
Genetic Improvement for Code Obfuscation

Justyna Petke
University College London

London, UK
j.petke@ucl.ac.uk

ABSTRACT
Genetic improvement (GI) is a relatively new area of soft-
ware engineering and thus the extent of its applicability is
yet to be explored. Although a growing interest in GI in
recent years started with the work on automatic bug fix-
ing, the area flourished when results on optimisation of non-
functional software properties, such as efficiency and energy
consumption, were published. Further success of GI in trans-
planting functionality from one program to another leads to
a question: what other software engineering areas can ben-
efit from the use of genetic improvement techniques? We
propose to utilise GI for code obfuscation.

CCS Concepts
•Software and its engineering → Search-based soft-
ware engineering;

Keywords
Genetic Improvement; Code Obfuscation; Software Optimi-
sation

1. GENETIC IMPROVEMENT
The name ‘genetic improvement’ was only coined in 2012

in the keynote paper by Harman et al. [7]. However, begin-
nings of GI can be traced back to 1995 with the work by
Ryan and Walsh [12], where genetic programming was used
to transform an existing sequential program into a parallel
one. The next important step arose from the bug fixing work
by Arcuri et al. [2]. The proposed approach of using genetic
programming for software repair has developed as a field in
its own right and led to several awards, including a ‘Gold
Humie’ [14]. Langdon et al. [9] and White et al. [15] used a
similar method to optimise non-functional properties of soft-
ware, such as efficiency and energy consumnption. Petke et
al. [11] adopted this approach for software specialisation.
More recent applications of GI involve reduction of memory
consumption [16] and software slimming [17]. Furthermore,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931689

research on automated software transplantation using ge-
netic improvement led to a best paper award [4] and wide
media coverage [13].

2. CODE OBFUSCATION
Code obfuscation arose from the need for secure software

systems. Obfuscation aims to prevent unauthorised per-
sona from tampering with software and hinder its reverse-
engineering. However, it can also be used for malicious pur-
poses by software virus creators. Collberg et al. [5] first
defined an obfuscator in terms of semantics-preserving pro-
gram transformations applied in a systematic fashion to the
selected code. Collberg et al. [5] also provided three main
categories of obfuscation: layout (aimed at making software
unreadable), data (affecting data structures, e.g., splitting
variables) and control obfuscation (altering program’s con-
trol flow). Barak et al. [3] define an obfuscator O as an (effi-
cient, probabilistic)“compiler”that takes as input a program
(or circuit) P and produces a new program O(P) that has
the same functionality as P yet is “unintelligible” in some
sense. The field’s popularity can be seen in 24 editions of
the ‘International Obfuscated C Code Contest’ so far [1].

3. GI FOR CODE OBFUSCATION
Traditionally, code obfuscators apply a set of program

transformations to the whole of the selected code. These
program transformations are semantics-preserving. There-
fore, we propose to loosen the semantics criterion by intro-
ducing test cases as a proxy for correct program behaviour
and new operators in the context of code obfuscation. This
way code changes that were previously infeasible are allowed
to take place and thus the space of possible obfuscated pro-
grams can increase drastically. Genetic programming has
already been used for the purpose of building obfuscated
software [10], showing feasibility of the approach.

In the GI approach we propose to start with an existing
program. Standard obfuscating operations can be applied,
such as, deletion, renaming, replacement and loop condi-
tion changes. However, we propose to use metaheuristic
search to apply these changes. Furthermore, we do not im-
pose semantics-preserving conditions on the mutation oper-
ators. For example, we allow for arbitrary changes to the
loop conditions. These could be achieved by replacing one
loop condition with another in a different part of the code.
Such an operator has already been used in genetic improve-
ment work [9]. We use a given code obfuscation metric in
the fitness function (Drape [6], for instance, provides sev-
eral examples of such metrics). We also use the number of

1135

passed test cases as a proxy for correct program behaviour
in fitness evaluation. We can apply the genetic program-
ming approach to select the top programs for mutation and
crossover in the next generation. The whole process can
then be repeated with fixed population and generation size
as is standard in genetic programming [8]. The proposed
process is summarised in Figure 1.

Figure 1: Proposed approach for the use of GI for
code obfuscation.

Similarly to code obfuscation, the proposed approach is
not limited to changes at the source code level. The same
method can be applied to bytecode with appropriate changes
to the fitness function and mutation operators. Further-
more, the search technique does not need to be genetic
programming (even though it had a lot of success in the
GI area). Other search-based methods, such as hill climb-
ing, could be explored. We propose a general new method
for code obfuscation. Further research and experiments are
needed to establish the best components of the genetic im-
provement approach in the context of code obfuscation.

4. CONCLUSIONS
We propose to use genetic improvement techniques for

the purpose of code obfuscation. By allowing unsystematic,
non-semantics-preserving changes to the code, the space of
obfuscated programs is significantly increased, thus allow-
ing greater security of the modified code. Further research
is needed to verify if code correctness of the resultant pro-
gram is sufficient when test cases are used as a proxy in
the proposed approach. However, this work shows that the
space of applications of genetic improvement techniques is
yet to be explored.

5. REFERENCES
[1] The International Obfuscated C Code Contest.

http://www.ioccc.org/index.html.

[2] A. Arcuri and X. Yao. A novel co-evolutionary
approach to automatic software bug fixing. In
J. Wang, editor, 2008 IEEE World Congress on
Computational Intelligence, pages 162–168, Hong
Kong, 1-6 June 2008. IEEE Computational
Intelligence Society, IEEE Press.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In Advances
in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara,

California, USA, August 19-23, 2001, Proceedings,
pages 1–18, 2001.

[4] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and
J. Petke. Automated software transplantation. In
Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, pages
257–269, New York, NY, USA, 2015. ACM. ACM
SIGSOFT Distinguished Paper Award winner.

[5] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations, 1997.

[6] S. Drape. Intellectual property protection using
obfuscation. Technical Report RR-10-02, March 2010.

[7] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The GISMOE challenge:
Constructing the Pareto program surface using genetic
programming to find better programs. In The 27th
IEEE/ACM International Conference on Automated
Software Engineering (ASE 12), pages 1–14, Essen,
Germany, Sept. 3-7 2012. ACM.

[8] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[9] W. B. Langdon and M. Harman. Optimising existing
software with genetic programming. IEEE
Transactions on Evolutionary Computation,
19(1):118–135, Feb. 2015.

[10] P. LaRoche, N. Zincir-Heywood, and M. Heywood.
Using code bloat to obfuscate evolved network traffic.
In C. D. et al., editor, EvoCOMNET, volume 6025 of
LNCS, pages 101–110, Istanbul, 7-9 Apr. 2010.
Springer.

[11] J. Petke, M. Harman, W. B. Langdon, and
W. Weimer. Using genetic improvement and code
transplants to specialise a C++ program to a problem
class. In M. N. et al., editor, 17th European Conference
on Genetic Programming, volume 8599 of LNCS, pages
137–149, Granada, Spain, 23-25 Apr. 2014. Springer.

[12] C. Ryan and P. Walsh. Automatic conversion of
programs from serial to parallel using genetic
programming - the paragen system. In Proceedings of
ParCo’95. North-Holland, 1995.

[13] J. Temperton. Code ’transplant’ could revolutionise
programming. Wired.co.uk, 30 July 2015. Online.

[14] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In 31st International Conference on
Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings, pages 364–374, 2009.
‘Gold Humie’ 2009 award winner.

[15] D. R. White, A. Arcuri, and J. A. Clark. Evolutionary
improvement of programs. IEEE Transactions on
Evolutionary Computation, 15(4):515–538, Aug. 2011.

[16] F. Wu, W. Weimer, M. Harman, Y. Jia, and
J. Krinke. Deep parameter optimisation. In S. S.
et al., editor, GECCO ’15: Proceedings of the 2015 on
Genetic and Evolutionary Computation Conference,
pages 1375–1382, Madrid, 11-15 July 2015. ACM.

[17] K. Yeboah-Antwi and B. Baudry. Embedding
adaptivity in software systems using the ECSELR
framework. In W. B. L. et al., editor, Genetic
Improvement 2015 Workshop, pages 839–844, Madrid,
11-15 July 2015. ACM.

1136

