective in GP is known to limit the exploration of the
search space [6]. One solution is to minimise a patch after
the run [3], but again this treats GI as a black box, and does
not guide the search for high-quality solutions.

Given these observations, it is not too great a leap to con-
clude that only quality heuristics based on the static or dy-
namic analysis of program semantics will stand any chance
of providing a patch quality heuristic (a PQH). I now discuss
three such lines of attack.

3.1 PQH 1: Invariant Complexity

When a programmer writes code, they do not aim to solely
pass a set of tests (even when working in TDD), rather they
alm to produce a solution that is general. This generality
of intent is what distinguishes programmers from test-based
automated programming.

Through the application of automated invariant genera-
tion tools such as Daikon [1] to candidate solutions, invari-
ants encapsulating their behaviour can be suggested. Sim-
ilarly, invariants can be derived for the original program.
Related work has guided repair by limiting the impact of
program changes in terms of their changes to existing se-
mantics [5], and such a method could also be applied to GI
at a large scale if a tool such as Daikon is used: minimise
the distance between invariant sets. Positive and negative
behaviour may be treated separately when bug-fixing.

More speculatively, I propose that the fragility of the in-
variants that describe a candidate solution can be used as
a heuristic to guide patch quality. This is a return to Oc-
cam’s razor at the level of semantics: the most interesting
programs are those that are encapsulated through simple
invariants when compared to their neighbours in a program
space. Ratcliff et al. [8] showed how the simplicity of an
invariant was correlated with its ability to isolate a correct
program in the space of mutated variants.

3.2 PQH 2: Information-Theoretic Measures

A position paper by Johnson and Woodward [2] suggested
information theoretic measures of “progress” within a pro-
gram as a suitable measure of proximity to a given goal.
They succinctly describe this as “quantifying how much closer
the program is to solving its task” at various points in a
program. For example, they suggest using a compression
distance measure to compare program state to a target. An
optimisation may reduce this distance at a given point in the
program. This is another example of white-box GI, using dy-
namic analysis to evaluate the quality of a given candidate
solution. As with Daikon, they use the result of multiple
runs to build a picture of program behaviour.
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Information theoretic heuristics can be used to eliminate
unwanted changes that do not contribute towards achieving
a computational goal or modify the current behaviour of a
program by too great an extent.

3.3 PQH 3: Ensemble Learning

By allowing GI to improve our program across multiple
runs, we can use a form of ensemble learning [10] by par-
titioning test cases to produce multiple potential solutions
and then perform post-processing to refine these solutions
into a single patch. Partitioning the test cases across runs
and then generalising from these results may prevent overfit-
ting to any particular partition of test cases. In particular, a
method similar to stacked generalisation [11] found in classi-
fication could be used to select modifications from the union
of output patches across these multiple runs. This may at
first appear to a high-level approach unrelated to PQHs 1
and 2, but the key observation is that these partitions be
based on the white-box behaviour of the original program.

4. CONCLUSION

Arbitrary code changes are GI's greatest strength and
weakness. 1 believe that we should guide rather than con-
strain GI, to retaining its scalability and creative potential,
through the use of potentially expensive quality heuristics:
high-quality arbitrary transformations come at a cost.
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