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ABSTRACT
Apache Spark is a popular framework for large-scale data an-
alytics. Unfortunately, Spark’s performance can be difficult
to optimise, since queries freely expressed in source code are
not amenable to traditional optimisation techniques. This
article describes Hylas, a tool for automatically optimising
Spark queries embedded in source code via the application of
semantics-preserving transformations. The transformation
method is inspired by functional programming techniques
of “deforestation’, which eliminate intermediate data struc-
tures from a computation. This contrasts with approaches
defined entirely within structured query formats such as
Spark SQL. Hylas can identify certain computationally ex-
pensive operations and ensure that performing them creates
no superfluous data structures. This optimisation leads to
significant improvements in execution time, with over 10,000
times improvement observed in some cases.
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1. INTRODUCTION
There is a burgeoning trend for large scale data analysis,

driven in part by the rise in the use of social media and the
Internet of Things [1]. Deciding how best to exploit such
voluminous data is driving widespread activity in Big Data
analytics. From the practitioner’s perspective, the process
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of Big Data analytics is still a costly endeavour in terms of
time and effort [2]. As a result, it is crucial that operations
on large data sets are performed efficiently.

Apache Spark1 is a popular open source cluster computing
framework maintained by the Apache Software Foundation,
and is an increasingly popular choice for Big Data analytics.
Spark is written in the Scala programming language [3] and
runs on the Java Virtual Machine [4]. The framework is or-
ganized around special in-memory data structures, known as
Resilient Distributed Datasets (RDDs) [4]. RDDs avoid the
costly read/write cycles incurred by other methods, where
replication of data is required when sharing data between
multiple computations. The ability to share data between
executions is desirable in many iterative machine learning
and data mining methods, where a substantial number of
queries are run on the same set (or subset) of data. Despite
the fact that data kept in-memory is somewhat more volatile
than that stored on disk, RDDs have been designed with
fault tolerance in mind and are recoverable in the event of
failure. The Spark interface to RDDs consists of several well-
known functional programming transformations (e.g. aggre-
gate, filter, map and reduce) since these are more easily
parallelized than their imperative equivalents. Generally,
Spark queries are sequences of such transformations (which
construct new RDDs), terminated by one or more actions
(which return values).

Although much of Spark’s popularity is due to the speed
benefits gained via in-memory data processing, the Spark
framework is not amenable to common query optimisation
techniques such as those of relational algebra [5]. Since
Spark queries are written in a general-purpose programming
language (one of Scala, Java or Python), determining the
underlying relational operations becomes extremely difficult
[6]. To avoid this difficulty, previous work focused on special-
purpose declarative data manipulation languages like Spark
SQL, which allow for the use of these traditional techniques.
Unfortunately, these optimisers cannot be used to improve

1http://spark.apache.org/
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existing programs which were not written with Spark SQL
in mind [7].

Long before Spark existed, functional programmers faced
a rather similar issue: programs written in functional style,
using high-level functions to encapsulate common patterns
of data-handling, frequently resulted in a large number of su-
perfluous intermediate data structures [8]. Several so-called
“deforestation” rules were proposed to automatically elimi-
nate these superfluous structures.

In this article, we apply deforestation rules to reduce Spark
queries to functionally equivalent forms that are more effi-
cient, reducing the overall time taken to execute such queries
on average for the cases tested. The key insight of the ap-
proach presented here is that RDDs are also intermediate
data structures in a functional language. This makes it
possible to apply similar deforestation rules to existing pro-
grams which manipulate RDDs in a less constrained fashion
than approaches such as Spark SQL.

2. RELATED WORK
Within the field of Search Based Software Engineering

(SBSE), there is widespread interest in the use of search
techniques to improve functional and/or non-functional prop-
erties of a target program. In previous work (e.g. [9]), we
have used the term ‘Automatic Improvement Programming’
(AIP) to refer to methods which (at least in part) achieve
this via semantics-preserving and/or deterministic methods.
The term ‘automatic’ was chosen for its historical associa-
tion with different methods of nonstochastic program trans-
formation in the field of Automatic Programming [10]. In
contrast, previous work using the term ‘Genetic Improve-
ment’ (GI) has been predominantly concerned with the ap-
plication of stochastic (if not necessarily genetic) search [11].
In particular, there has been historical emphasis in GI on
validation of software mutants via testing, which is clearly
not required in the case of semantics-preserving transforma-
tions. The definition of GI has recently been amended to be
‘computational search to improve software while retaining
its partial functionality’2.

In 2011, Orlov and Sipper [12] used Genetic Programming
(GP) [13] to automatically improve existing Java programs
for well known GP benchmarks such as symbolic regression
and the ‘artificial ant’ problem. Their approach evolved Java
bytecode rather than source code directly and used the no-
tion of ‘compatible crossover’ to ensure program correctness.
More recently, Kocsis and Swan [14] made use of the well-
known Curry-Howard isomorphism to demonstrate that it is
sometimes possible to replace stochastic mutation operators
with transformations obtained by deterministic proof search.
Kocsis et al. [9] also describe an AIP system for repairing
and improving the implementation of hashCode methods
in Hadoop, an open- Java-based framework for distributed
Big Data storage and processing. The Hadoop code base
was analyzed and it was procedurally determined that there
were over 400 cases where the hashCode implementation did
not meet its contractual obligations. Semantics-preserving
transformations were then performed to ensure the required
contractual consistency with the equals method. Genetic
Programming was then used to improve the distribution
of the repaired hashCode method. The automatically im-
proved hashCode implementations were able to outperform

2http://geneticimprovementofsoftware.com/

both the original Hadoop implementations and an existing
hashcode generation tool on a number of case studies. In
recent work by Burles et al. [15], the behavioral semantics
of Object-Orientation is used to constrain possible substi-
tutions for Google Guava collection classes. By employing
these constraints within a genetic search, a 200-fold improve-
ment over an exact approach is achieved for the minimiza-
tion of energy consumption.

2.1 Reflection in Scala
The Hylas framework described here is implemented via

the reflection capabilities of the Scala language, where re-
flection is the ability of a program to inspect and modify
it’s own behaviour. In general, reflection on abstract syntax
trees (ASTs) in Scala can either be applied at compile-time
or run-time (i.e. offline or online improvement respectively).

The historic trend in GI has been offline, but there is an
increasing interest in online improvement of software [16,
17]. Swan et al. introduced the Gen-O-Fix [18] framework
as an embeddable framework supporting dynamic adapta-
tion. Gen-O-Fix uses runtime reflection to perform online
transformations of Scala ASTs. If a modified AST yields
better performance than the original, the mutant source and
object code replaces that of the original system. This func-
tionality is of particular value to ‘always-on’ systems such
as web servers and embedded systems, where the mutants
can be evaluated concurrently with the execution of the live
system.

The compile-time transformation of ASTs in Hylas is
achieved via macros, which differ from the notion of macros
familiar to ‘C’ programmers in that they can make use of all
available type and scope information [19]. A macro is a Scala
function invoked by the compiler that directly transforms
the AST of Scala source code and can therefore be consid-
ered as an open-ended extension of the compilation phase.
Other work in this area that can be considered to augment
compiler capabilities includes that of White [20], who inves-
tigated the ability of GP to provide a ‘gracefully degraded’
tradeoff between functional and non-functional properties in
low-resource systems. Work in compiler augmentation more
closely related to this article is that of Alexander and Grat-
ton [21], who use Grammatical Evolution to evolve Stratego
[22] rewrite rules for Data Movement Optimisation.

3. HYLAS
We now describe the Hylas tool in more detail. As men-

tioned above, the optimising transformations applied by Hy-
las are taken from deforestation techniques originated by
Wadler [8]. The motivation for deforestation arises from the
prevalence of intermediate data structures in functional pro-
gramming. For example, when using the ‘pointfree’ style of
programming to calculate the sum of squares for the first n
integers (1 until n).map( square ).reduce( + ) requires
a list to be generated at each function application. Wadler
presents seven deforestation rules for functional program-
ming [8] which can eliminate such intermediate expression
in a variety of cases.

Hylas is currently able to apply simple deforestation rules
of the forms given in Listing 1. Note that the rules map
transformation-action pairs to transformation-action pairs,
and can thus be applied recursively. The rules preserve
query semantics. Each deforestation rule defined below elim-
inates intermediate data structures: RDDs that are created
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during execution to compute a value and are subsequently
discarded.

Listing 1: Hylas deforestation rules

( rdd f i l t e r f ) f o r each ( x => g ( x ) )
−> rdd . f o r each ( x => i f ( f ( x ) ) g ( x ) )

( rdd map f ) f o r each ( x => g ( x ) )
−> rdd . f o r each ( x => g ( f ( x ) ) )

( rdd map f ) map g
−> rdd map ( x => g ( f ( x ) ) )

( rdd map f ) . count
−> rdd . count

( rdd1 c a r t e s i a n rdd2 ) . count
−> rdd1 . count ∗ rdd2 . count

We now explain the operation of each rule in more detail:

1. (rdd filter f) foreach (x =>g(x))
→ rdd foreach (x =>if(f(x)) g(x)):
The original code creates an intermediate data struc-
ture, containing all the values satisfying some given
predicate f, then performs the given action g on each
value in the intermediate data structure. The trans-
formed code walks the RDD once, executing the action
g only on the values that satisfy f.

2. (rdd map f) foreach (x =>g(x))
→ rdd.foreach(x =>g(f(x))):
The original code creates an intermediate data struc-
ture by applying the function f to each value of the
RDD, then performs the given action g on each value
in the intermediate data structure. The transformed
code walks the RDD once, executing the action g di-
rectly on the value f(x), without creating intermediate
structures.

3. (rdd map f) map g
→ rdd map (x =>g(f(x))):
The original code creates an intermediate data struc-
ture by applying the function f to each value of the
RDD, then applies the function g on each value in the
intermediate data structure. The transformed code
applies the function f ◦ g directly on the values in the
RDD, without creating the intermediate structure.

4. (rdd map f).count
→ rdd.count:
The original code creates an intermediate data struc-
ture by applying the function f to each value of the
RDD, then counts the number of values in the inter-
mediate structure. Since applying a function cannot
change the number of values in the RDD, the trans-
formed code simply returns the number of elements in
the RDD, without applying the function to create the
intermediate structure.

5. (rdd1 cartesian rdd2).count
→ rdd1.count ∗ rdd2.count:
The original code calculates the Cartesian product of
two RDDs, then counts the elements of the product.
The transformed code counts the elements in the prod-
uct directly, without constructing the intermediate data
structure.

The semantics of Spark ensure that the functions that are
removed by the transformation in Rules 4 and 5 have no side
effects.

3.1 Implementation
The end-user demarcates the subsystem to which Hylas

is to be applied by adding the annotation @hylas to a header
(be it an object, class or method header) or an individual
query. The Hylas tool then uses Scala’s pattern matching
facility to find any subtree of the AST which corresponds to
the above rules and applies the associated transformations.
Specifically, Hylas executes the following algorithm:

1. Walk the AST of the annotated object, identifying op-
timisable queries using the available type information.

2. Apply the deforestation rules one-by-one on the iden-
tified queries.

3. Return the “deforested” AST to the compiler.

Note that, apart from this single annotation, Hylas per-
forms without further need of human input. Here we note
that as Hylas works with the Scala compiler directly, all
of the computational overhead is at compile-time. On the
examples tested, the execution of Hylas is nominal when
added to the execution time taken to run each query.

4. PERFORMANCE
The application domain for Hylas was provided by Keysight

Technologies, the sponsors for development. Keysight builds
electronic measurement and design automation solutions for
both frequency and time domains which produce high speed
data streams that must be processed and analysed in real-
time. The instrumentation uses a common set of measure-
ment algorithms that may be deployed to handheld, bench-
top, modular or cloud targets. The aspect of GI for Keysight
is the ability to adapt and deploy to multiple targets whilst
maintaining integrity of measurement. The evaluation con-
text chosen for Hylas was the forensic analysis of network
data for cybersecurity. The line rates associated with net-
work perimeter points are multi-gigabit so the packet traces
are large and are typically analysed in a cloud environment.
The analysis process is typified by repeated and increasingly
complex queries on a large dataset, with the goal of eliminat-
ing false positives in order to focus on the source of malicious
activity.

The test data used in the performance evaluation origi-
nated from the 2013 “Infection Discovery using DNS Data”
challenge of the Los Alamos National Laboratory [23]. The
data consists of several months of DNS server logs, parsed
into human-readable text using the dns_parse tool3.

For performance evaluation purposes, 27 gigabytes of logs
were uploaded to Amazon’s S3 [24] scalable cloud storage
service. Given the security-sensitive nature of the applica-
tion, genuine query data was unavailable and so testing was
performed on 100 different Spark queries generated synthet-
ically by building a chain of RDD transformations and ac-
tions. Hylas was executed on the resulting queries, the
measured execution times, given in seconds, can be seen
in Figure 1.

It can be seen from Figure 1 that the majority of queries
were not significantly affected by Hylas, while 10 queries

3See https://github.com/pflarr/dns parse.

1143



Figure 1: Spark vs Hylas execution times (seconds) for all queries

saw significant and highly improved execution times (sig-
nificance determined via the Mann-Whitney U test with
p = 0.05). All five of the defined deforestation rules applied
at least once in a query that was statistically significantly
improved. Of the 10 queries where a significant improve-
ment was made, this was often due to the application of
deforestation rules 3, 4 and 5 given in Section 3 where se-
quences of maps and Cartesian products that don’t have
to be constructed are present within a query. An exam-
ple query from those tested is given below, where ’linear’
denotes a linear time string transformation, ’quadratic’ a
quadratic time string transformation, and ’intlinear’ and ’in-
tquadratic’ denote integer-to-integer functions of the corre-
sponding asymptotic complexity.

logData1 .map( quadrat i c ) .map( l i n e a r ) .map( x
=> x . length ) .map( i n t l i n e a r ) . c a r t e s i a n (
logData2 ) . count

Transformed to:

return logData1 . count ∗ logData2 . count

For the cases where deforestation rules 1 and 2 were used,
the improvements are not as high but still significant (rang-
ing from 14 times to 180 times relative improvement). An
example query and the transformed version using these two
rules is given below:

logData1 . c a r t e s i a n ( logData2 ) .map( x => x .
t oS t r i ng ) .map( l i n e a r ) . f i l t e r ( x => x .
length > 80) . count

Transformed to:

va l acc = accumulator (0 , ”counter ”)
logData1 . c a r t e s i a n ( logData2 ) . f o r each ( x
=> i f ( l i n e a r ( x . t oS t r i ng ) . length > 80)
acc += 1) return acc . va lue

Table 1 provides descriptive statistics of the run times of
the original Spark and the Hylas optimised variants, with

the corresponding boxplots shown in Figure. 2. The av-
erage improvement was around 993 times, and in 7 of the
10 cases of significant improvement, the improvement was
over 10, 000-fold. The average execution time over the 100
examples tested is also much improved when using Hylas,
taking 4,632.75 seconds compared to 7,572.06 seconds for
the original Spark queries. There is little difference between
the best and worst case queries in terms of execution time,
in these cases it is likely that there is no difference between
the original queries before and after attempting to apply the
deforestation rules.

Table 1: Descriptive statistics for execution time
(seconds)

Spark Hylas
min 74.00 68.00

25%tile 118.75 112.00
median 143.50 128.50
75%ile 16,800.00 673.75

max 42,900.00 42,500.00
average 7,572.06 4,632.75
st. dev. 12,500.00 10,400.00

5. CONCLUSION AND FUTURE WORK
In this paper we have described Hylas, a tool for op-

timising Apache Spark queries through reflection in Scala.
Using a set of rules for deforestation taken from the func-
tional programming literature, a set of semantics-preserving
transformations are applied to each query to eliminate re-
dundant data structures and improve efficiency. The perfor-
mance evaluation shows that this approach can significantly
improve execution times of some queries without adding sig-
nificant compile-time overhead. Unlike many existing ap-
proaches to program improvement, Hylas works automati-
cally, requiring only that the end-user demarcates the sub-
system to be improved by adding a single annotation to the
source code. A possible limitation of this approach is that
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Figure 2: Boxplot for Spark vs Hylas execution
times given in seconds

although the rules are deterministic, there may be some bias
introduced by the order in which the rules are applied.

Future work will focus on extending the set of available
deforestation rules. One possible approach is that of ‘HFu-
sion’ [25], which uses the category-theoretic machinery of
hylomorphisms to automatically deforest Haskell programs.
If the increased set of deforestation rules included program
transformations which conflict with one another, it would
become difficult to exhaustively search all combinations of
program transformations, resulting in a more traditional
search problem as tackled by many existing Genetic Im-
provement techniques.
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