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ABSTRACT
In this paper we outline our proposed framework for opti-
mising energy consumption on Android mobile phones. To
model the power usage, we use an event-based modelling
technique. The internal battery fuel gauge chip is used to
measure the amount of energy being consumed and accord-
ingly the model is built on. We use the model to estimate
components’ energy usages. In addition, we propose the
use of evolutionary computations to prolong the battery life.
This can be achieved by using the power consumption model
as a fitness function, re-configuring the smartphone’s default
settings and modifying existing code of applications.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; •Computing methodologies → Heuristic func-
tion construction; Randomized search;

Keywords
Power Consumption Modelling, Energy Optimisation, Ge-
netic Improvement, Search Based Software Engineering.

1. INTRODUCTION
Cellphone usage has grown significantly in the recent years

and has expanded from only voice services to other sophisti-
cated services such as social networking, entertainment and
education. Despite the powerful capabilities of the current
smartphones, their availability relies on the limited battery
life. A smartphone needs a collection of applications that
use its hardware to provide such services to its users. In
order to satisfy a user’s needs, applications need to run
semi-constantly in the background or utilise hardware com-
ponents frequently. In addition, the running applications
might have energy bugs that intensely affect the energy con-
sumption [8][9]. As a result, the operation time reduces no-
tably which is a usability issue.

At the present time, it seems that engineers are incapable
of increasing the amount of energy created by the chemi-
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cal reactions in relatively small size batteries. Apparently,
enlarging the battery size is the only way to increase its
capacity. Nevertheless, this conflicts with the evolution of
smartphones, where lighter and thinner devices are more
desirable. It is worth mentioning that nanotechnology is be-
ing explored to build batteries that are able to generate ten
times the amount of energy of the current lithium-ion bat-
teries [2]. To the best of our knowledge, the mobile industry
has yet to adopt this new technology.

An effective software solution starts with estimating the
factors that affect the battery life which can be achieved
through: measuring the current and voltage for particular
time periods; generating models using power measurements
to identify the factors that influence energy usage; and es-
timating the amount of energy used by the components us-
ing the generated model. External power and smartphones’
built-in meters can be used to measure the current and volt-
age. The former method requires opening the device and
connecting the meter to the battery interface. Building a
model using this method restricts its accuracy to labora-
tory conditions. Using the built-in meter allows constructing
models that can be applied under varying conditions.

Modelling software energy consumption is well studied in
existing literature. Some works use utilisation-based energy
modelling [4, 7, 11], where the main assumption of energy
usage is correlated to the utilisation of a hardware compo-
nent (e.g., GPS, disk and NIC). Any change of utilisation
causes the power state change of the component. However,
these models are deficient in capturing and modelling non-
utilisation behaviours such as opening a file and tail states,
which may last several seconds [10].

To overcome these issues, event-based modelling can be
used. It correlates the energy usage to events that trig-
ger power state changes of a component. For example, the
authors of [10] represent the system as finite state machine
(FSM) and associate a fixed energy consumption cost to each
state. In addition, they utilise system calls to trace which
state a component is in to compute its power usage. Param-
eters within system calls include the application name, the
requested hardware component and the level of utilisation
help to obtain fine-grained energy consumption estimation.

In order to prolong the battery life, the default settings
of the smartphone have to be optimised. One solution is
re-configuring the mobile phone’s settings dynamically de-
pending on the user usage behaviour. This method requires
exploring a massive number of potential solutions as each
smartphone consists of several components and each com-
ponent has a number of settings. As a result, conventional
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software engineering methods are insufficient to solve such
a problem [3]. Forming this problem into an optimisation
problem makes it suitable for genetic algorithms (GA) [3].

Besides parameter tuning using GAs, structural optimi-
sations are sought to reduce high energy usage of an ap-
plication. The authors of [6] suggest employing genetic im-
provement (GI) as a solution technique to modify an existing
source code. For example, the work in [1] applies GI to the
MiniSAT solver for a specific problem domain, which even-
tually consumes 25% less energy. They run the experiment
on an Apple laptop and use the Intel Power Gadget API
to estimate energy consumption. In contrast to this, we
use our own model for estimation purposes, and more im-
portantly our targeted optimisation platform is hand-held
devices, where the available computatio power is limited.

2. POWER PROFILING
The proposed power profiler is based on event-based power

modelling and internal power measurement techniques. We
adopt the modelling methodology in [10] to avoid the men-
tioned issues related to the utilisation-based modelling. How-
ever, our method of constructing the system’s FSM is differ-
ent. Unlike the work in [10] where the FSM is pre-built for
the tested devices, our profiler collects information regard-
ing the hosting mobile’s components as a first step. It then
examines each component to derive its states.

To assign power usage values to power states, we use
mobile phone self-monitoring capabilities. Modern smart-
phones are equipped with battery fuel gauge chips that re-
port the voltage, current and remaining energy within the
battery. Accessing these values can be done through the
battery API, such as Android’s BatteryManager class. The
API periodically broadcasts these values. Using the inter-
nal measurement obviates the need of an external hardware
power meter which depends on laboratory conditions. In
addition, it allows dynamic model generation using infor-
mation obtained from the device.

We use Android studio version 1.5 to build the profiler.
It uses the BatteryManager API to collect power measure-
ments from the battery fuel gauge. Initially, the target de-
vice for our experiments is HTC Nexus 9. It is equipped
with the Maxim MAX17050 fuel gauge.

3. GENETIC ALGORITHMS
Since the issue of optimising the power consumption de-

pends on each user’s preferences (e.g., see [5, 11]), we pro-
pose a methodology that dynamically adjusts mobile config-
urations using GA and collected usage data.

Our framework keeps track of the user’s usage behaviour.
It records usage data for a pre-defined period of time. It then
analyses the collected data to extract operational patterns.
The goal of this step is to identify and rank the essential set
of objectives to be used in the optimisation process. Ranking
an objective is based on the frequency and/or the duration
of the pattern that is represented by that objective.

In our optimisation approach each solution is represented
as a set of settings for each component and the fitness func-
tion is to minimise the required energy for the desirable ob-
jectives. For instance, a solution contains the screen bright-
ness level, GPS mode, network mode, and synchronisation
frequency for applications such as the Gmail app. A pre-
defined power consumption value is assigned to each setting
and therefore the sum of these values represents the qual-

ity of the solution. A fitter solution within a population
consumes less power in total.

4. GENETIC IMPROVEMENT
We use GI to optimise existing applications. We develop

a test suite that has several energy-demanding applications.
The GI runs on the source code of each test case to generate
a new version of the original test case. In the next step, the
framework compares the energy consumption of the modified
test case, either through an actual execution or through our
power model. Indeed, a fitter solution consumes less power.
To preserve the functionality of the main software, its source
code is used as a test oracle [1].
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