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ABSTRACT
The paper presents the performance of the DEMO (Differ-
ential Evolution for Multiobjective Optimization) algorithm
on the new bbob-biobj suite of test problems. After limited
parameter tuning that comprised different environmental se-
lection procedures, population sizes and crossover probabil-
ities, we identify a parameter setting different from the de-
fault one that could be considered for future applications.
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1. INTRODUCTION
DEMO (Differential Evolution for Multiobjective Opti-

mization) [7] is a simple multiobjective optimization algo-
rithm that uses Differential Evolution (DE) [8] to explore
the decision space and, originally, nondominated sorting and
crowding distance (as in NSGA-II [2]) to select the best
solutions for the next population. DEMO was later [10]
coupled with environmental selections from SPEA2 [13] and
IBEA [12]. Experiments have shown that on the majority
of the 16 tested problems, the DEMO variants DEMONS-II,
DEMOSP2 and DEMOIB performed significantly better than
the corresponding algorithms NSGA-II, SPEA2 and IBEA.

Apart from the environmental selection procedures, which
stem from multiple objectives and are therefore particular
to DEMO, all the other parameters of DEMO are the same
as for DE, namely population size, crossover probability CR
and scaling factor F . The mentioned study used fixed values
for all DE parameters.

In this study we wish to explore the performance of DEMO
on a new suite of problems called bbob-biobj [9], which con-
tains 55 bi-objective functions with different properties in
10 different instances and 6 dimensions of the decision space

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931708

(2-D, 3-D, 5-D, 10-D, 20-D and 40-D1). In the experiments
we do some (very limited) parameter tuning of DEMO pa-
rameters to see if a different parameter setting should be
considered in future DEMO applications.

2. EXPERIMENTAL SETUP

2.1 Performance Assessment Using the COCO
Platform

All experiments were performed using the COCO (Com-
paring Continuous Optimizers) platform [5], which enables
any-time performance assessment and provides benchmark
test suites, experimentation templates [6] and tools for pro-
cessing and visualizing the data generated by one or several
optimizers. The main difference between the performance
assessment from COCO [4] and the fixed-budget approach
usually used to compare multiobjective optimizers is that
COCO’s performance assessment is based on the runtime
(measured in the number of objective function evaluations)
until a quality indicator reaches a predefined target value.

For the bi-objective bbob-biobj test suite [9], the cho-
sen quality indicator is the hypervolume indicator computed
from all solutions obtained until the given moment [1]. This
is different from the prevalent approach used in evolutionary
multiobjective optimization where only the last population
of solutions counts. The target values are set according to
the hypervolume of a predefined reference set of solutions.

As we have used the bi-objective bbob-biobj suite with 55
functions, 10 instances and 5 dimensions, each experiment
was run on a total of 2750 problem instances. The experi-
ments were performed with COCO version 1.0.1, while the
plots were produced with version 1.1.

2.2 The DEMO Algorithm
DEMO, like DE, works with a population of solutions.

The first population is initialized randomly from [−5, 5]D,
where D is the dimensionality of the decision space, which
is sure to contain the extremes of the Pareto set. From
the first generation on, DEMO is allowed to go spread of
this space to the region of interest of the bbob-biobj suite,
which equals [−100, 100]D and allegedly contains the entire
Pareto set. The different handling of the first population is
an adaption of DEMO to this problem suite and has not been
used before. Other than this, the DEMO implementation
used in these experiments is the same as in [10].

1Due to time limitations we skip experiments on the optional
40-D decision space.
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Table 1: All parameter values used in parameter
tuning of the DEMO algorithm on the bbob-biobj
test suite (D is the problem dimension).

Environmental Population Crossover Scaling
selection size probability CR factor F

NS-II 100 0.3 0.5
SP2 100 0.3 0.5
IB 100 0.3 0.5

NS-II b100 ln(D)c 0.3 0.5
NS-II 20D 0.3 0.5
NS-II b100 ln(D)c 0.1 0.5
NS-II b100 ln(D)c 0.5 0.5
NS-II b100 ln(D)c 0.7 0.5
NS-II b100 ln(D)c 0.9 0.5

At each step, DEMO uses the DE/1/rand/bin strategy to
construct a new solution from three existing solutions and
one parent solution. See [7] for a detailed explanation of
this strategy and the replacement strategy used in DEMO.
In essence, the scaling factor F (usually within (0, 1+]) de-
termines how far away from the current solutions the new
solution will be placed, with smaller values placing it closer
to the existing solutions and larger values placing it further
away. Crossover probability CR ∈ [0, 1] defines the proba-
bility of the new solution to not inherit variable values from
its parent. This means that small values of CR result in the
new solution being very similar to its parent. The values for
these parameters were fixed in [10] as follows:

– population size = 100,

– crossover probability CR = 0.3,

– scaling factor F = 0.5.

The DEMOIB variant follows the environmental selection
from IBEA and can use the binary HD indicator as well as
the binary additive epsilon indicator [12] (in fact, [10] used
both). In this work, we only use the binary HD indicator.

This study explores nine different parameters settings for
DEMO, which are summarized in Table 1. The logic behind
these choices will be explained in Section 3. Each algorithm
run was stopped after 105D evaluations have been reached
and the last population was completed. Results for the best
DEMO variant are finally presented in more detail.

3. RESULTS
In the following we report on the results of the performed

experiments on the first five instances of every problem (the
other five instances are ‘blinded’ for verification purposes).

3.1 Experimenting with Environment Selection
Procedures

In the first set of experiments, we used the default DEMO
parameter settings and modified only the environment selec-
tion procedure. The summary results of these experiments
over all problem instances for each dimension are presented
in the left column of Figure 1.

As we can see, there is almost no difference in the av-
eraged performance between DEMONS-II and DEMOSP2,
while DEMOIB performs considerably worse. A more in-
depth exploration of the results shows (figures not included

Table 2: Population sizes depending on the problem
dimension D.

D b100 ln(D)c 20D
2 69 40
3 109 60
5 160 100
10 230 200
20 299 400
40 368 800

here due to space limitations) that DEMOIB performs bet-
ter than DEMONS-II and DEMOSP2 only on the three test
problems with two separable objectives and its performance
is especially poor on the problems that have at least one
objective with low or moderate conditioning.

It is also very interesting to note that although DEMOIB

generally performs worse than the other two variants, it al-
ways produces much larger archives of solutions that were
nondominated at the time of creation than the other two
variants (archives by DEMOIB are approximately three times
the size of archives by DEMONS-II or DEMOSP2).

Since the performance of DEMONS-II and DEMOSP2 is
similar, we choose the ‘default’ environmental procedure NS-
II, i.e. the original DEMO, for the rest of the experiments.

3.2 Experimenting with Population Sizes
Next, we performed some experiments with different pop-

ulation sizes. DEMO originally used a population size of
100 solutions regardless of the problem dimension (the di-
mensionality of its decision space). The nice experimental
settings provided by COCO enable to explore in more detail
how different performance sizes perform on different prob-
lem dimensions. We fix the other parameter values to their
default values and compare the results of DEMO where its
population size is set to 100, b100 ln(D)c and 20D, where
D is the problem dimension. Table 2 shows their values for
the given dimensions. The results of these experiments are
presented in the middle column of Figure 1.

We can observe that larger population sizes perform worse
at the beginning, but better towards the end. Therefore,
if we are given a large number of total evaluations, larger
populations are preferable. We set the population size to be
equal to b100 ln(D)c in the remaining experiments.

3.3 Experimenting with Crossover Probabili-
ties

When tuned or controlled [3], DE’s parameters CR and F
are usually set together as they are not independent. How-
ever, due to time limitations we were unable to perform an
extensive parameter tuning and have decided to leave F set
to its default value 0.5 and experimented only with CR set
to 0.1, 0.3, 0.5, 0.7 and 0.9. The summary results of these
experiments are shown in the right column of Figure 1.

We see that, with F = 0.5, increasing CR values perform
better mostly on low-dimensional problems, while the oppo-
site is true on high-dimensional problems. Based on these
results we choose 0.9 as the best value for CR.

3.4 Summary
Based on this very limited parameter tuning experiment,

we find that the best results were achieved by DEMO with
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Figure 1: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in num-
ber of objective function evaluations, divided by dimension (FEvals/D) for the 58 targets {−10−4,−10−4.2,
−10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} aggregated over all problem instances of the
same dimension (each dimension is presented in one row). The left column compares different environmental
procedures, the middle column population sizes and the right column the crossover probabilies CR.
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NS-II environmental selection procedure, population size set
to b100 ln(D)c, where D is the problem dimension, CR = 0.9
and F = 0.5. Results of this setting are presented in more
detail in Figure 2, where they are aggregated over functions
with similar properties, and finally in Figures 3, 4 and 5,
which present results for each separate function.

When examining the plots from Figures 2 to 5 it is im-
portant to realize that the performance of DEMO is only
relative to the given reference set. So, better performance
of DEMO on f12 (the Separable ellipsoid/Attractive sector
function) than on f1 (the Sphere/Sphere function) does not
necessarily mean that DEMO solves f12 better than f1, but
that it solves it better relative to the given reference sets.

3.5 CPU Timing Experiment
In order to evaluate the CPU timing of the algorithm,

we have run DEMO with the settings from Section 3.4 on
the entire bbob-biobj test suite for 10D function evaluations.
The C code was run on a Windows 7 computer with Intel(R)
Core(TM) i5-2410M CPU @ 2.60GHz with 1 processor and
4 cores. The time per function evaluation for dimensions 2,
3, 5, 10, 20 equals 1.82 × 10−4, 1.21 × 10−4, 1.45 × 10−4,
1.09× 10−4, 3.64× 10−4 seconds respectively. In total, this
experiment took 9 seconds.

4. CONCLUSION
We have shown how DEMO performs on a new suite of

bi-objective benchmark problems called bbob-biobj. We
have performed experiments with nine different parameter
settings for DEMO and found that the best results were
achieved with NS-II environmental selection procedure, pop-
ulation size set to b100 ln(D)c, where D is the problem di-
mension, CR = 0.9 and F = 0.5. Although the parameter
tuning was by no means complete, it gave some idea on the
influence of these parameters on DEMO’s performance.

Because the whole archive of solutions is used to evaluate
an algorithm’s performance, DEMO (as any other population-
based algorithm that does not keep track of the archive)
could be improved by taking the archive solutions into ac-
count when doing environmental selection (and perhaps also
for candidate creation). Also, results on different population
sizes have hinted that it might be beneficial to start with
smaller populations and increase them later on. It might
also be sensible to look at DEMO as a self-adaptive algo-
rithm (like DEMOwSA [11]), where population size was an-
other parameter to adapt.
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Figure 2: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in num-
ber of objective function evaluations, divided by dimension (FEvals/D) for the 58 targets {−10−4,−10−4.2,
−10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} for all function groups and all dimensions.
The aggregation over all 55 functions is shown in the last plot.
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Figure 3: Empirical cumulative distribution of simulated (bootstrapped) runtimes in number of
objective function evaluations divided by dimension (FEvals/D) for the 58 targets {−10−4,−10−4.2,
−10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} for functions f1 to f16 and all dimensions.
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Figure 4: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of
objective function evaluations, divided by dimension (FEvals/DIM) for the targets as given in Fig. 3 for
functions f17 to f36 and all dimensions.
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Figure 5: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of
objective function evaluations, divided by dimension (FEvals/DIM) for the targets as given in Fig. 3 for
functions f37 to f55 and all dimensions.
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