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ABSTRACT
Random recombination in evolutionary algorithms can be
counterproductive in systems that evolve increasing modu-
larity, because such operators do not preserve community
structures during their development. Partly because of this,
methods have been proposed that derandomize recombina-
tion by placing potential crossover locations under evolu-
tionary control. Since crossover is likely to be particularly
useful when genetic material that generates incipient phe-
notype modules is recombined, there may be an advantage
to seeking such modularity directly in the phenotype and
probabilistically focusing recombination at such ”hotspot”
locations. Here we show that such phenotypically-aware
crossover operators can outcompete random or evolved crossover
points as the size of the system being evolved grows. As this
crossover operator can be viewed as epigenetic, and as epi-
genetic processes seem to be common in biological systems,
other such epigenetic mechanisms may further improve fu-
ture evolutionary algorithms.
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1. INTRODUCTION
Modularity is a highly conserved mode for organizing bi-

ological processes across all domains of life, and in evolving
systems it can increase evolvability by allowing modification
to one module without disrupting existing functionality in
other modules (e.g. [4]). Modular systems also allow for the
combination of useful modules from different systems, poten-
tially increasing the usefulness of genetic recombination, as
recombination is most effective when functionally indepen-
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dent modules are crossed between individuals. We propose
that this relationship between modularity and recombina-
tion can be utilized by directly referencing the modularity
of a network’s phenotypic structure during recombination,
using the Q metric for modularity [3]. We introduce the
concept of modularity-guided linkage learning, which uses
network phenotypic structure to guide recombination prob-
abilistically.

2. METHODS
Here we employ an evolutionary algorithm introduced by

[1] for evolving random boolean networks that, when coupled
with an appropriate fitness function and a bias toward sparse
networks, was shown to evolve increasingly fit and modular
Boolean networks without explicitly selecting for modularity
[1]. To this basic algorithm we add one of five crossover
strategies, and compare the relative performances of the five
resulting experiment variants E1 through E5.

In experimental set up E1 we evolve modular networks us-
ing mutation only, with no crossover, following [1] as closely
as possible. Only a few modifications were made to improve
the running time efficiency of the algorithm. In E2, we add a
random crossover strategy. In E3, we limit crossover to the
known point of emerging modularity for fit networks in this
problem. In E4, we evolve crossover probability distributions
in parallel with individual networks, in the style of linkage
learning (e.g. [2]). Each evolving network is thus associated
with an additional evolving vector which probabilistically
determines crossover locations for that network. For the sake
of simplicity, we limit crossover to n possible partitions for
an n× n network, corresponding to splitting the adjacency
matrix of the network horizontally along an i ∈ [1, ..., n−1].
When two adjacency matrices A1 and A2 have been selected
for crossover, their probability distributions are added, the
resulting vector is re-normalized to sum to one, and the
crossover index i is chosen from this probability distribution.
Two child matrices C1 and C2 are produced as A2[i : n−1, :]
appended to A1[0 : i − 1, :] and A1[i : n − 1, :] appended to
A2[0 : i − 1, :], respectively. Finally, in E5, the phenotypic
structure of the network is used to guide crossover using the
Q metric for modularity. The normalized modularity rat-
ings for the n− 1 network partitions P1 = {p1 = {n1}, p2 =
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Table 1: Relative search abilities and modularity scores of the experiments. The comparison e(Ex) < e(Ey)?
indicates a test to determine whether the error of experiment x is significantly lower than experiment y. The
p values resulting from this comparison are reported in column 6. The comparison Q(Ex) < Q(Ey)? indicates
a test to determine whether the modularity of experiment x is significantly higher than experiment y. The p
values resulting from this comparison are reported in column 9. Asterisks indicate statistical significance.

1 2 3 4 5 6 7 8 9

A Crossover Style Nodes Trials Comparison Mean Error p Comparison Mean Q p
B E1 10 60 0.037 0.161
C E2 10 60 e(E2)< e(E1)? 0.026 0.08063 Q(E2)> Q(E1)? 0.176 0.42108
D E3 10 60 e(E3)<e(E2)? 0.009 0.00102* Q(E3)> Q(E2)? 0.252 0.00039*
E E4 10 60 e(E4)<e(E2)? 0.015 0.01974* Q(E4)> Q(E2)? 0.265 0.00005*
F E5 10 60 e(E5)<e(E2)? 0.011 0.00039* Q(E5)> Q(E2)? 0.280 0.00001*
F E5 10 60 e(E5)<e(E4)? 0.011 0.18582 Q(E5)> Q(E4)? 0.280 0.15277
G E4 12 20 0.028 0.316
H E5 12 20 e(E5)<e(E4)? 0.017 0.02541* Q(E5)> Q(E4)? 0.274 0.21429

{n2, . . . , n10}}, P2 = {p1 = {n1, n2}, p2 = {n3, ..., n10}},
. . . Pn−1 = {p1 = {n1, ..., n9}, p2 = {n10}} are computed,
and the resulting (n − 1)-element vectors are employed for
guiding crossover as described for E4.

3. RESULTS AND DISCUSSION
Table 1 reports the relative performance of the five experi-

ments and the relative modularity of the networks produced
by these experiments. We reproduced Espinosa-Soto and
Wagner’s results for emergent modularity for this problem.
Introducing random crossover (E2) did not significantly im-
prove evolvability at this sample size (Table 1, cell C6). Us-
ing fixed crossover (E3) significantly improved evolvability,
with an average difference of 0.017 from random crossover
(Table 1, cell D6). Using evolved crossover hotspots (E4) sig-
nificantly improved evolvability, with an average difference
of 0.011 from random crossover (Table 1, cell E6). Using
modularity-based crossover hotspots (E5) did significantly
improve evolvability, with an average difference of 0.015 from
random crossover (Table 1, cell F6). In larger networks of 12
nodes, using evolved and modularity-based crossover strate-
gies, we found that while both strategies produced similarly
modular networks, the modularity-based strategy (E5) pro-
duced networks of higher fitness in the same number of gen-
erations (Table 1, cell H6). This difference was not observed
in networks of 10 nodes.

E4 and E5 did not yield networks with significantly differ-
ent error or modularity when those networks were composed
of 10 nodes, but E5 did yield significantly lower errors com-
pared to E4 when the two methods were applied to slightly
larger 12-node networks (Table 1, cell H6). This suggests
that modularity-aware crossover may be more scalable than
evolved crossover: indeed the dimensionality of the search
space increases at a faster rate for E4 than for E5 as the
number of nodes in the evolved networks increases.

4. FUTURE WORK
Our work suggests that phenotypic crossover mechanisms

may be fruitful avenues of further research. For the problem
investigated, we found that a modularity-based phenotypic
crossover strategy yielded networks with lower error in the
same number of generations than a similar approach using
random crossover. In addition, this strategy scaled to larger

networks better than a similar strategy that used an evolved
crossover approach.

Phenotypic crossover mechanisms are useful in this prob-
lem, but the model used is somewhat contrived to yield so-
lutions with two highly defined modules [1]. In future work,
we plan to investigate the efficacy of phenotypic recombina-
tion for problem domains in which it is not known whether,
how much, or where modularity may be useful.

We have demonstrated that attention to phenotypic struc-
ture using the Q metric can be helpful in evolutionary al-
gorithms. However, Q can be costly to compute, espe-
cially in larger networks. In future work, we would like
to assess whether the evolutionary advantages granted by
phenotypically-aware crossover outweigh the computational
costs associated with modularity estimation. Additionally,
we would like to use Q to guide the development of crossover
locations periodically for a population, without relying on it
at every crossover occurrence for each individual.
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