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ABSTRACT
Genetic Programming (GP) has been criticized for targeting
irrelevant problems [12], and is also true of the wider ma-
chine learning community [11]. which has become detached
from the source of the data it is using to drive the field for-
ward. However, recently GI provides a fresh perspective on
automated programming. In contrast to GP, GI begins with
existing software, and therefore immediately has the aim of
tackling real software. As evolution is the main approach
to GI to manipulating programs, this connection with real
software should persuade the GP community to confront the
issues around what it originally set out to tackle i.e. evolving
real software.
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1. POSITION
There are a number of impressive examples of GI in the

literature including GenProg, which fixed bugs in real soft-
ware for $8 dollars each [7]. Work by Langdon has showcased
the potential of GI on different domains including gene se-
quencing and vision [5].

The GP community has tackled a number of toy problems
including the even parity problem. With this problem, we
need all n input bits to be able to classify an input sequence
as even or not. If a single bit is missing from the input,
then we cannot solve the problem, as each bit is essential
in determining the class. Another characteristic of the even
parity problem which makes it interesting from a machine
learning perspective is that we cannot use techniques such
as feature selection methods [1]. Nor is there correlation
between input variables [6]. Surely the GP community can
be a little bit more ambitious than solving even parity.

There is one fact about program spaces that is different
to search spaces typically targeted by metaheuristics. With
many problems , the objective function is a direct mapping
between the solution space and objective space. With GP,
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there is an intermediate space between these two spaces. In
GP, programs are assigned fitness values: a program com-
putes a function, which is then assigned a fitness value. The
mapping between program and function depends on the pro-
gramming language being used (i.e. the function set), and
is independent of the function we are trying to compute
(i.e. the function defined by the sample of test cases). The
mapping between functions and error scores is problem de-
pendent, and in fact defines the problem.

Real software habitually contains loops, defined functions
(procedures, methods, macros, routines), and so GI has to
deal with the reality of existing software systems. How-
ever, most of the GP literature is not concerned with Tur-
ing Complete instruction sets. GP has also made less use of
Automatically Defined Functions [3] over the past few years
despite the ability to define functions being so central to
constructing large programs. A review of GP with Turing
Complete instruction sets reveals that programs typically
consist of a small number of loops [14]. In contrast, the vast
majority of GI papers are applied to programs containing
for and while loops, defined functions, and usually have
side effects (e.g. writing to file).

GP has examined sorting, along with other short pro-
grams. Sorting has also been targeted with GI. While short
programs may be interpreted in some senses as toy problems,
they are of interest when included in larger programs that
invoke them many times. Improving a small amount of code
which is executed many times can have a large effect on the
execution time and energy consumption.

We can classify programs into 4 types, depending on how
they are executed. 1) 1-programs, where all nodes in the
syntax tree are executed once (e.g. programs constructed
with a function set f1 {+, -, *, %}). 2) 0-1-programs, where
nodes are either executed once or not (e.g. programs con-
structed with f2 containing logical operators {AND, OR,
NOT}, where short circuiting is used.) 3) n-programs, con-
taining for loops with a determined number of iterations
(bounded). 4) ∞-programs, with while loops with an unde-
termined termination condition (potentially unbounded ).

Broadly speaking, GP concerns the former two types, while
GI the latter two. Adopting a GI approach, which deals with
software, forces us to confront programs that can take vastly
different amounts to time to execute. Of course GP work ex-
ists using Turing Complete instruction sets, and there is no
reason why GI could not be applied to programs consisting
of instruction sets such as f1 or f2. With the first two types,
programs will execute in a comparatively short amount of
time (bound by the size of the program). While with the
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last two types, programs may take a very long time to ter-
minate (possibly not halting). Hyper-heuristics may include
all 4 types, as they usually evolve 1 or 0−1 programs as the
body of a loop in a program [15, 16].

With GP, we have to choose an instruction set, and it is a
trial and error process. However, with GI, we are essentially
provided with the instruction set i.e. the instructions in
the existing program. [2] show that source code is not that
unique, and therefore the existing program(s) is a valuable
source of code for repairs. Alternatively, we can transplant
code from different versions of a program [9].

With GI, we are given the program representation i.e. the
space of syntactically correct programs of the language the
program is written in. At this early stage of GI research,
we do not need to invent new forms of representation, but
should investigate existing ones. In contrast, the GP com-
munity has invented an array of new program representa-
tions though some representations have potentially useful
properties e.g. modularity “come for free” [10]. As there are
already a large number of existing programming paradigms
(imperative, object oriented, functional), it would make sense
to investigate how suitable these are as a representation
which is amenable to search operators. One hypothesis con-
cerning search properties of program representations is that
imperative languages are less suitable for search than func-
tional languages because of side effects [13].

Central to most programming languages, is the data-type
system. GP has made use of types in the past [8]. In the
GI setting, almost all programs will consist of instructions
which operate on different data types, so once again we are
force to confront what is part of normal software engineering
with our automated methods.

The position of this paper is that GI will enrich GP re-
search, as GI forces us to use “the full capabilities of pro-
gramming languages” including loops, data types, reading
and writing to memory, defined functions (macros, proce-
dures, methods). GI is also concerned with potentially large
software systems [4], which have previously been out of reach
of the traditional synthesis approach taken by GP. In con-
clusion, this paper has contrasted GP and GI. Superficially,
the difference is that GI starts with existing software, where
GP attempts to evolve from an empty program. However,
the differences are deeper and more interesting than may
first appear. GI may alleviate the issue of GP being overly
concerned with toy problems.
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