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ABSTRACT
Genetic improvement (GI) is a relatively new area of soft-
ware engineering and thus the extent of its applicability is
yet to be explored. Although a growing interest in GI in
recent years started with the work on automatic bug fix-
ing, the area flourished when results on optimisation of non-
functional software properties, such as efficiency and energy
consumption, were published. Further success of GI in trans-
planting functionality from one program to another leads to
a question: what other software engineering areas can ben-
efit from the use of genetic improvement techniques? We
propose to utilise GI for code obfuscation.
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1. GENETIC IMPROVEMENT
The name ‘genetic improvement’ was only coined in 2012

in the keynote paper by Harman et al. [7]. However, begin-
nings of GI can be traced back to 1995 with the work by
Ryan and Walsh [12], where genetic programming was used
to transform an existing sequential program into a parallel
one. The next important step arose from the bug fixing work
by Arcuri et al. [2]. The proposed approach of using genetic
programming for software repair has developed as a field in
its own right and led to several awards, including a ‘Gold
Humie’ [14]. Langdon et al. [9] and White et al. [15] used a
similar method to optimise non-functional properties of soft-
ware, such as efficiency and energy consumnption. Petke et
al. [11] adopted this approach for software specialisation.
More recent applications of GI involve reduction of memory
consumption [16] and software slimming [17]. Furthermore,
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research on automated software transplantation using ge-
netic improvement led to a best paper award [4] and wide
media coverage [13].

2. CODE OBFUSCATION
Code obfuscation arose from the need for secure software

systems. Obfuscation aims to prevent unauthorised per-
sona from tampering with software and hinder its reverse-
engineering. However, it can also be used for malicious pur-
poses by software virus creators. Collberg et al. [5] first
defined an obfuscator in terms of semantics-preserving pro-
gram transformations applied in a systematic fashion to the
selected code. Collberg et al. [5] also provided three main
categories of obfuscation: layout (aimed at making software
unreadable), data (affecting data structures, e.g., splitting
variables) and control obfuscation (altering program’s con-
trol flow). Barak et al. [3] define an obfuscator O as an (effi-
cient, probabilistic)“compiler”that takes as input a program
(or circuit) P and produces a new program O(P ) that has
the same functionality as P yet is “unintelligible” in some
sense. The field’s popularity can be seen in 24 editions of
the ‘International Obfuscated C Code Contest’ so far [1].

3. GI FOR CODE OBFUSCATION
Traditionally, code obfuscators apply a set of program

transformations to the whole of the selected code. These
program transformations are semantics-preserving. There-
fore, we propose to loosen the semantics criterion by intro-
ducing test cases as a proxy for correct program behaviour
and new operators in the context of code obfuscation. This
way code changes that were previously infeasible are allowed
to take place and thus the space of possible obfuscated pro-
grams can increase drastically. Genetic programming has
already been used for the purpose of building obfuscated
software [10], showing feasibility of the approach.

In the GI approach we propose to start with an existing
program. Standard obfuscating operations can be applied,
such as, deletion, renaming, replacement and loop condi-
tion changes. However, we propose to use metaheuristic
search to apply these changes. Furthermore, we do not im-
pose semantics-preserving conditions on the mutation oper-
ators. For example, we allow for arbitrary changes to the
loop conditions. These could be achieved by replacing one
loop condition with another in a different part of the code.
Such an operator has already been used in genetic improve-
ment work [9]. We use a given code obfuscation metric in
the fitness function (Drape [6], for instance, provides sev-
eral examples of such metrics). We also use the number of
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passed test cases as a proxy for correct program behaviour
in fitness evaluation. We can apply the genetic program-
ming approach to select the top programs for mutation and
crossover in the next generation. The whole process can
then be repeated with fixed population and generation size
as is standard in genetic programming [8]. The proposed
process is summarised in Figure 1.

Figure 1: Proposed approach for the use of GI for
code obfuscation.

Similarly to code obfuscation, the proposed approach is
not limited to changes at the source code level. The same
method can be applied to bytecode with appropriate changes
to the fitness function and mutation operators. Further-
more, the search technique does not need to be genetic
programming (even though it had a lot of success in the
GI area). Other search-based methods, such as hill climb-
ing, could be explored. We propose a general new method
for code obfuscation. Further research and experiments are
needed to establish the best components of the genetic im-
provement approach in the context of code obfuscation.

4. CONCLUSIONS
We propose to use genetic improvement techniques for

the purpose of code obfuscation. By allowing unsystematic,
non-semantics-preserving changes to the code, the space of
obfuscated programs is significantly increased, thus allow-
ing greater security of the modified code. Further research
is needed to verify if code correctness of the resultant pro-
gram is sufficient when test cases are used as a proxy in
the proposed approach. However, this work shows that the
space of applications of genetic improvement techniques is
yet to be explored.
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