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ABSTRACT

Surrogate modeling has been a powerful ingredient for sev-
eral algorithms tailored towards computionally-expensive op-

timization problems. Concerned with solving black-box multi-

objective problems given a finite number of function evalua-
tions and inspired by the recent advances in multi-objective
algorithms, this paper presents—based on the MATSuMoTo li-
brary for single-objective optimization—a surrogate-based
optimization toolbox for multi-objective problems. More-
over, in attempt to highlight the strengths and weaknesses of
the employed methods, we benchmark the presented toolbox
within the Black-box Optimization Benchmarking frame-
work (BBOB 2016).

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

Keywords

Benchmarking, Black-box optimization, Bi-objective opti-
mization, Surrogate optimization, Response surface model-
ing

1. INTRODUCTION

Multi-objective Optimization Problems (MOPs)—in con-
trast to Single-objective Optimization Problems (SOPs)—
involve a set of conflicting objectives that are to be opti-
mized simultaneously. It has applications in various science,
business, and engineering disciplines. Without loss of gen-
erality, an MOP with n decision variables and m objectives,
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has the form:

minimize y =f(x) = (f1(x),..., fm(x))
where x=(21,...,Zn) € X (1)
y=(1,ym) €Y

and where x is called the decision vector (solution), y is
called the objective vector, X is the feasible decision space,
and ) is the corresponding objective space. In practice, it is
common that derivatives of the objectives are neither sym-
bolically nor numerically available [14], which makes such
problems exceptionally tough to solve exactly, as the only
source of information about the objective function is point-
wise evaluation—hence they are commonly referred to as
black-box problems. Furthermore, evaluating f is typically
expensive requiring some computational resources (e.g., a
computer code or a laboratory experiment). More specif-
ically, we are asked to solve (1) using a finite budget of
function evaluations.

Starting with the seminal paper of Jones et al. [17] on
Efficient Global Optimization (EGO), optimization using
surrogate models emerged as a powerful paradigm to ap-
proach computationally-expensive black-box SOPs as they
require significantly fewer function evaluations (see [6] for
more details). Likewise, surrogate methods have become
increasingly popular for MOPs, though with different pro-
posals about finding and handling a set of Pareto solutions
rather than a single solution [1,18,26]. There are read-
ily available software libraries for surrogate-assisted SOPs
(e.g., [11,23]), which can be used by the community and that
have been benchmarked on well-established test suites [7,
8,24]. One the other hand, community efforts have been
constantly growing towards consolidating—e.g., the recent
SAMCO workshop!—and benchmarking surrogate-assisted
algorithms for MOPs. To the best of our knowledge, most
benchmarking efforts have been independently conducted on
different sets of problems (see, e.g., [1,26,28]). This paper
adds a brick to the ongoing effort by:

e Incorporating recent multi-objective techniques into a
MATLAB toolbox for computationally-expensive black-
box MOPs based on the MATSuMoTo (short for MATLAB
Surrogate Model Toolbox) library [23].

e Providing an initial analysis of the presented toolbox’s
performance on the Bi-objective Black Box Optimization
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Benchmarking (BBOB 2016 [29]) and compare it against
the established surrogate-assisted multi-objective opti-
mization algorithms, viz. SMS-EGO [26].

The BBOB benchmark [29] comes with a testbed of 55
scalable bi-objective problems addressing such real-world
difficulties as ill-conditioning, multi-modality, and dimen-
sionality. The rest of the paper is organized as follows. Sec-
tion 2 provides a brief description of surrogate-assisted opti-
mization and discusses the differentiating building blocks for
MOPs with respect to SOPs. This motivates us—based on
the MATSuMoTo library—to present, in Section 3, a MATLAB
toolbox for surrogate-assisted multi-objective optimization,
incorporating recent techniques for tackling computationally-
expensive black-box MOPs. In Section 4, the numerical
assessment of the presented methods is conducted on the
BBOB platform: discussing the experimental setup, the pro-
cedure for evaluating the algorithms’ performance, and elab-
orating the results. Section 5 summarizes the main points
from this study.

2. SURROGATE-ASSISTED OPTIMIZATION

A typical surrogate-assisted optimization algorithm fol-
lows the six-step framework shown in Fig. 1. The prob-
lem can be treated as a sequential design, where the sam-
ple x' € X at time ¢ depends on the previous samples and
their objectives’ values {(x',f(x')),...,(x" 1, f(x™))}. In
essence, an initial design phase starts with sampling a few
representative points in the decision space X (Step 1 in
Fig. 1, e.g., Latin hypercube or random sampling [22]) and
evaluating them on the expensive function f (Step 2). Then,
an iterative procedure builds a surrogate model £ approxi-
mating f based on the already evaluated samples (Step 3),
which is then used to nominate the next samples as f is
less expensive-to-evaluate than f (Step 4). The selected
new samples are usually the optimizers of one criterion (or
more) that extracts information from f directly or through
a derived measure. The criterion is known under as several
names as “acquisition function”, ”infill criterion”, "figure of
merit”, or "selection rule”; and its optimization is often done
using available off-the-shelf optimization procedures (e.g.,
DIRECT [16]).

Although there have been recent propositions about sur-
rogate models tailored towards MOPs (e.g., [20]), one can
note that Step 4 is dominantly (see [1]) the main differenti-
ating block for solving MOPs when compared to SOPs since
the new selected points do not only need to approximate
the optimizers of each objective, but also to capture the
Pareto front akin to the MOP in hand. Furthermore, previ-
ous benchmarking studies concluded that the impact of the
type of initial phase (Steps 1 and 2) is insignificant [7,8] and
established a default setting for Step 3 [24,27] based on the
cubic or Gaussian Radial Basis Functions (RBFs).

In looking for optimal solutions given a finite computa-
tion budget in a multi-objective setting, one seeks a balance
between three search components, viz. exploitation: local
search, exploration: global search, and diversification: well-
spread Pareto solutions [9]. To this end, two distinctive ap-
proaches can be identified in selecting new evaluation points
(Step 4 in Fig. 1):

Al Using the surrogate model indirectly to generate a set
of candidate points: the selected points for evaluation
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Figure 1: A generic framework for surrogate-
assisted optimization. Adapted from [23].

are the optimizers of a measure derived from the sur-
rogate model (e.g., [10,25,26,28]).

A2 Using the surrogate model directly to generate a set
of candidate points: a subset of these points are then
selected for evaluation based on a set of rules (e.g.,
[1,21,27)).

While Approach Al has been the focus of several opti-
mization software packages (e.g., [5]), Approach A2 lends it-
self naturally to the framework of the MATSuMoTo library for
SOPs [23]. In this paper, we incorporate a variant of Ap-
proach A2 into the MATSuMoTo library and assess its strength
and weakness vs. a variant of Approach Al.

3. AMATLAB TOOLBOX FOR SURROGATE-
ASSISTED MULTI-OBJECTIVE
OPTIMIZATION

The MATLAB Surrogate Model Toolbox (MATSuMoTo) is
a single-objective optimization software package for ”com-
putationally expensive, black-box, global optimization prob-
lems that may have continuous, mizred-integer, or pure in-
teger variables” [23]. It comes with various configurations
for the steps of Fig. 1, namely several choices for initial ex-
perimental design strategies, surrogate models, as well as
strategies for selecting new evaluation points, which are in
line with Approach A2. For this reason, we are motivated to
adapt MATSuMoTo for MOPs by incorporating multi-objective
A2 strategies as highlighted in Section 2.

In our survey for multi-objective A2 algorithms, we chose
the recently proposed GOMORS (short for Gap Optimized Multi-
Objective Optimization Using Response Surfaces) algorithm
by Akhtar et al. [1] based on its reported result compared
with other state-of-the-art algorithms. Besides its competi-
tive performance, GOMORS provides a generic framework that
naturally fits MATSuMoTo’s architecture, where multiple rules
for selecting new evaluation points (Step 4 in Fig. 1) can be
employed promoting a balance among exploration, exploita-
tion, and diversification. Examples of such rules are those
based on the Euclidean distance among solutions in the de-
cision and the objective spaces; they can be considered at
once in an iteration or cycled through sequentially. It has
been shown in [1] that using ¢ rules to generate ¢ candidate



points at Step 4 is more effective than generating a single
point by a single rule [1].

GOMORS typically employs an off-the-shelf evolutionary multi-

objective solver on the built surrogate model f to generate
the set of candidate points. Here we use two available solvers
for that purpose, viz. SMS-EMOA [4], and a randomized vari-
ant of MO-DIRECT [2]. Table 1 highlights the newly imple-
mented features into MATSuMoTo supporting MOPs, namely
the Gaussian RBF (motivated the numerical results of [27]),
and the SurfPareto functionality which currently employs
GOMORS to select new evaluations points.

Table 1: Possible feature choices for the individual
steps of MATSuMoTo. Highlighted choices supports

multi-objective optimization problems.
Algorithm Step

Choice Name  Description
CORNER
SLHD

Ihd

RBFcub

RBFgauss
RBFtps

(1) Initial design Corner points of the hypercube
Symmetric Latin hypercube
Latin hypercube

Cubic RBF

Gaussian RBF

Thin-plate spline RBF

(3) Surrogate model

RBFlin Linear RBF

MARS i adaptive regression spline

POLYlin Linear regression polynomial

POLYquad  Quadratic regression polynomial

POLYquadr  Reduced quadratic regression polynomial

POLYcub Cubic regression polynomial

POLYecubr Reduced cubic regression polynomial

MIX_RcM Mixture of RBFcub and MARS

MIX_RcPc Mixture of RBFcub and POLYcub

MIX_RcPer  Mixture of RBFcub and POLYcubr

MIX_RcPg Mixture of RBFcub and POLYquad

MIX_RcPgr  Mixture of RBFcub and POLYquadr

MIX_RcPeM  Mixture of RBFcub, POLYcub, and MARS
(4) Sampling strategy CANDloc Local candidate point search

CANDglob  Global candidate point search

SurfMin
SurfPareto

Minimum point of surrogate model
Pareto front of surrogate model (currently employs GOMORS) )

4. NUMERICAL VALIDATION

In this section, we investigate the efficacy of the proposed
A2-based toolbox in solving computationally-expensive black-
box problems and compare its performance with a represen-
tative algrotihm from Approach Al.

4.1 Compared Algorithms

To select a representative algorithm from Approach Al,
we benchmarked several algorithms from GPARETO R pack-
age [5], namely SMS-EGO [26], EHI-EGO [10], SUR-EGO [25], and
EMI-EGO [28] on COCO v0.9. Running these algorithms on

the COCO platform was extremely computationally-expensive.

For instance, 5-D(imension) experiments with an evaluation
budget 50 - n took around five days for SUR-EGO, two days
for EMI-EGO, and one day for SMS-EGO on Linux machine: In-
tel(R) Xeon(R) CPU E5-1650 0 @ 3.20GHz with 1 processor
and 6 cores. On the other hand, EHI-EGO failed to finish.?
We, therefore, chose SMS-EGO as the challenger. With regard
to the proposed framework, we ran two instances employing
SMS-EMOA [4] and a randomized variant of MO-DIRECT [2],
respectively. We refer to them here by MAT-SMS and MAT-
DIRECT, respectively.

4.2 Experimental Setup

We ran the three algorithms: SMS-EGO, MAT-SMS, and MAT-
DIRECT on the COCO platform (v1.0) [29] for decision space
dimensions n € {2,3,5,10,20}.* As SMS-EGO (and the rest

2The algorithm exited with an error in executing the optim
function

38MS-EGO run on 20-D was not complete at the time of writ-
ing this paper.
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of tested A1l algorithms) is implemented in R [5], we had to
write an unofficial binding for the COCO platfrom using the
R.matlab R pacakge [3]. Consequently, the computational
time needed for one function evaluation grew considerably
(e.g., 5 days for SUR-EGO for 5-D problems). Such setup pro-
vided a simulated scenario of extremely expensive black-box
optimization problems, with the goal of using as few func-
tion evaluations as possible. To this end and in the light of
experimental settings from the literature [19], we recorded
the performance of these algorithm on an evaluation budget
of 75 -n function evaluations.* This, however, made it diffi-
cult to interpret performance measures used by the COCO
as its set targets are rather difficult to achieve given the
limited computational budgets. Accordingly, we modified
the default performance measures’ target values to provide
a better insight on the algorithms’ performance. We used
the default parameter settings for SMS-EGO and followed the
guidelines of [1] in setting up MAT-SMS and MAT-DIRECT.

4.3 Performance Evaluation

The procedure for assessing the solution quality of an algo-
rithm is based on recording its runtime: the number of func-
tion evaluations required by the algorithm for its solution to
reach a specific (target) quality value [15]. The recorded
runtimes are then expressed in terms of data profiles (or
more accurately bootstrapped empirical cumulative distri-
butions), which capture various aspects of the algorithms’
convergence behavior. Furthermore, the average Running
Time (aRT) is computed with respect to a given target value
HViarget = HVyep + AHViarget, Where statistical significance
is tested with the rank-sum test for a given target HViarget-

4.4 Results

Results from experiments according to [12,13] on the bench-
mark functions given in [29] are shown in Figures 2 and 3 as
data profiles; and Tables 2 and 3 reporting the aRT of the
algorithms for each of the 55 problems. In general, both of
MAT-SMS and MAT-DIRECT show a comparable performance
outperforming the SMS-EGO algorithm from Approach Al as
shown cleary by the aRT values in Tables 2 and 3.

On the other hand, Figure 3 shows that SMS-EGO is better
in its initial phase of search but its performance stagnates
towards the end when compared with MAT-DIRECT and MAT-
SMS whose performance gradually increases as a function of
the number of function evaluations. This perhaps can be
attributed to the restart strategy implemented within the
toolbox framework, re-initiating the search whenever the ac-
curacy of the built surrogate models in capturing the objec-
tives’ structure is decreased (e.g., ill-conditioned matrix for
RBFs).

Gathering SMS-EGO’s results took around one week dis-
tributed over 4 machines. On the other hand, the imple-
mented toolbox took one day on a single machine for each
of MAT-SMS and MAT-DIRECT. However, the comparison may
be unfair due to the software wrapper that binds SMS-EGO
with the COCO platform.

S. CONCLUSIONS

This paper has conducted a preliminary study on the ex-
tension of the MATLAB Surrogate Model Toolbox (MATSuMoTo)

4Nevertheless, we are in the process of running the algo-
rithms with a 1000 - n-evaluation budget.



Afopt |1e2 lel 1e0 Se-1 #succ Afopt |1e2 lel 1e0 5e-1 #succ
1 ] 15 ]
MAT-DIR|1(0) 2.0(2) 144(295) oo 375 0/5 MAT-DIR|13(15) 25(43) 309(800) oo 375 0/5
MAT-SMS|1(0) 1.2(0.5) 91(62) oo 375 0/5 MAT-SMS|13(28) 46(106) 373(375) oo 375 0/5
SMS-EGO|1(0) 1.4(1) oo oo 375 0/5 SMS-EGO| 2.2(2) 118(304) 1505(1594) oo 375 0/5
Afopt |1le2 lel 1le0 S5e-1 #succ Afopt [le2 lel 1le0 5e-1 #succ
£2 f16
MAT-DIR|1(0) 14(17) 157(613) oo 375 0/5 MAT-DIR[1(0) 1(0) 73(76) oo 375 0/5
MAT-SMS|2.0(1) 7.6(10) 281(303) oo 375 0/5 MAT-SMS|1(0) 1(0) 59(92) o0 375 0/5
SMS-EGO|1.4(0.5) 37(44) 283(562) oo 375 0/5 SMS-EGO|1(0) 1(0) 188(350) o0 375 0/5
Afopt [le2 lel 1le0 5e-1 #succ Afopt [le2 lel 1le0 5e-1 #succ
£3 17
MAT-DIR|1.4(0) 3.2(5) 107(188) oo 375 0/5 MAT-DIR|95(282) 98(189) 234(261) oo 375 0/5
MAT-SMS|1(0) 3.6(6) 41(10) oo 375 0/5 MAT-SMS[95(188) 95(281) 284(588) oo 375 0/5
SMS-EGO|4.4(8) 4.4(4) 103(14) oo 375 0/5 SMS-EGO|95(188) 97(190) 684(875) oo 375 0/5
Afopt [le2 lel 1e0 5e-1 #succ Afopt [le2 lel 1e0 5e-1 #succ
4 ] 18 ]
MAT-DIR[12(17) 34(4) 320(283) oo 875 0/5 MAT-DIR|1(0) 1(0) 4.0(4) oo 375 0/5
MAT-SMS[11(6) 39(14) 408(764) oo 375 0/5 MAT-SMS|1(0) 1(0) 8.0(10) oo 375 0/5
SMS-EGO| 2.6(0.5) 97(188) oo oo 375 0/5 SMS-EGO[1(0) 1(0) 37(44) oo 375 0/5
Afopt |le2 lel 1e0 5e-1 #suce Afopt |le2 lel 1e0 5e-1 #succ
5 ] 19 ]
MAT-DIR1(0) 1(0) 7.8(6) oo 375 0/5 MAT-DIR|1.4(0.5) 1.8(1) 192(61) oo 875 0/5
MAT-SMS|1(0) 1(0) 9.4(8) oo 375 0/5 MAT-SMS|1.2(0.5) 4.0(3) 382(356) oo 875 0/5
SMS-EGO[1(0) 1(0) 26(1) oo 375 0/5 SMS-EGO[1.2(0) 3.0(2) 1590(1875) oo 375 0/5
Afopt |le2 lel 1e0 5e-1 #succ Afopt |le2 lel 1e0 5e-1 #succ
fé 20
MAT-DIR|2.6(2) 13(20) 638(1155) o0 875 0/5 MAT-DIR(1(0) 1(0) 95(282) o0 375 0/5
MAT-SMS[1.4(1) 10(9) 654(844) oo 375 0/5 MAT-SMS[1(0) 1(0) 98(188) o0 875 0/5
SMS-EGOI1.6(1) 3.4(2) 1620(2062) oo 375 0/5 SMS-EGO|1(0) 1(0) 98(98) o0 375 0/5
Afopt [le2 lel 1le0 5e-1 F#succ Afopt [le2 lel 1le0 5e-1 #succ
7 | f21 |
MAT-DIR|2.4(1) 3.6(1) 154(292) o0 375 0/5 MAT-DIR|2.2(3) 7.6(12) 55(50) o0 375 0/5
MAT-SMS|2.6(2) 8.0(10) 181(102) oo 375 0/5 MAT-SMS|1.4(0.5) 5.8(12) 290(295) oo 375 0/5
SMS-EGO|2.2(2) 3.4(5) 1505(1594) o0 375 0/5 SMS-EGO|1(0) 1.4(1) 252(376) oo 375 0/5
Afopt |le2 lel 1e0 5e-1 #succ  Afopy [le2 lel 1e0 Se-1 #succ
f8 | f22 |
MAT-DIR/| 82(91) 170(281) o oo 375 0/5 MAT-DIR|1(0) 1(0) 2.0(2) oo 375 0/5
MAT-SMS| 36(14) 200(240) oo oo 375 0/5 MAT-SMS|1(0) 1(0) 1.8(1) oo 375 0/5
SMS-EGO|252(282) 1538(1594) oo oo 375 0/5 SMS-EGOI1(0) 1(0) 1.2(0.5) oo 375 0/5
Afopt |1le2 lel 1le0 5e-1 #succ Afopt [le2 lel 1e0 5e-1 #succ
f9 f23
MAT-DIR/|2.6(4) 7.8(2) 608(661) oo 375 0/5 MAT-DIR[1(0) 2.4(2) 18(10) oo 375 0/5
MAT-SMS|3.2(6) 27(66) 454(396) oo 375 0/5 MAT-SMS|1(0) 1.6(2) 15(14) oo 375 0/5
SMS-EGO[1.4(1) 95(281) s oo 875 0/5 SMS-EGO|1(0) 1(0) 12(12) oo 375 0/5
Afopt [le2 lel le0 5e-1 #succ Afopt [le2 lel le0 5e-1 F#succ
f10 24
MAT-DIR[1(0) 2.4(2) 507(421) oo 375 0/5 MAT-DIR[2.2(2) 7.4(8) 147(227) oo 375 0/5
MAT-SMS|1(0) 1.2(0.5) 740(469) oo 375 0/5 MAT-SMS|3.8(6) 6.4(13) 120(401) oo 375 0/5
SMS-EGO[1(0) 1.8(1) oo oo 375 0/5 SMS-EGO|1.2(0.5) 25(60) 121(114) oo 375 0/5
Afopt [le2 lel 1le0 5e-1 #succ Afopt [le2 lel 1le0 5e-1 F#succ
11 ] 25 ]
MAT-DIR|1(0) 1(0) 1(0) oo 375 0/5 MAT-DIR|1.6(0.8) 7.8(8) 336(382) oo 375 0/5
MAT-SMS|1(0) 1(0) 1.4(0) 1750(1125) 1/5 MAT-SMS|[1.4(0.5) 8.0(15) 179(309) oo 375 0/5
SMS-EGO[1(0) 1(0) 1.2(0.2) oo 375 0/5 SMS-EGO[1.2(0.5) 19(22) 324(315) oo 375 0/5
Afopt |le2 lel 1e0 Se-1 #suce Afopt |le2 lel 1e0 5e-1 #succ
f12 | 26 |
MAT-DIR1(0) 1(0) 62(90) oo 375 0/5 MAT-DIR|[1(0) 1.2(0.5) 251(562) o0 375 0/5
MAT-SMS|1(0) 1.2(0.5) 57(92) oo 375 0/5 MAT-SMS|1(0) 1.4(1) 252(656) oo 375 0/5
SMS-EGO[1(0) 1.2(0.5) 150(392) oo 375 0/5 SMS-EGO[1(0) 1.4(1) 252(750) oo 375 0/5
Afopt |le2 lel 1e0 Se-1 #succ Afopt |le2 lel 1e0 5e-1 #succ
f13 27
MAT-DIR(1(0) 1(0) 270(478) oo 375 0/5 MAT-DIR(1(0) 1(0) 11(6) oo 375 0/5
MAT-SMS[1(0) 1(0) 570(1318) oo 375 0/5 MAT-SMS[1(0) 1.2(0.5) 13(6) oo 375 0/5
SMS-EGO|1(0) 1(0) 566(1033) oo 375 0/5 SMS-EGO|1(0) 1(0) 27(24) o0 875 0/5
Afopt |le2 lel 1e0 5e-1 #suce  Afopg [le2 lel 1e0 Se-1 #succ
f14 | £28 |
MAT-DIR1(0) 1(0) 2.4(2) oo 875 0/5 MAT-DIR|[1(0) 10(20) 308(469) oo 375 0/5
MAT-SMS|1(0) 1(0) 4.6(2) oo 875 0/5 MAT-SMS(1(0) 11(22) 160(394) o0 375 0/5
SMS-EGO|1(0) 1(0) 3.8(2) oo 375 0/5 SMS-EGO|1(0) 1.4(1) oo oo 375 0/5

Table 2: Average running time (aRT

in number of function evaluations) divided by the respective best

aRT measured during BBOB-2009 in dimension 5. The aRT and in braces, as dispersion measure, the half
difference between 10 and 90%-tile of bootstrapped run lengths appear for each algorithm and target, the
corresponding best aRT in the first row. The different target Af-values are shown in the top row. #succ is
the number of trials that reached the (final) target HV e¢+5 x 107!. The median number of conducted function
evaluations is additionally given in italics, if the target in the last column was never reached. Entries,
succeeded by a star, are statistically significantly better (according to the rank-sum test) when compared to
all other algorithms of the table, with p=0.05 or p = 10" when the number k following the star is larger than
1, with Bonferroni correction by the number of instances. A | indicates the same tested against the best
algorithm of BBOB-2009. Best results are printed in bold.
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Afopt |1e2 lel 1e0 5e-1 #succ Afopt |1e2 lel 1e0 5e-1 #succ
29 ] 43
MAT-DIR[10(20) 20(23) 148(131) o0 375 0/5 MAT-DIR| 19(30) 148(376) oo o0 375 0/5
MAT-SMS| 6.8(7) 32(46) 175(146) o0 375 0/5 MAT-SMS[100(192) 291(471) oo o0 375 0/5
SMS-EGO| 1.4(1) 96(282) 1503(2625) oo 375 0/5 SMS-EGO|102(188) 579(1125) oo oo 375 0/5
Afopt |1le2 lel le0 5e-1 #succ Afopt [le2 lel 1le0 5e-1 #succ
£30 fa4
MAT-DIR/| 20(13) 29(5) 1874(844) oo 375 0/5 MAT-DIR[1(0) 35(32) 1546(1500) oo 375 0/5
MAT-SMS| 40(46) 109(108) S oo 375 0/5 MAT-SMS|1(0) 23(20) 1867(2062) oo 375 0/5
SMS-EGO|253(281) 253(188) 1701(1312) 1701(1875) 1/5 SMS-EGO[1(0) 3.8(2) 1729(2156) 1729(1594) 1/5
Afopt [le2 lel 1le0 5e-1 #succ Afopt [le2 lel 1e0 5e-1 #succ
31 f45
MAT-DIR/|18(26) 78(26) 469(248) oo 375 0/5 MAT-DIR|7.4(14) 20(20) 813(946) oo 375 0/5
MAT-SMS[16(16) 43(44) 792(657) oo 375 0/5 MAT-SMS|[1.8(0.8) 19(20) 752(893) oo 375 0/5
SMS-EGO| 1.8(1) 170(94) oo oo 375 0/5 SMS-EGO[1.4(0.5) 95(1) oo oo 375 0/5
Afopt [le2 lel 1e0 5e-1 F#succ Afopt [le2 lel 1e0 5e-1 #succ
32 | 46 ]
MAT-DIR| 27(14) 41(12) oo oo 375 0/5 MAT-DIR[19(28) 50(35) 1686(1406) oo 375 0/5
MAT-SMS| 84(59) 196(238) o oo 375 0/5 MAT-SMS| 3.0(2) 106(291) oo oo 370 0/5
SMS-EGO|370(557) 1771(1406) oo oo 375 0/5 SMS-EGO| 4.6(4) 119(112) 1505(2156) oo 375 0/5
Afopt |le2 lel 1e0 5e-1 #suce Afopt |le2 lel 1e0 Se-1 #succ
£33 | fa7 |
MAT-DIR|3.2(4) 15(4) 1561(2156) oo 875 0/5 MAT-DIR|14(28) 101(186) 1867(1312) o 375 0/5
MAT-SMS|2.4(2) 17(20) 1541(2250) oo 875 0/5 MAT-SMS|10(19) 132(128) o oo 375 0/5
SMS-EGO|1.4(1) 1.8(1) 1503(1688) oo 375 0/5 SMS-EGO| 3.0(2) 104(99) oo oo 375 0/5
Afopt |le2 lel 1e0 5e-1 #succ Afopt |le2 lel 1e0 Se-1 #succ
34 48
MAT-DIR[21(12) 36(13) oo oo 375 0/5 MAT-DIR|1.4(1) 46(69) oo oo 375 0/5
MAT-SMS|19(14) 42(20) 1740(2138) oo 375 0/5 MAT-SMS[1.2(0.5) 31(29) o oo 375 0/5
SMS-EGO| 2.6(1) 253(656) = o0 375 0/5 SMS-EGO|1.8(2) 4.2(2) oo oo 375 0/5
Afopt [le2 lel 1e0 5e-1 F#succ Afopt [le2 lel 1le0 5e-1 #succ
£35 | f49 |
MAT-DIR[1(0) 1(0) 1(0) oo 875 0/5 MAT-DIR|4.2(3) 10(2) 1552(1219) oo 375 0/5
MAT-SMS1(0) 1(0) 1(0) oo 875 0/5 MAT-SMS|2.0(1) 9.4(14) 1846(2625) oo 375 0/5
SMS-EGO|1(0) 1(0) 1(0) oo 375 0/5 SMS-EGO|1.8(2) 2.2(1) oo o0 375 0/5
Afopt |le2 lel 1e0 5e-1 #succ Afopt |1e2 lel 1e0 Se-1 #succ
36 ] 50
MAT-DIR|1(0) 1(0) 125(108) oo 375 0/5 MAT-DIR|118(204) 355(542) s o0 875 0/5
MAT-SMS|1(0) 1.2(0) 119(188) oo 375 0/5 MAT-SMS| 17(16) 367(386) s o0 875 0/5
SMS-EGO|1(0) 1.4(0.5) 255(562) oo 375 0/5 SMS-EGO| 6.2(7) 1503(2344) oo oo 375 0/5
Afopt |1le2 lel 1le0 5e-1 #succ Afopt [le2 lel 1le0 5e-1 #succ
£37 51
MAT-DIR|1.4(0) 3.0(3) 17(25) oo 375 0/5 MAT-DIR|2.2(0.5) 13(11) oo oo 375 0/5
MAT-SMS|2.4(2) 4.4(3) 22(17) oo 375 0/5 MAT-SMS|[1.6(0.8) 13(16) 1643(1029) oo 375 0/5
SMS-EGO[1.2(0.2) 1.4(0.5) 104(379) oo 375 0/5 SMS-EGO[1(0) 3.4(2) oo o0 875 0/5
Afopt [le2 lel 1e0 Se-1 #succ Afopt [le2 lel 1e0 5e-1 #succ
£38 52
MAT-DIR|1.8(1) 10(22) 252(268) oo 375 0/5 MAT-DIR|5.6(2) 60(58) oo oo 375 0/5
MAT-SMS|2.0(2) 9.0(16) 173(416) oo 375 0/5 MAT-SMS|7.6(4) 79(64) o oo 375 0/5
SMS-EGO[1.4(1) 7.6(1) 1720(2719) oo 375 0/5 SMS-EGO[1.8(0.5) 578(1031) oo o0 875 0/5
Afopt [le2 lel 1e0 5e-1 #succ Afopt [le2 lel 1le0 5e-1 F#succ
39 ] 53 ]
MAT-DIR[1(0) 1(0) 39(38) oo 375 0/5 MAT-DIR/|2.4(4) 5.0(10) 295(375) oo 875 0/5
MAT-SMS1(0) 1(0) 39(37) oo 375 0/5 MAT-SMS|2.6(4) 8.0(9) 317(128) oo 875 0/5
SMS-EGO[1(0) 1(0) 254(282) oo 375 0/5 SMS-EGO[1.4(1) 95(188) 1505(2062) oo 375 0/5
Afopt |le2 lel 1e0 Se-1 #suce Afopt |le2 lel 1e0 Se-1 #succ
20 ] 54 ]
MAT-DIR|1(0) 1(0) 39(8) oo 375 0/5 MAT-DIR|1(0) 1.8(1) 1773(1031) oo 375 0/5
MAT-SMS(1(0) 1(0) 37(26) oo 375 0/5 MAT-SMS|1(0) 3.6(3) oo oo 375 0/5
SMS-EGO|1(0) 1(0) 579(482) oo 375 0/5 SMS-EGO|1(0) 1.8(1) oo oo 375 0/5
Afopt |le2 lel 1e0 Se-1 #succ  Afopy [le2 lel 1e0 5e-1 #succ
fa1 55
MAT-DIR[22(46) 157(122) oo o0 375 0/5 MAT-DIR|[1(0) 4.2(8) 813(844) o0 371 0/5
MAT-SMS| 5.4(10) 34(30) oo oo 375 0/5 MAT-SMS[1(0) 2.8(4) 674(851) oo 375 0/5
SMS-EGO| 2.4(2) 252(656) oo oo 375 0/5 SMS-EGO|1(0) 1.4(0.5) oo oo 375 0/5
Afopt |le2 lel 10 5e-1 #succ
f42 |
MAT-DIR| 2.8(2) 32(57) 1566(750) oo 375 0/5
MAT-SMS| 5.0(4) 118(210) 1699(2156) oo 375 0/5
SMS-EGO|11(8) 114(108) o o0 375 0/5

Table 3: Average running time (aRT in number of function evaluations) divided by the respective best
aRT measured during BBOB-2009 in dimension 5. The aRT and in braces, as dispersion measure, the half
difference between 10 and 90%-tile of bootstrapped run lengths appear for each algorithm and target, the
corresponding best aRT in the first row. The different target Af-values are shown in the top row. #succ is
the number of trials that reached the (final) target HV e¢+5 x 107!. The median number of conducted function
evaluations is additionally given in italics, if the target in the last column was never reached. Entries,
succeeded by a star, are statistically significantly better (according to the rank-sum test) when compared to
all other algorithms of the table, with p=0.05 or p = 10" when the number k following the star is larger than
1, with Bonferroni correction by the number of instances. A | indicates the same tested against the best
algorithm of BBOB-2009. Best results are printed in bold.
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Figure 2: Bootstrapped empirical cumulative distribution of the number of objective function evaluations di-
vided by dimension (FEvals/DIM) for 121 targets with target precision in {0,107°*° 10718 ... 10°%8 10%9° 10%}
over all the problems in n € {2,3,5,10,20}.

to solve computationally-expensive black-box multi-objective

optimization problems. The efficacy of the proposed frame-
work has been validated on the COCO platform with 55
bi-objective problems and compared with other established
surrogate-assisted multi-objective optimization algorithms.
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