
Hypervolume-Based DIRECT for Multi-Objective
Optimisation

Cheryl Wong Sze Yin
School of Computer Science

and Engineering
Nanyang Technological

University
Singapore 639798

cwong019@e.ntu.edu.sg

Abdullah Al-Dujaili
School of Computer Science

and Engineering
Nanyang Technological

University
Singapore 639798

aldujail001@e.ntu.edu.sg

S. Suresh
School of Computer Science

and Engineering
Nanyang Technological

University
Singapore 639798

ssundaram@ntu.edu.sg

ABSTRACT
DIRECT is a deterministic optimization algorithm based on
the ”divide-and-conquer” paradigm. It looks for optimal so-
lutions by systematic sampling of the feasible decision space
in the form of partitioning hyperrectangles. DIRECT has
previously been extended to solve black-box multi-objective
problems in its pure form in MO-DIRECT and in combination
with multi-objective genetic algorithms in NS-DIRECT-GA. In
this paper, we examine the two multi-objective variants of
the algorithm in terms of diversification (well spread), explo-
ration (global search) and exploitation (local search). Fur-
thermore, motivated by the experimental success of indicator-
based methods, we provide a hypervolume-based multi- ob-
jective DIRECT, which we refer to as MO-DIRECT-hv. Through
the use of the hypervolume indicator, we seek to enhance
the diversification of its search through selecting potentially
optimal hyperrectangles with higher hypervolume contribu-
tion, whilst preserving the exploratory and exploitation bal-
ance of the algorithm. To validate the efficacy of the pro-
posed strategy, we compare the performance of the three
variants on 55 bi-objective problems from the COCO plat-
form. The results indicate MO-DIRECT-hv performs better
than other variants due to diversified sampling.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

Keywords
Benchmarking, Black-box optimization, Bi-objective opti-
mization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931702

1. INTRODUCTION
Multi-objective optimization is a recurrent topic of inter-

est as many engineering problems (e.g., [2, 4]) can be mod-
eled as Multi-objective Optimization Problems (MOPs). Due
to the often conflicting objectives, MOPs have a set of opti-
mal solutions instead of a single solution because one cannot
conclude if solution 1 is better or worse off than solution 2, if
solution 1 has a higher value in objective 1 and lower value in
objective 2 compared to solution 2. The ultimate best solu-
tion is dependent on the preference of the user. Hence, many
multi-objective optimization algorithms aim to find the set
of optimal solutions, which is also known as the Pareto op-
timal set.

Population-based algorithms such as NSGA-II [7], MOPSO

[6] are widely-used to solve MOPs because they are able
to provide multiple solutions in a single run. These algo-
rithms generally search for solutions based on the concept
of Pareto-dominance and a measure of distance between so-
lutions. However, these methods are not deterministic and
highly dependent on the initial set of solutions.
DIRECT [13], on the other hand, is an established deter-

ministic algorithm for single objective problems. It divides
the feasible solution space in the form of hyperrectangles
and searches for the optimal solution through: point-wise
evaluation of the objective function at the centers of hy-
perrectangles and further decomposition of potentially op-
timal hyperrectangles. DIRECT is primarily exploratory in
its search and studies have shown that it may behave as an
exhaustive grid search [8].

In the recent years, several researchers attempted to adapt
DIRECT in solving MOPs. Till today, to our knowledge, there
are two different extensions of DIRECT, namely MO-DIRECT [1]
and NS-DIRECT-GA [15]. MO-DIRECT is purely inspired by the
basic DIRECT algorithm [13]. It involves decomposing the so-
lution space, in the form of hyperrectangles. The objectives
are evaluated at the center of hyperrectangles. The hyper-
rectangles are then further decomposed into smaller hyper-
rectangles based on values of the different objectives and
the size of the hyperrectangle. NS-DIRECT-GA [15], on the
other hand, is a combination of DIRECT and multi-objective
genetic algorithm (MOGA). In this case, DIRECT is used to
generate the population used in MOGA. After which, the
MOGA is applied to find the optimal solution. After an op-
timal solution is found, it would be located in the solution
space of DIRECT. DIRECT would then divide the hyperrectan-
gles from its initial stage before MOGA is applied until the

1201

optimal solution is the center of a hyperrectangle, exploring
the area around the optimal solution.

With the growing number of emerging algorithms for MOPs,
a platform for comparison had to be established. Several
quality indicators for performance assessment and compar-
sion have been proposed [16]; among these metrics is the
hypervolume indicator, which—soon after its introduction—
has been implemented as a selection operator in multi-objective
solvers (e.g., [3]). Many evolutionary algorithms have been
modified to use the hypervolume indicator as a selection tool
for the next potentially optimal point to explore [9, 12] and
witnessed an experimental success. Studies have also shown
hypervolume indicator based algorithms can achieve a good
approximation for an exponentially large Pareto front [5].

In this paper, we propose using the hypervolume indicator
as a criterion for DIRECT to enhance its ability in recognizing
a well-spread set of Pareto optimal solutions maintaining a
balance among the diversification (well spread), exploration
(global search), and exploitation (local search) aspects of its
search. The performance of MO-DIRECT-hv is evaluated on
55 bi-objective problems in COCO platform. The results are
compared with MO-DIRECT of two strategies, Rank and ND.

The rest of the paper is organized as follows. Section
2 provides the background on MO-DIRECT and explains the
theory behind the different strategies in selecting potentially
optimal hyperrectangles. Section 3 describes the proposed
algorithm MO-DIRECT-hv. Section 4 gives the CPU timing
for the experiment on the biobjective test suite. Section 5
analyzes the results generated from the experiment. Sec-
tion 6 provides a conclusion and some suggestions for future
work.

2. BACKGROUND ON MO-DIRECT
Section 2.1 first explains the paritioning procedure of hy-

perrectangles used in MO-DIRECT. Then, Section 2.2 provides
the formal algorithm of MO-DIRECT and two strategies in se-
lecting potentially optimal hyperrectangles. Section 2.3 then
reviews these strategies and proposes a new strategy using
the hypervolume indicator.

2.1 Partitioning Procedure
MO-DIRECT starts with the whole solution space as a single

hyperrectangle, sampling the point in the centre. Then, it
follows a unique partitioning procedure to split the solution
space into smaller hyperrectangles. MO-DIRECT first samples
2 points in each dimension of the problem such that the 3
points (including the initial center point) in each dimension
is equally spread out. After all the points are sampled, the
algorithm divides the solution space equally into one-thirds
one dimension at a time, starting with the dimension with
the lowest value of

wj =
1

mink∈{1,−1} ∣∣f(ci + k ⋅ δ ⋅ ej) − f(ci)∣∣
, (1)

and continue to the dimension with the highest wj .
In other words, a hyperrectangle is divided such that the

biggest produced hyperrectangles contain the distant solu-
tions from that of the hyperrectangle, increasing the likeli-
hood of visiting unexplored regions of the function space.

2.2 MO-DIRECT Framework
The framework of MO-DIRECT follows the process of select-

ing potentially optimal hyperrectangles and dividing them

into smaller hyperrectangles using the partitioning proce-
dure in Section 2.1. In literature, two general strategies were
followed in seeking potentially optimal hyperrectangles.

2.2.1 The Rank Strategy
The Rank strategy employs rank and size of the hyper-

rectangle to choose potentially optimal hyperrectangles. NS-
DIRECT-GA [15] previously proposed using rank and crowding
distance in choosing potentially optimal hyperrectangles. In
this paper, for the sake of simplicity, we only use rank as an
indicator and assumed the value of ε used in [15] to be 0,
which lead to the following

I = ND({(ranki, σi) ∶ i ∈ H , σi ≥ σt}) , (2)

where (ranki, σi) is the 2-dimensional vector of hyperrect-
angle i ∈ H on the rankith front and of size σi. ND(⋅) is
an operator on a set of vectors A such that ND(A) is the
set of non-dominated vectors in A. σt is the minimum size,
a hyperrectangle can have, to be considered for potential
optimality.

Hyperrectangles’ ranks are obtained from the process of
non-dominated sorting. A non-dominated solution is one
that is at least equal in all objectives and better in at least 1
objective when compared to any other solution in the pool of
solutions. After all the non-dominated solutions are found,
they are removed from the pool of solutions and given a rank
of 1. The new pool of solutions would go through the same
process and the following non-dominated solutions would
be given a rank of 2. This process would go on until all the
solutions are ranked. This allows us quantify the quality of
solutions using a ranking system.

rank = nondominatedsort({f(ci) ∶ i ∈ H }) (3)

where rank is the ∣H∣-vector of the ranks of m-dimensional
vectors, f(ci), ∀i ∈ H of center ci, and m is the number of
objectives.

2.2.2 The ND Strategy
This ND strategy uses the combination of the non-dominated

front and size of the hyperrectangle to choose potentially op-
timal hyperrectangles for division.

I = ND({(f(ci), σi) ∶ i ∈ H , σi ≥ σt}) , (4)

where (f(ci), σi) is the (m+1)-dimensional vector of hyper-
rectangle i ∈ H of center ci and size σi.

2.3 Examination of MO-DIRECT Strategies
In this section, both of the strategies for selecting the

potentially optimal hyperrectangles, namely ND and Rank

are analyzed. Furthermore, motivated by the success of
indicator-based search algorithms, we adapt the indicator-
based approach as an alternative strategy to choose poten-
tially optimal hyperrectangles and highlight its advantages
over the former ones.

Figure 1 illustrates how the strategies ND, Rank and the
new strategy HV would be choosing potentially optimal hy-
perectangles based on the given function space. From Figure
1, one can see a significant difference between ND and Rank

in the number of potentially optimal hyperrectangles cho-
sen (the white rectangles), with ND choosing 11 points and
Rank choosing only 3 points. In particular, the number of
chosen points from the non-dominated front: Rank chooses

1202

Algorithm 1: MO-DIRECT

Input : vectorial function to be minimized f ,
search space X ,
evaluation budget v,
hyprrectangle threshold σt

Initialization: H1 = {X}
Output : approximation set of minx∈X f(x), Yv

∗

1 while evaluation budget v is not exhausted do
2 Evaluate all the new hyperrectangles ∈ Ht.
3 Choose potentially optimal hyperrectangles using

Eq. (4) or Eq. (2).
4 Partition the hyperrectangles in It according to the

procedure outlined in Section 2.1 using Eq. (1).
5 Ht+1 ←Ht ∖ It ∪ {It’s newly generated

hyperrectangles}
6 t← t + 1

7 return ND({f(ci)}i∈Ht)

only one hyperrectangle with the biggest size on the non-
dominated front while ND chooses all the hyperrectangles (7
hyperrectangles) on the non-dominated front. Given a cer-
tain evaluation budget, choosing all the hyperrectangles on
the non-dominated front demonstrates excessive sampling
leading to inefficient use of function evaluations. On the
other hand, choosing only one point on the non-dominated
front with the biggest size could allow one to miss out on
choosing the most potentially optimal hyperrectangle. This
is illustrated in Figure 1, where the most potentially optimal
hyperrectangle (4) is not chosen for division. Furthermore,
the strategy Rank is likely to have a slow convergence to the
optimal Pareto front.

In order to preserve the exploration and diversification na-
ture of using the ND strategy and at the same time reduce in-
efficient sampling, there has to be a reduction of potentially
optimal hyperrectangles chosen on the non-dominated front.
From the perspective of Rank, more potentially optimal hy-
perrectangles need to be chosen for a faster convergence to
the optimal Pareto front. In order to find a balance between
the two extremes from choosing one and all the hyperrectan-
gles on the non-dominated front, we propose the use of the
hypervolume indicator to selectively choose the potentially
optimal hyperrectangles. The hypervolume indicator is able
to provide the hypervolume contribution of each point in
the objective space. If a point is in an unexplored region
on the non-dominated front, it has a high hypervolume con-
tribution. However, if a point is not on the non-dominated
front, it has zero hypervolume. In other words, the hypervol-
ume indicator is able to identify relatively more potentially
optimal points based on the concept of diversification on
the non-dominated front. From Figure 1, we can observe
the process of choosing potentially optimal hyperrectangles
using the hypervolume indicator. Hyperrectangles on the
non-dominated front are carefully selected while only one
hyperrectangle with the largest size is chosen on the dom-
inated fronts. Hence, this new hypervolume strategy helps
to perform diversified sampling on the non-dominated front
while sacrificing some exploration on the dominated fronts.

3. HYPERVOLUME-BASED MO-DIRECT
Motivated by the aforementioned discussion, in this sec-

tion, we introduce the use of hypervolume indicator to help
in a more diversified sampling.

3.1 From Non-dominated Front to Hypervol-
ume Indicator

The equation below illustrates how potentially optimal
hyperrectangles are identified using the hypervolume indi-
cator.

I = ND({(−hvi, σi) ∶ i ∈ P}) , (5)

where (−hvi, σi) replaces (f(ci), σi) in Equation (4) of the
ND strategy as the 2-dimensional vector of hyperrectangle
i ∈ P with hypervolume contribution hvi and size σi. ND(⋅)
is as previously defined in Section 2.2.1. To be consistent
with the minimization settings of ND(⋅), a negative sign is
added in front of the hypervolume indicator to identify the
hyperrectangles with the highest hypervolume.

3.2 Generating the Hypervolume contribution
The algorithm first identifies the non-dominated front of

the set of hyperrectangles that are considered for potential
optimality.

P = ND({f(ci) ∶ i ∈ H , σi ≥ σt}) , (6)

where P is the set of hyperrectangles on the non-dominated
front. The rest of the notations are as in Section 2.2.1.
After the non-dominated front is found, the hypervolume
contribution of every point on the non-dominated front is
calculated.

hv = hypervolume({f(ci) ∶ i ∈ P }) (7)

where hv is the ∣P∣-vector consisting of the individual hyper-
volume contribution of each point i on the non-dominated
front, hypervolume(⋅) is an operator on a set of vectors A
such that hypervolume(A) returns the hypervolume contri-
bution of each point in A. Only hyperrectangles in the non-
dominated front P is considered because hyperrectangles in
the dominated front would return a value of zero.

3.3 Visiting Unexplored Area in the Solution
Space

The hypervolume indicator focuses on diversifying the se-
lection of hyperrectangles on the non-dominated front, while
selecting only a single point on the dominated fronts. This
in turn reduces the exploratory nature of MO-DIRECT, leav-
ing some areas in the solution space unexplored. In MOPs,
the points on the Pareto front in objective space does not
necessarily occur in the same area but often as clusters in dif-
ferent areas of the solution space. Therefore, a global search
to identify potentially optimal hyperrectangles is required
when such a situation occur. In other words, a global search
is necessary when the algorithm is stuck in a local optimal
Pareto set or a part of the global Pareto front.

To illustrate this idea, let us go back to Figure 1. Figure
1 shows the approximate Pareto front being divided into
three groups, points 1,2,3, point 4 and points 5,6,7. From
this, we may deduce that these three groups of points belong
to different areas in the solution space. Let us assume that
we have found only the points 1, 2, 3, 5, 6, and 7; using the
hypervolume indicator would keep us selecting points 3 and
5 as potentially optimal hyperrectangles. This is because
the hypervolume indicator aims to diversify the solutions on
the Pareto front, hoping to find point 4. However, we might

1203

(a) Function Space (b) The Rank Strategy (c) The ND Strategy (d) The HV Strategy

123

4

5
67

8
9
10

11

12

13

14

15

f1

f2

1 23 4

56
◻7

8 9 10 ◻1415

11 12 ◻13
rank

size

1

2

3

4

2

4

2
4

123
4

5
6

7

8
9 10

11 12 13

14
15

f1 f2

si
z
e

1

2

3

◻4

5
6

◻
7

8

9

10

11 12

15 14
◻13

HV

size

Figure 1: Visualization of sampling strategies in MO-DIRECT for the points whose objective vectors are shown
(a). In each of the strategies, the selected points are marked with the symbol ◻ compared to other points
(marked with). Whilst conservative (identifying 3 potentially optimal points), the Rank strategy (b) fails to
select the most potentially optimal point (4) on the contrary of the ND strategy (c), which on the other hand,
indifferently selects all the points on the non-dominated front (11 out of the 15 points). The ND strategy
preserves its exploration and diversification balance at the expense of exploitative search, whereas the Rank
strategy preserves its exploration and exploitation balance at the expense of diversification search. With
this concern, indicator-based search can prove to be effective in achieving a balance among the three search
components.

not be able to find solution 4 as it could be in a different
area in the solution space. Thus, in such scenarios, we seek
to increase the exploratory aspect of the algorithm to look
into other areas in the solution space.

To this end, we use intermittently and whenever neces-
sary the strategy of Rank to increase the global search as-
pect of the proposed technique. Being stuck in a local opti-
mum, we want to avoid choosing hyperrectangles on the non-
dominated front as much as possible; and the Rank strategy
serves as a suitable means as only one hyperrectangle on the
non-dominated front would be chosen.

With the implementation of this global search feature us-
ing Rank coupled with the hypervolume indicator, we are
able to achieve a balance among the three search compo-
nents of diversification, exploration and exploitation. The
next section summarizes the algorithm, which we refer to as
MO-DIRECT-hv.

3.4 The MO-DIRECT-hv Algorithm
Algorithm 2 provides a formal description of MO-DIRECT-

hv. It implements the use of hypervolume indicator to select
potentially optimal hyperrectangles. This is only activated
when the number of hyperrectangles on the non-dominated
front is more than two, because it helps to choose poten-
tially optimal hyperrectangles on the non-dominated front
wisely. However, due to possible exploitative behaviour—as
discussed in Section 3.3; selecting only one point out of all
the dominated fronts, the algorithm could be stuck in a lo-
cal optimum. In order to overcome this issue, the algorithm
would conduct a global search using the Rank strategy to ex-
plore the other areas when the hypervolume contributions
of all the solutions do not change over time given that the
hypervolume contribution of any points is not significantly
large (Line 8 in Algorithm 2).

4. CPU TIMING
In order to evaluate the CPU timing of the algorithm, we

Algorithm 2: MO-DIRECT-hv

Input : vectorial function to be minimized f ,
search space X ,
evaluation budget v,
hyprrectangle threshold σt

Initialization: H1 = {X}
Output : approximation set of minx∈X f(x), Yv

∗

1 while evaluation budget v is not exhausted do
2 Evaluate all the new hyperrectangles ∈ Ht.
3 P ← ND({f(ci) ∶ i ∈ Ht , σi ≥ σt}).
4 if size (P) > 2 then
5 hvj = hypervolume({f(cj) ∶ j ∈ P }).
6 P t

hv = ∑(hvj).
7 It ← ND({(−hvj , σj) ∶ j ∈ P }).
8 if P t

hv − P t−1
hv < 0.0001& max(hv) > 0.001 ∗ P t

hv

then
9 ranki = nondominatedsort({f(ci) ∶ i ∈

Ht , σi ≥ σt}).
10 It = ND({(ranki), σi) ∶ i ∈ H , σi ≥ σt}).

11 else
12 It = P
13 return It.
14 Partition the hyperrectangles in It according to the

procedure outlined in Section 2.1 using Eq. (1)
15 Ht+1 ←Ht ∖ It ∪ {It’s newly generated

hyperrectangles}
16 t← t + 1

17 return ND({f(ci)}i∈Ht)

have run MO-DIRECT with strategies, Rank, ND as well as the
proposed approach without restarts on the entire bbob-biobj
test suite with solution space dimension D ∈ {2,3,5,10,20}.
The Matlab code was run on a Windows machine: Intel(R)

1204

Xeon(R) CPU E5-1650@ 3.20GHz with 1 processor and 6
cores. The time per function evaluation for Rank in dimen-
sions 2, 3, 5, 10, 20 equals 0.4672041, 0.5645781, 0.6768276,
0.9111276, 1.324321 millisecond, respectively. The time per
function evaluation for ND in dimensions 2, 3, 5, 10, 20 equals
0.1016983, 0.08452395, 0.07248416, 0.05746423, 0.05250416
milliseconds, respectively. The time per function evalua-
tion for MO-DIRECT-hv in dimensions 2, 3, 5, 10, 20 equals
0.8100738, 0.4218101, 0.4089053, 0.4361579, 0.3410024 mil-
liseconds respectively.

5. RESULTS
Results of all three strategies from experiments according

to [10,11] on the benchmark functions given in [14] are pre-
sented in Figures 2, 3 and Table 1. An evaluation budget
of 1000 ⋅D is used. Table 1 displays average runtime (aRT)
to reach given targets, measured in number of function eval-
uations on selected functions (f1 − f28). The experiments
were performed with COCO [10], version 1.0, the plots were
produced with version 1.1.

5.1 Overall Performance
From Table 1, one can see MO-DIRECT-hv is able to hit

more hypervolume target values as compared to Rank and
ND with lesser number of evaluations in most of the func-
tions (indicated in bold). This in turn affirms the motiva-
tion behind our proposed idea that using the hypervolume
indicator is more effective in finding a good approximation
of the Pareto front in the MO-DIRECT framework.

Moreover, from Figure 2, one can see that MO-DIRECT-

hv performs better than the other two strategies, Rank and
HV used in MO-DIRECT, in all dimensions of the benchmark
functions, in terms of hitting the targets and the number
of evaluations required to hit the targets. This again reaf-
firms the motivation behind using hypervolume indicator.
The improvement in using MO-DIRECT-hv as compared to
strategies Rank and HV becomes more significant in higher
dimensions such as 5D, 10D and 20D. However, at higher
dimensions, the number of targets found on the Pareto front
decreased significantly for all strategies. This is because of
the sampling procedure of MO-DIRECT, which uses an increas-
ing number of function evaluations in each iteration as the
number of dimensions increases. When MO-DIRECT picks a
potentially optimal hyperrectangle to divide, it would sam-
ple up to 2 ⋅D points where D is the number of dimensions.
Therefore, in higher dimensions, such as 20 −D, 40 points
would be sampled without any consideration if the 40 points
chosen are potentially optimal or not. This in turn leads to
inefficient sampling when compared to evolutionary algo-
rithms.

5.2 Performance on Different Types of Func-
tions

Figure 3 allows us to take a closer look at different cate-
gories of functions and how different strategies perform. On
closer analysis, MO-DIRECT-hv shows larger improvement in
separable, moderate, ill-conditioned functions compared to
multi-modal and weakly-structured functions. In the cate-
gory of weakly-structured functions, at least one of the two
objective functions is a highly multi-modal function.

This in turn led us to reason that HV might not be able to
find a significantly larger number of solutions than ND and
Rank in problems with multi-modal function. Multi-modal

functions consist of multiple minima points, which usually
indicates that the optimal solutions on different parts of the
Pareto front would lie in different areas in the solution space.
Therefore, MO-DIRECT-hv, being implemented as a relatively
more exploitative measure would face difficulty in the search
of optimal solutions in such functions. However, it is still
able to identify the optimal solutions at a faster rate than
Rank and ND.

6. CONCLUSION
This paper introduced MO-DIRECT-hv, an algorithm that

employs the hypervolume indicator with dividing rectangles
to identify solutions on the Pareto front. MO-DIRECT-hv is
benchmarked against two strategies, namely strategy Rank

and ND in the bi-objective test suite of 55 problems on the
COCO platform. MO-DIRECT-hv is able to find better ap-
proximation sets of the Pareto front and shows faster con-
vergence to quality targets compared to the other two strate-
gies. Further studies can be done to see how effective this
method is when used in problems with higher number of
objectives. However, in higerh dimensions, due to the basic
partitioning procedure of MO-DIRECT, many points are sam-
pled at once, leading to inefficient sampling. To overcome
this problem, one would have to explore other methods of
partitioning the space, such as adaptive grid partitioning.

ACKNOWLEDGMENT
The authors wish to extend their thanks to the ATMRI:2014-
R8, Singapore, for providing financial support to conduct
this study.

7. REFERENCES
[1] A. Al-Dujaili and S. Suresh. Dividing rectangles attack

multi-objective optimization. In IEEE Congress on
Evolutionary Computation (CEC), 2016. IEEE, 2016.

[2] E. Asadollahi-Yazdi, A. Hassan, A. Siadat, J. Y.
Dantan, A. Azadeh, and A. Keramati. Multi-objective
optimization for inspection planning using nsga-ii. In
Industrial Engineering and Engineering Management
(IEEM), 2015 IEEE International Conference on,
pages 1422–1426, Dec. 2015.

[3] N. Beume, B. Naujoks, and M. T. M. Emmerich.
SMS-EMOA: multiobjective selection based on
dominated hypervolume. European Journal of
Operational Research, 181(3):1653–1669, 2007.

[4] K. Bi, B. Liu, W. Zhang, and R. Nie. Optimization of
aircraft flight control system based on an improved
mopso algorithm. In Electrical and Control
Engineering (ICECE), 2011 International Conference
on, pages 4842–4845, Sept. 2011.

[5] D. Brockhoff, T. Friedrich, and F. Neumann.
Analyzing hypervolume indicator based algorithms. In
Parallel Problem Solving from Nature - PPSN X.
Springer, Jan. 2008.

[6] C. A. C. Coello and M. S. Lechuga. Mopso: a proposal
for multiple objective particle swarm optimization. In
Evolutionary Computation, 2002. CEC ’02.
Proceedings of the 2002 Congress on, volume 2, pages
1051–1056, 2002.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:

1205

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f1
Rank 1(0) 2011(1627) ∞ ∞ ∞ ∞ 5007 0/5
ND 1(0) 1625(730) ∞ ∞ ∞ ∞ 5001 0/5
HV-Rank1(0) 179(76) 2092(1577) ∞ ∞ ∞ 5001 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f2
Rank 68(42) 2304(4216) ∞ ∞ ∞ ∞ 5003 0/5
ND 56(78) 3927(3398) ∞ ∞ ∞ ∞ 5005 0/5
HV-Rank23(27) 299(92) 5199(2856) ∞ ∞ ∞ 5005 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f3
Rank 1(0) 3263(4166) ∞ ∞ ∞ ∞ 5005 0/5
ND 1(0) 4270(2140) ∞ ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 665(345) 3165(2829) ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f4
Rank 1(0) 1411(591) ∞ ∞ ∞ ∞ 5001 0/5
ND 1(0) 1725(732) 2.4e4(5e4) ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 512(705) 1565(1356) ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f5
Rank 1(0) 2180(118) ∞ ∞ ∞ ∞ 5005 0/5
ND 1(0) 2398(1187) ∞ ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 465(411) 4820(3683) ∞ ∞ ∞ 5001 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f6
Rank 1(0) 1142(836) ∞ ∞ ∞ ∞ 5003 0/5
ND 1(0) 1769(544) ∞ ∞ ∞ ∞ 5001 0/5
HV-Rank1(0) 192(52) 2277(1298) ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f7
Rank 1(0) 3552(2754) ∞ ∞ ∞ ∞ 5003 0/5
ND 1(0) 3613(2274) ∞ ∞ ∞ ∞ 5001 0/5
HV-Rank1(0) 1765(1863) ∞ ∞ ∞ ∞ 5007 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f8
Rank 64(79) 4760(2016) ∞ ∞ ∞ ∞ 5003 0/5
ND 114(142) 6258(4280) ∞ ∞ ∞ ∞ 5005 0/5
HV-Rank 16(22) 3222(2274) ∞ ∞ ∞ ∞ 5001 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f9
Rank 1(0) 1112(700) ∞ ∞ ∞ ∞ 5005 0/5
ND 1(0) 1383(661) 2.3e4(3e4) ∞ ∞ ∞ 5005 0/5
HV-Rank1(0) 310(282) 1725(1266) ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f10
Rank 1(0) 1788(480) ∞ ∞ ∞ ∞ 5007 0/5
ND 1(0) 1967(951) ∞ ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 434(552) 2.3e4(3e4)∞ ∞ ∞ 5005 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f11
Rank 1(0) 2.2e4(3e4) ∞ ∞ ∞ ∞ 5005 0/5
ND 1(0) 2418(4161) ∞ ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 818(161) ∞ ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f12
Rank 1(0) 1866(1826) 4533(9226) 1.1e4(1e4)∞ ∞ 5001 0/5
ND 1(0) 2098(6058) 4985(5346) 2.4e4(3e4)∞ ∞ 5005 0/5
HV-Rank1(0) 1611(2835) 3484(3772) 1.0e4(5234)∞ ∞ 5007 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f13
Rank 14(32) 550(718) 5335(5004) ∞ ∞ ∞ 5005 0/5
ND 33(80) 1528(2179) 1.0e4(2809) ∞ ∞ ∞ 5007 0/5
HV-Rank 8.8(20) 77(47) 229(89) 5623(5836) ∞ ∞ 5005 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f14
Rank 1(0) 1.1e4(2e4) ∞ ∞ ∞ ∞ 5003 0/5
ND 1(0) 2.3e4(2e4) ∞ ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 1267(852) ∞ ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f15
Rank 108(134) 2984(3494) ∞ ∞ ∞ ∞ 5001 0/5
ND 600(1429) 9064(8877) ∞ ∞ ∞ ∞ 5001 0/5
HV-Rank 34(0) 765(1028) 2.3e4(2e4)∞ ∞ ∞ 5001 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f16
Rank 1(0) 3000(3323) ∞ ∞ ∞ ∞ 5003 0/5
ND 1(0) 9285(2e4) ∞ ∞ ∞ ∞ 5005 0/5
HV-Rank1(0) 1470(2583) ∞ ∞ ∞ ∞ 5005 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f17
Rank 1286(36) 4748(9869) ∞ ∞ ∞ ∞ 5005 0/5
ND 1331(2545) 9510(1e4) ∞ ∞ ∞ ∞ 5005 0/5
HV-Rank 52(88) 2806(2394) ∞ ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f18
Rank 1(0) 1307(570) ∞ ∞ ∞ ∞ 5001 0/5
ND 1(0) 803(454) 2.1e4(4e4) ∞ ∞ ∞ 5001 0/5
HV-Rank1(0) 149(20) 2234(2070) ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f19
Rank 59(48) 1383(530) ∞ ∞ ∞ ∞ 5001 0/5
ND 74(61) 2378(694) ∞ ∞ ∞ ∞ 5001 0/5
HV-Rank25(20) 1231(1672) 1.2e4(5788)∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f20
Rank 71(174) 3282(2746) 2.3e4(1e4) ∞ ∞ ∞ 5003 0/5
ND 12(0) 3542(4397) ∞ ∞ ∞ ∞ 5003 0/5
HV-Rank 8.0(18) 1525(15) 5018(4390) ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f21
Rank 1(0) 3922(4453) 2.2e4(4e4) ∞ ∞ ∞ 5005 0/5
ND 1(0) 4733(7891) 2.3e4(6e4) ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 2324(3902) 8737(1e4) 2.2e4(2e4)∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f22
Rank 1(0) 2812(698) ∞ ∞ ∞ ∞ 5003 0/5
ND 1(0) 6134(4480) ∞ ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 2878(2674) ∞ ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f23
Rank 1(0) 2534(2099) 2.3e4(2e4) ∞ ∞ ∞ 5001 0/5
ND 1(0) 1854(1284) 2.5e4(3e4) ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 691(728) 6126(7604) ∞ ∞ ∞ 5005 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f24
Rank 6.6(7) 2.5e4(3e4) ∞ ∞ ∞ ∞ 5003 0/5
ND 4.6(9) 1.1e4(1e4) ∞ ∞ ∞ ∞ 5005 0/5
HV-Rank4.6(9) 1778(1290) ∞ ∞ ∞ ∞ 5005 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f25
Rank 7.4(16) 5392(7502) ∞ ∞ ∞ ∞ 5001 0/5
ND 4.2(0) 5947(1e4) ∞ ∞ ∞ ∞ 5003 0/5
HV-Rank4.2(8) 2482(2220) ∞ ∞ ∞ ∞ 5005 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f26
Rank 173(215) 1891(1017) 2.3e4(2e4) ∞ ∞ ∞ 5007 0/5
ND 90(222) 2772(1120) 2.5e4(4e4) ∞ ∞ ∞ 5001 0/5
HV-Rank 24(56) 819(994) 2951(3495) ∞ ∞ ∞ 5003 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f27
Rank 1(0) 2331(1168) ∞ ∞ ∞ ∞ 5005 0/5
ND 1(0) 2633(431) ∞ ∞ ∞ ∞ 5007 0/5
HV-Rank1(0) 3727(5095) ∞ ∞ ∞ ∞ 5005 0/5

∆fopt 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 #succ

f28
Rank 1(0) 452(456) 6024(7582) ∞ ∞ ∞ 5003 0/5
ND 1(0) 475(628) 2097(877) ∞ ∞ ∞ 5003 0/5
HV-Rank1(0) 86(33) 2237(568) 7439(2504) ∞ ∞ 5005 0/5

Table 1: Functions f1 to f28. Average runtime (aRT) to reach given targets, measured in number of function
evaluations, in dimension 5. For each function, the aRT and, in braces as dispersion measure, the half
difference between 10 and 90%-tile of (bootstrapped) runtimes is shown for the different target ∆f-values as
shown in the top row. #succ is the number of trials that reached the last target HVref + 10−5. The median
number of conducted function evaluations is additionally given in italics, if the target in the last column was
never reached. Entries, succeeded by a star, are statistically significantly better (according to the rank-sum
test) when compared to all other algorithms of the table, with p = 0.05 or p = 10−k when the number k following
the star is larger than 1, with Bonferroni correction by the number of instances. Best results are printed in
bold.

1206

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f1-f55, 2-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f1-f55, 3-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f1-f55, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f1-f55, 10-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f1-f55, 20-D
5, 5, 5 instances

1.1

Figure 2: Bootstrapped empirical cumulative distribution of the number of objective func-
tion evaluations divided by dimension (FEvals/DIM) for 58 targets with target precision in
{−10−4,−10−4.2,−10−4.4,−10−4.6,−10−4.8,−10−5,0,10−5,10−4.9,10−4.8, . . . ,10−0.1,100} over all the problems in D∈
{2,3,5,10,20}.

Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, Apr. 2002.

[8] D. Finkel and C. Kelley. Additive scaling and the
direct algorithm. Journal of Global Optimization,
36(4):597–608, 2006.

[9] I. C. Garćıa, C. A. C. Coello, and A. Arias-Montaño.
Mopsohv: A new hypervolume-based multi-objective
particle swarm optimizer. In Evolutionary
Computation (CEC), 2014 IEEE Congress on, pages
266–273, July 2014.

[10] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and
D. Brockhoff. COCO: A Platform for Comparing
Continuous Optimizers in a Black-Box Setting. arXiv
preprint arXiv:1603.08785, 2016.

[11] N. Hansen, T. Tusar, A. Auger, D. Brockhoff, and
O. Mersmann. COCO: Experimental Procedure.
http://numbbo.github.io/coco-doc/experimental-
setup/,
2016.

[12] S. Jiang, J. Zhang, Y.-S. Ong, A. N. Zhang, and P. S.
Tan. A simple and fast hypervolume indicator-based
multiobjective evolutionary algorithm. IEEE
Transactions on Cybernetics, 45(10):2202–2213, Oct.
2015.

[13] D. R. Jones, C. D. Perttunen, and B. E. Stuckman.
Lipschitzian optimization without the lipschitz
constant. Journal of Optimization Theory and
Applications, 79(1):157, Oct. 1993.

[14] T. Tusar, D. Brockhoff, N. Hansen, and A. Auger.
COCO: The Bi-objective Black Box Optimization
Benchmarking (bbob-biobj) Test Suite. ArXiv
e-prints, arXiv:1604.00359, Apr. 2016.

[15] L. Wang, H. Ishida, T. Hiroyasu, and M. Miki.
Examination of multi-objective optimization method
for global search using direct and ga. In Evolutionary
Computation, 2008. CEC 2008. (IEEE World
Congress on Computational Intelligence). IEEE
Congress on, pages 2446–2451, June 2008.

[16] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca,
and V. G. da Fonseca. Performance assessment of
multiobjective optimizers: an analysis and review.
IEEE Trans. Evolutionary Computation, 7(2):117–132,
2003.

1207

separable-separable separable-moderate separable-ill-cond.

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Rank

ND

HV-Rankbbob-biobj - f1, f2, f11, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f3, f4, f12, f13, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f5, f6, f14, f15, 5-D
5, 5, 5 instances

1.1

separable-multimodal separable-weakstructure moderate-moderate

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f7, f8, f16, f17, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Rank

ND

HV-Rankbbob-biobj - f9, f10, f18, f19, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f20, f21, f28, 5-D
5, 5, 5 instances

1.1

moderate-ill-cond. moderate-multimodal moderate-weakstructure

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f22, f23, f29, f30, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f24, f25, f31, f32, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f26, f27, f33, f34, 5-D
5, 5, 5 instances

1.1

ill-cond.-ill-cond. ill-cond.-multimodal ill-cond.-weakstructure

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f35, f36, f41, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Rank

ND

HV-Rankbbob-biobj - f37, f38, f42, f43, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Rank

ND

HV-Rankbbob-biobj - f39, f40, f44, f45, 5-D
5, 5, 5 instances

1.1

multimodal-multimodal multimodal-weakstructure weakstructure-weakstructure

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Rank

ND

HV-Rankbbob-biobj - f46, f47, f50, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

ND

Rank

HV-Rankbbob-biobj - f48, f49, f51, f52, 5-D
5, 5, 5 instances

1.1

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Rank

ND

HV-Rankbbob-biobj - f53-f55, 5-D
5, 5, 5 instances

1.1

Figure 3: Bootstrapped empirical cumulative distribution of the number of objective func-
tion evaluations divided by dimension (FEvals/DIM) for 58 targets with target precision in
{−10−4,−10−4.2,−10−4.4,−10−4.6,−10−4.8,−10−5,0,10−5,10−4.9,10−4.8, . . . ,10−0.1,100} for all function subgroups in 5-D.

1208

