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ABSTRACT
We propose a multi-objective optimization algorithm aimed
at achieving good anytime performance over a wide range
of problems. Performance is assessed in terms of the hyper-
volume metric. The algorithm called HMO-CMA-ES repre-
sents a hybrid of several old and new variants of CMA-ES,
complemented by BOBYQA as a warm start. We bench-
mark HMO-CMA-ES on the recently introduced bi-objective
problem suite of the COCO framework (COmparing Contin-
uous Optimizers), consisting of 55 scalable continuous opti-
mization problems, which is used by the Black-Box Opti-
mization Benchmarking (BBOB) Workshop 2016.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-

mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

Keywords
Benchmarking, Black-box optimization, Bi-objective opti-
mization

1. INTRODUCTION
The design of anytime optimizers is targeted at achieving

good performance for different budgets of computational re-
sources, e.g., ranging from n to 106n function evaluations,
where n denotes the dimension of the search space. At the
same time the black-box optimization paradigm mandates
robustness towards problems with vastly differing character-
istics. In this work, we followed the approach of [7] where
a set of well-performing algorithms was combined to target
different classes of problems to achieve good overall anytime
performance for single-objective optimization. Here the ap-
proach is transferred to multi-objective optimization. This
effort requires a careful selection of algorithm components,
tuning parameters, and combination strategies.
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Figure 1: The aggregated results over all 55 func-
tions for different problem dimensions. See Figure
2 for a more detailed description.

The proposed Hybrid Multi-Objective Covariance Matrix
Adaptation Evolution Strategy (HMO-CMA-ES) consists of
the following components:

• BOBYQA [8] on a scalarized objective function as a
warm start,

• steady-state multi-objective CMA-ES [5] in our version
with increasing population size (ss-MO-CMA-ES),

• our version of CMA-ES with restarts on different scalar-
ized objectives (restart-CMA-ES), and

• generational multi-objective CMA-ES [4] in our ver-
sion with restarts denoted as IPOP-MO-CMA-ES.

The bi-objective problem suite [9] of the COCO frame-
work consists of 55 classes of bi-objective functions fk :
R

n → R
2, k ∈ {1, . . . , 55}, scalable to any input space

dimension n ≥ 2. Common dimensions for evaluation are
n = 5 and n = 20. The bi-objective functions are formed by
combining all 55 combinations of 10 single-objective func-
tions, representing different challenges such as high condi-
tioning number and multi-modality. Five differently param-
eterized instances of each problem are available for bench-
marking, resulting in a total of 275 optimization problems.
HMO-CMA-ES is evaluated on this benchmark suite.
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2. THE HMO-CMA-ES ALGORITHM
In this section we describe the individual components,

their final integration in the HMO-CMA-ES algorithm, and
a rationale for the specific design choices. The source code
is available at https://sites.google.com/site/hmocmaes/.

2.1 BOBYQA as a Warm Start
BOBYQA is a well-known trust-region method by Michael

J. D. Powell [8]. It is well suited for uni-modal problems. It
(more exactly, its unconstrained and less advanced variant
NEWUOA) is a part of the HCMA algorithm for single-
objective optimization [7] that served as inspiration for this
work. Its role in HCMA is to solve simple convex-quadratic
problems at low cost in the initial phase. In the context
of multi-objective optimization we use BOBYQA for a fast
approach of the Pareto front. More specifically, we optimize
a linear aggregation function gα(x) = αf1(x) + (1−α)f2(x)
where f1 and f2 are the components of the bi-criteria ob-
jective function (the two objectives) and α ∈ [0, 1] is an
aggregation coefficient. We start BOBYQA with the initial
solution xinit = 0 in the center of the suggested range for
all biobj-BBOB problems. In order to correct for a possible
mis-scaling of the objectives we normalize the components
of subsequent objective function evaluations:

gα(x) = α
f1(x)

f1(xinit)
+ (1− α)

f2(x)

f2(xinit)

The first run of BOBYQA stops after at most 5n func-
tion evaluations or if BOBYQA’s relative objective func-
tion improvement ratio ftol drops below 10−3. The remain-
ing runs/restarts are launched with different values of α in
the following order: 0.5, 0.0, 1.0, 0.95, 0.9, 0.85, . . . , 0.05, 0.0.
This chain represents a sweep along (convex parts of) the
Pareto front, hence the procedure yields a first rough ap-
proximation of the front. Further restarts are conducted
with a smaller stopping tolerance of ftol = 10−4 to improve
the approximation. We also decrease the radius of the ini-
tial trust-region from 6 (a rather global search in [−5, 5]n)
to 2 (a rather local search) as each restart with a new value
of α is initialized in the best solution of the previous run.
These settings for BOBYQA are designed for budgets of up
to 100n function evaluations. Most of these settings are ir-
relevant for HMO-CMA-ES, where BOBYQA is run only
for 10n function evaluations and hence performs only few
restarts within this very low budget.

2.2 Steady-state MO-CMA-ES with Increas-
ing Population Size

The initial runs of BOBYQA are expected to find a better-
than-random approximates of the Pareto front. We col-
lect all solutions generated by BOBYQA and apply non-
dominated sorting with the hypervolume metric as secondary
sorting criterion [4]. The five best solutions form the initial
population of the steady-state MO-CMA-ES [5], which is
started with an initial step size of σ = 1

2
. The population

size is increased by one every 50n iterations. This mecha-
nism achieves a fast approach and a good coverage of the
Pareto front. A very similar idea was introduced recently
in [1]. In addition we employ a crossover procedure with
probability 10%. It randomly selects two solutions x1 and
x2 and generates an offspring x3 ← x1 + a(x2 − x1) with
blending coefficient a ∼ N ( 1

2
, 1

4
). The offspring inherits the

averaged step-size and covariance matrix from its parents.

2.3 Generational MO-CMA-ES with Restarts
We use a version of generational MO-CMA-ES [4] where

we double the population size (initially set to 10) after each
restart happening every 50n iterations of the algorithm. We
denote it as IPOP-MO-CMA-ES (the idea first appeared
in [6]). The initial step size is set to σ = 2.

2.4 CMA-ES with Restarts
We apply CMA-ES with a new restart variant to a linear

aggregation of the objective function. In each restart, a new
aggregation coefficient α is sampled uniformly from [0, 1].
The first population consists of λ = λmin = 50 individu-
als. At the i-th restart, the population size is sampled as
λ← λmin(λmax/λmin)

b, where b is drawn from a uniform dis-
tribution on [0, 2] and λmax = λmin1.02

i. This proceeding is
inspired by BIPOP-CMA-ES but with a far smaller increase
factor of 1.02 compared to 2 in standard BIPOP-CMA-ES.
We set the maximum number of iterations to 100× 1.02i.

We had initially planned to use multiple BIPOP-CMA-ES
instances [2], each optimizing a different aggregated objec-
tive function. This approach would guarantee very good
performance for large budgets, but the initialization phase
of multiple BIPOP-CMA-ES takes a while and this would
negatively impact the anytime performance of the algorithm.
The above proposal of a restart CMA-ES with random ag-
gregation coefficient α acts as a replacement.

2.5 HMO-CMA-ES
The proposed Hybrid Multi-objective CMA-ES algorithm

is designed to achieve best anytime performance. It has
four phases, with a different set of algorithms running. If
multiple algorithms are active at the same time then they
are running in parallel, in a round-robin fashion.

We start with BOBYQA for the first 10n function evalu-
ations (phase 1). The best solutions of BOBYQA are used
to initialize the ss-MO-CMA-ES. This algorithm runs un-
til 1, 000n function evaluations (phase 2). Then we launch
restart-CMA-ES to run in parallel to ss-MO-CMA-ES (phase 3)
such that the best solution found by each run of restart-
CMA-ES is injected as a candidate solution for the next
iteration of ss-MO-CMA-ES. After 20, 000n function evalu-
ations we also launch IPOP-MO-CMA-ES to run in parallel
to ss-MO-CMA-ES and restart-CMA-ES (phase 4). With a
probability of 10% a random solution from the current pop-
ulation of IPOP-MO-CMA-ES is injected into ss-MO-CMA-
ES. The role of ss-MO-CMA-ES is to fine-tune the hypervol-
ume metric. The three algorithms are running for 400, 000n
function evaluations each, comprising the total budget of
1.2× 106n function evaluations.

3. CPU TIMING
In order to evaluate the CPU timing of the algorithm, we

have run HMO-CMA-ES with restarts on the entire bbob-
biobj test suite for 1000n function evaluations. The C++
code (called from Matlab) was run on one core of Intel(R)
Core(TM) i5-4690 CPU @ 3.50GHz. The time per function
evaluation for dimensions 2, 3, 5, 10 and 20 equals 40, 37,
36, 39, and 51 microseconds, respectively.
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4. RESULTS
Results of HMO-CMA-ES from experiments according to

[3] on the benchmark functions given in [9] are presented in
Figures 1, 2, 3, 4, and 5, and in Table 1.
For each problem instance, the performance of HMO-CMA-

ES is assessed in terms of the hypervolume metric [10] (to
be maximized), the Lebesgue measure of the points that are
a) dominated by at least one objective vector found by the
algorithm, and b) dominate a given reference point. This
hypervolume is assessed relative to a reference value, which
is the dominated hypervolume of a reference Pareto front
consisting of the best known set of objective vectors for this
problem. The task of maximizing the hypervolume is equiv-
alent to minimizing the difference between reference hyper-
volume and achieved hypervolume (to be minimized). The
reference hypervolume defines 58 target values for this differ-
ence, which are multiples of the reference hypervolume with
the factors {−10−4,−10−4.2,−10−4.4,−10−4.6,−10−4.8,
−10−5, 0, 10−5, 10−4.9, . . . , 100}. All results are reported in
terms of the fraction of reached target values. This normal-
ization makes the results roughly comparable across different
problem types.
Hence, if an algorithm finds a non-dominated front of ex-

actly the same quality as the best known, then it reaches 52
out of 58 targets (including 0). This corresponds to roughly
0.9 ≈ 52

58
on the vertical axis of the plots used in this paper,

i.e., a curve stopping at around 0.9 suggest that the best
known approximation was reached. In most cases, the best
known approximation provided by the biobj-BBOB 2016 is
very close to the true best value of the Pareto front and thus
0.9 is about the maximum possible value one can reach. This
is often the case on uni-modal functions. However, on some
multi-modal functions (i.e., when at least one of the objec-
tives is multi-modal) the current best approximation can be
further improved and thus an algorithm can reach targets
with negative factors corresponding to better hypervolume
values than the reference of biobj-BBOB 2016. Indeed, the
introduction of negative targets was motivated by the fact
that the current known approximations are not the best pos-
sible ones in some cases.
Figure 1 shows the aggregated results over all 55 functions

for search space dimension n = 2, 3, 5, 10, 20. The saturation
at a value of 0.9 can be well observed on 2-dimensional prob-
lems, where the best known hypervolume values are indeed
very close to the optimal ones. In this case, HMO-CMA-ES
solves most of the problems after about 105n function eval-
uations, from where on the curves stagnate. The problems
become harder with n, hence more function evaluations are
typically needed to reach a similar average performance.
Table 1 shows the average runtime to reach given targets

on 5- and 20-dimensional problems. Figures 2, 3, 4 show
the empirical cumulative distribution of simulated (boot-
strapped) runtimes [3] for all 55 functions and all consid-
ered problem dimensions. Some functions can be associated
with a much higher variance in the results and with a faster
than linear growth of the complexity w.r.t. n. This is of-
ten the case for multi-modal functions, but sometimes also
appears for ill-conditioned problems. On some (often 20-
dimensional) problems the best known hypervolume value
can be improved, this happens when the curve crosses the
value of about 0.9.

5. CONCLUSION
We have presented a hybrid algorithm for multi-objective

optimization, combining of a number of well-performing com-
ponents for single- and multi-objective optimization. We
showed that the proposed algorithm can solve almost all
biobj-BBOB problems. When large computational budgets
are considered it finds high quality solution sets for nearly all
combinations of problem type and search space dimension.
We attribute this robustness to the combination of different
optimizer components into a hybrid algorithm. The perfor-
mance relative to other multi-objective algorithms will be
known as soon as the results of the biobj-BBOB 2016 edi-
tion are available.

The algorithm has a set of hyperparameters, mostly start
and stop times (iteration numbers) encoded as multiples of
n. Better tuning of these would most probably improve its
performance. It may be possible to replace some of the hard
numbers with adaptive stopping criteria.

The algorithm can be outperformed on some functions
even by its own individual components (the price of hy-
bridization) or when a particular computational budget is
considered (the price for its good anytime performance). It
should be possible to considerably reduce these effects with
online prioritization of individual components depending on
their relative performance. However, this step is left for fu-
ture work.
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5-D
∆f 1e+0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f1 1 76(34) 622(166) 3680(266) 38122(1604) 6.1e5(9e5) 5/5

f2 3.0(2) 137(23) 675(224) 3282(1538) 37044(13668) 3.0e5(1e5) 5/5

f3 1 92(92) 706(298) 5848(4912) 44638(31038) 3.0e5(2e5) 5/5

f4 1 105(26) 573(237) 2722(1446) 30360(7352) 3.0e5(81053) 5/5

f5 1 107(26) 1246(393) 26575(38218) 1.2e5(1e5) 6.8e5(3e5) 5/5

f6 1 55(20) 698(424) 3951(1096) 47723(10868)2.9e5(52016) 5/5

f7 1 698(588) 1.1e5(1e5) 4.9e6(1e7) ∞ ∞5.8e6 0/5

f8 2.8(2) 2622(4735) 1.7e5(2e5) 2.0e6(2e6) 2.7e7(2e7) ∞5.8e6 0/5

f9 1 104(67) 525(135) 2004(377) 20926(604) 4.4e5(3e5) 5/5

f10 1 390(492) 46136(82956) 1.2e5(1e5) 1.6e5(1e5) 4.1e5(35852) 5/5

f11 1 56(37) 519(598) 9095(14876) 1.3e5(1e5) 9.7e5(2e5) 5/5

f12 1 53(46) 584(943) 6412(6691) 28731(51373) 1.6e5(2e5) 5/5

f13 2.0(2) 26(22) 300(608) 3749(4303) 26314(44084)86884(1e5) 5/5

f14 1 283(244) 2094(1206) 15271(4918) 1.3e5(35230) 3.9e5(3e5) 5/5

f15 4.8(5) 101(55) 874(538) 6392(3528) 51584(21449) 3.1e5(1e5) 5/5

f16 1 3283(7912) 98937(1e5) 5.1e6(7e6) 2.6e7(2e7) 2.6e7(3e7) 1/5

f1748(110) 8237(7601) 1.1e5(42161) 3.0e6(4e6) 2.5e7(2e7) 2.7e7(4e7) 1/5

f18 1 62(74) 881(1333) 7694(9780) 1.2e5(89543) 2.0e6(5e6) 4/5

f19 4.8(4) 1449(2646) 51687(51038) 1.5e5(1e5) 2.7e5(5e5) 1.9e6(2e6) 4/5

f20 2.0(2) 43(46) 587(512) 5553(5173) 33785(32218) 2.4e5(1e5) 5/5

f21 1 149(130) 13829(33339)34787(77474)60168(78548)2.2e5(81198) 5/5

f22 1 95(26) 1275(457) 9521(1078) 75476(13788) 3.9e5(2e5) 5/5

f23 1 61(35) 662(132) 3948(1621) 38675(19852)2.8e5(76170) 5/5

f24 2.2(3) 536(113) 1.3e5(25555) 3.4e6(1e6) ∞ ∞5.8e6 0/5

f25 2.4(4) 10730(11800) 1.3e5(1e5) 2.2e6(2e6) 1.2e7(3e7) 2.6e7(3e7) 1/5

f26 2.4(4) 102(141) 537(452) 1672(682) 3.8e5(8e5) 4.1e6(4e6) 3/5

f27 1 2443(2837) 83976(59564) 1.9e5(1e5) 3.2e5(2e5) 7.4e5(7e5) 5/5

f28 1 24(5) 152(98) 1177(514) 90425(1e5) 1.5e6(1e6) 5/5

f29 1 84(63) 1774(1312) 16753(12980)1.3e5(49966) 4.3e5(1e5) 5/5

f30 1 34(9) 476(330) 2851(1191) 86136(84655) 4.0e5(6e5) 5/5

f31 1 1371(2668) 67643(66756) 3.0e6(4e6) 2.8e7(2e7) ∞5.9e6 0/5

f32 2.4(4) 5032(7620) 93375(55990) 2.0e6(2e6) 1.3e7(9e6) 2.9e7(4e7) 1/5

f33 2.0(1) 11(4) 70(54) 491(297) 3.6e5(8e5) 5.2e6(9e6) 3/5

f34 1 222(192) 43144(54731) 2.5e5(1e5) 2.9e5(63528) 8.2e5(1e6) 5/5

f35 1 102(34) 2666(2738) 55515(71183) 3.5e5(3e5) 1.5e6(1e5) 5/5

f36 1 279(208) 7123(14276)40761(37216) 1.3e5(1e5) 4.8e5(89917) 5/5

f37 1 932(310) 1.7e5(1e5) 3.3e6(2e6) 2.7e7(3e7) ∞5.9e6 0/5

f38 1 27778(51968) 3.1e5(2e5) 1.2e7(1e7) ∞ ∞5.9e6 0/5

f39 1 213(156) 1043(318) 89093(1e5) 2.6e5(3e5) 7.0e5(5e5) 5/5

f40 1 1505(406) 18105(35332) 1.8e5(2e5) 3.7e5(2e5) 1.6e6(1e6) 5/5

f41 1 38(35) 633(170) 5997(4212) 42241(10062) 2.6e5(1e5) 5/5

f42 1 648(629) 2.4e5(4e5) 4.8e6(3e6) ∞ ∞5.9e6 0/5

f43 1.8 25272(30125) 2.0e5(2e5) 4.9e6(6e6) 2.6e7(2e7) 2.7e7(5e7) 1/5

f44 1 51(19) 540(256) 1733(445) 36645(48512) 9.6e5(5e5) 5/5

f45 1 256(124) 56060(55916)1.3e5(97388) 1.8e5(1e5) 4.3e5(1e5) 5/5

f46 1 14236(2722) 4.7e5(4e5) ∞ ∞ ∞6.0e6 0/5

f47 1 14416(11142) 2.7e5(2e5) 6.4e6(5e6) 2.7e7(1e7) 2.8e7(2e7) 1/5

f48 1 11373(24814)95569(1e5) 1.0e6(9e5) 9.7e6(9e6) 1.1e7(2e7) 2/5

f49 1 2650(3412) 1.8e5(74726) 5.9e5(3e5) 1.2e7(2e7) 2.7e7(4e7) 1/5

f50 1 11162(8061) 1.6e5(30361) 2.9e6(5e6) ∞ ∞5.9e6 0/5

f51 1 7873(13724) 1.6e5(1e5) 4.8e6(4e6) 2.7e7(5e7) 2.7e7(3e7) 1/5

f52 1 10582(4914) 1.5e5(44882) 3.6e6(4e6) 1.3e7(2e7) ∞5.8e6 0/5

f53 2.4(2) 16(18) 50(22) 38574(96032)88948(1e5) 2.3e6(3e6) 4/5

f54 1 89(138) 44791(18158)1.3e5(78937) 1.5e5(1e5) 2.6e5(80522) 5/5

f55 1.2(0.5)16706(14289)1.3e5(81033) 1.7e5(81270) 2.4e5(2e5) 3.1e5(2e5) 5/5

20-D
∆f 1e+0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f1 1 173(38) 1414(178) 8267(967) 76089(4616) 3.9e5(21373) 5/5

f2 1 176(75) 2284(1026)23672(7342) 2.7e5(60898) 3.1e6(2e6) 5/5

f3 1 271(222) 2628(847) 11178(2880) 88645(22800)4.6e5(84986) 5/5

f4 1 175(78) 1537(453) 9688(1253) 92783(17732) 9.8e5(5e5) 5/5

f5 1 229(28) 2991(297) 30127(9511) 1.9e5(21931)8.0e5(49360) 5/5

f6 1 288(125) 2139(457) 13912(1583) 1.2e5(15284)5.6e5(58583) 5/5

f7 1 15922(35563)4.7e5(5e5) 1.5e7(9e6) 3.3e7(3e7) 1.1e8(2e8) 1/5

f8 1 40384(34773)1.4e6(2e6) 1.4e7(2e7) 1.9e7(7e6) 1.9e7(2e7) 4/5

f9 1 163(46) 1720(559) 6034(1274) 47190(4944) 5.7e5(2e5) 5/5

f101 634(472) 2.3e5(3e5) 7.3e5(8e5) 9.3e5(7e5) 1.3e6(7e5) 5/5

f111 258(244) 3511(3284)1.1e5(49142) 3.2e6(2e6) 1.8e7(2e7) 4/5

f121 139(46) 1524(1349)11420(11915) 1.4e5(1e5) 1.9e6(2e6) 5/5

f131 175(72) 1419(678) 23144(12096) 9.8e6(2e7) 4.6e7(3e7) 2/5

f141 229(171) 6010(2231)53814(7210) 4.7e5(3e5) 2.2e6(1e6) 5/5

f151 173(56) 1775(431) 13552(1835) 2.3e5(92055) 1.0e7(1e7) 4/5

f161 31269(10436)5.4e5(6e5) 5.1e6(4e6) 1.4e7(3e7) 1.4e7(1e7) 4/5

f171 48714(39244)6.0e5(6e5) 4.9e6(4e6) 1.5e7(2e7) 1.6e7(1e7) 4/5

f181 164(26) 1567(610) 17826(14184) 5.3e5(5e5) 4.4e6(2e6) 5/5

f191 6392(7100) 2.5e6(6e6) 7.4e6(1e7) 8.2e6(1e7) 1.1e7(1e7) 4/5

f201 145(98) 2113(2334) 9529(6937) 40822(7234) 4.8e5(67012) 5/5

f211 339(192) 1886(2756) 9899(12090) 6.0e6(2e7) 6.9e6(1e6) 4/5

f221 236(58) 3727(548) 16569(1849) 1.5e5(9730) 5.9e5(3e5) 5/5

f231 236(98) 2311(392) 13117(9686) 94667(34764) 6.2e5(2e5) 5/5

f241 15684(21238)6.6e5(1e6) 7.7e6(5e6) 2.7e7(2e7) 4.3e7(4e7) 2/5

f251 49579(76506)6.9e5(6e5) 7.1e6(4e6) 1.0e7(3e6) 1.1e7(5e6) 5/5

f261 107(112) 766(844) 2602(2672) 1.9e5(4e5) 8.0e6(2e7) 4/5

f271 2.1e5(5e5) 1.5e6(2e6) 5.4e6(1e7) 7.3e6(1e7) 8.0e6(2e7) 4/5

f281 56(34) 353(140) 7009(4906) 2.9e5(4e5) 1.0e7(2e7) 4/5

f291 407(139) 4107(679) 28043(7530) 2.1e5(67076) 1.4e6(9e5) 5/5

f301 117(32) 1880(765) 11138(4587) 1.7e5(21871) 8.2e6(8e6) 4/5

f311 28458(8210) 4.6e5(3e5) 1.8e7(2e7) 2.5e7(2e7) 4.0e7(4e7) 2/5

f321 32778(26356)4.7e5(3e5) 6.7e6(2e6) 1.6e7(5e6) 2.1e7(1e7) 4/5

f331 29(7) 212(16) 3520(1434) 5.7e5(5e5) 1.7e7(1e7) 4/5

f341 540(132) 7.5e6(1e7) 9.3e6(1e7) 9.6e6(8e6) 2.1e7(3e7) 3/5

f351 410(162) 4748(1141)41160(7250) 2.4e5(79726) 7.7e5(5e5) 5/5

f361 569(432) 4542(1043)34402(10079) 2.8e5(2e5) 1.5e6(9e5) 5/5

f371 7210(6640) 4.7e5(2e5) 1.1e7(8e6) 1.0e8(1e8) 1.0e8(2e8) 1/5

f381 84291(79832)1.5e6(8e5) 1.1e7(5e6) 2.7e7(3e7) 2.7e7(2e7) 3/5

f391 488(352) 4413(1268)27408(5738) 1.6e5(23793) 9.1e5(4e5) 5/5

f401 42097(62640)6.4e6(6e6) 1.7e7(3e7) 1.7e7(2e7) 1.7e7(2e7) 3/5

f411 285(276) 2579(846) 16752(8787) 1.2e5(37074) 6.3e5(4e5) 5/5

f421 48328(55502)2.9e6(3e6) 4.3e7(2e7) 4.6e7(4e7) 4.6e7(4e7) 2/5

f431 96614(73918)2.0e6(1e6) 1.2e7(4e6) 2.2e7(6e6) 2.3e7(2e7) 4/5

f441 171(74) 1490(414) 6162(1838) 40596(16886) 7.4e5(5e5) 5/5

f451 54016(88648)1.4e6(2e6) 1.0e7(1e7) 2.1e7(2e7) 2.1e7(3e7) 3/5

f461 48335(13908)7.4e5(3e5) 1.2e7(1e7) 1.7e7(1e7) 1.9e7(2e7) 4/5

f471 60949(16417)1.1e6(7e5) 7.2e6(6e6) 8.7e6(7e6) 9.2e6(7e6) 5/5

f481 37048(18562)3.8e5(2e5) 6.9e6(3e6) 2.4e7(3e7) 2.5e7(2e7) 3/5

f491 2.5e5(2e5) 1.9e7(3e7) ∞ ∞ ∞2.3e7 0/5

f501 71298(61799)6.3e5(2e5) 5.0e6(2e6) 7.3e6(4e6) 7.4e6(4e6) 5/5

f511 46809(1020) 7.1e5(5e5) 6.4e6(4e6) 1.5e7(1e7) 1.6e7(3e7) 4/5

f521 87993(60134)4.4e6(2e6) 2.6e7(3e7) 2.7e7(3e7) 2.7e7(5e7) 3/5

f531 29(6) 160(28) 1905(795) 17127(20882) 1.9e7(5e7) 3/5

f541 5005(5867) 7.4e5(8e5) 1.5e7(3e7) 2.2e7(2e7) 4.2e7(4e7) 2/5

f551 2.3e5(3e5) 6.4e6(1e7) 7.0e6(1e7) 7.1e6(1e7) 7.1e6(6e6) 4/5

Table 1: Average runtime (aRT) to reach given targets, measured in number of function evaluations. For each function, the aRT and, in braces as
dispersion measure, the half difference between 10 and 90%-tile of (bootstrapped) runtimes is shown for the different target ∆f-values as shown
in the top row. #succ is the number of trials that reached the last target HVref + 10−5. The median number of conducted function evaluations
is additionally given in italics, if the target in the last column was never reached.
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Figure 2: Empirical cumulative distribution of simulated (bootstrapped) runtimes in number of ob-
jective function evaluations divided by dimension (FEvals/DIM) for the 58 targets {−10−4,−10−4.2,
−10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} for functions f1 to f16 and all dimensions.

[10] T. Wagner, N. Beume, and B. Naujoks. Pareto-,
aggregation-, and indicator-based methods in
many-objective optimization. In Evolutionary

multi-criterion optimization, pages 742–756. Springer,
2007.
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Figure 3: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of
objective function evaluations, divided by dimension (FEvals/DIM) for the targets as given in Fig. 2 for
functions f17 to f36 and all dimensions.
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Figure 4: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of
objective function evaluations, divided by dimension (FEvals/DIM) for the targets as given in Fig. 2 for
functions f37 to f55 and all dimensions.
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separable-separable separable-moderate separable-ill-cond. separable-multimodal

separable-weakstructure moderate-moderate moderate-ill-cond. moderate-multimodal

moderate-weakstructure ill-cond.-ill-cond. ill-cond.-multimodal ill-cond.-weakstructure

multimodal-multimodal multimodal-weakstructure weakstructure-weakstructure all 55 functions

Figure 5: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number
of objective function evaluations, divided by dimension (FEvals/DIM) for the 58 targets {−10−4,−10−4.2,
−10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} for all function groups and all dimensions.
The aggregation over all 55 functions is shown in the last plot.
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