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ABSTRACT
This paper presents the first implementation of NSGA-II in
neurosurgery preoperative path planning. Deep Brain Stim-
ulation (DBS) is a surgical treatment of Parkinson’s dis-
ease that can be regarded as a multi-objective optimization
problem, searching for the best compromise between mul-
tiple electrode placement rules. Most of the current auto-
matic decision-making processes use aggregative approaches
with single objective optimization, even though they are
known for their inability to find all Pareto-optimal solutions.
Firstly, we show this is the case on 20 datasets of patients by
comparing our implementation of NSGA-II to the weighted
sum (WS) strategy. Then, we show that it requires about
9 hours to find equivalent results using a deterministic scan
of the search space where NSGA-II does it in about 3mn.
This paper presents an objective validation that even sim-
ple techniques such as NSGA-II should be used by surgeons
over more intuitive weighted based methods.

1. INTRODUCTION
Planning a safe and efficient trajectory for a surgical tool

is a crucial and a challenging task that requires a long ex-
perience. The path is usually chosen as the best compro-
mise between multiple surgical rules that can often be con-
tradictory. This is particularly difficult when the targeted
structure is small and/or deeply located and the surround-
ing obstacles are numerous. DBS intervention is performed
to decrease the tremors of Parkinson’s disease. It consists in
implanting a permanent electrode in a small deep nucleus of
the brain, and is a good example of interventions for which
such a preoperative trajectory planning is essential.

Several automatic path planning techniques have been
proposed for DBS in the literature in the past years, for in-
stance [1, 3, 4]. However, they are based on mono-objective
optimization approaches: they combine all the surgical rules
into a single aggregative cost function, after assigning impor-
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tance weights to each objective, and minimize the obtained
function to find an optimal planning strategy. This approach
is intuitive, and sounds close to the current decision making
process but is known to possibly lead to an under-detection
of the optimal solutions in a given search space. The pur-
pose of this work is therefore to better clarify and quantify
the pros and cons of the different optimization approaches
on the particular case of surgical trajectory planning and
compare them to an exhaustive search on a discretization of
the search space, in order to get a good comparison ground.

In this study, the three objectives to optimize for a DBS
intervention are: the proximity to the standard trajectory
defined by expert neurosurgeons and commonly used in com-
mercial platforms, the distance from the electrode to the cor-
tical sulci in which the vessels usually are located, and the
distance from the electrode to the ventricles. These objec-
tives apply to the anatomy of the patient’s brain represented
as a 3D model reconstructed from preoperative images.

2. PROPOSED METHOD USING NSGA-II
The proposed approach is based on a multi-objective evo-

lutionary optimization method based on a Pareto ranking
scheme: NSGA-II (Non-dominated Sorting Genetic Algo-
rithm II) [2], with a complexity of O(mN2), where m is the
number of objectives and N the population size.

The NSGA-II algorithm consists of two phases. Firstly,
an initial population P0 of size N is selected randomly over
an initial solution space S. All the individuals are eval-
uated using the three objective functions described above
and ranked on r Pareto fronts. Secondly, a generational
evolutionary engine iteratively creates offspring populations
Qn of size N by selecting parents using a DBX Dominance
Based Restricted selection on Pn based on the individuals’
rank. Offsprings are created by crossover and mutation pro-
cesses and all children are evaluated along the three different
functions. Then, new ranks are established for population
Pn + Qn as described above, and a new population Pn+1

is formed by adding solutions from the first, second, third,
. . . fronts until the population size is reached. The solutions
of the last accepted front are sorted according to a crowded
distance calculated as described in [2].

The chosen crossover method (applied with probability
of 0.9 and a crossover distribution index etac=10) is BLX-
α, where an offspring ck is generated by a random linear
recombination of its parents p1,k and p2,k as follows: ck =
(1 − γi)p1,k + γip2,k, where γi = (1 + 2α)ui − α with ui
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a random number between 0 and 1, and α = 0.5 in our
experiments. Then a polynomial mutation function with a
probability of 0.5 and a mutation distribution index etam=5
is applied. Child ck is mutated by: ck = ck + (cuk − clk)δk,

where cuk =
ck − bl

bu − bl and clk =
bu − ck
bu − bl , with bu, bl the upper

and lower bounds of the solution space. δk is a small random
variation calculated via a polynomial distribution.

Initialization is done with a population size of N = 2, 000
individuals randomly taken over the surface of feasible entry
points over the skull (Fig.1a). The algorithm is run over 10
generations, and converges to an output front denoted FNS

1 .

3. REFERENCE METHODS

3.1 Weighted Sum
In this method, the single cost function to minimize is ex-

pressed as a weighted sum of all individual objective func-
tions with their respective weighting factors. A classical
mono-criteria optimization technique is then used to mini-
mize f over the space of possible candidate trajectories. An
initialization phase starts the optimization process close to
a known approximated minimum is used to avoid premature
convergence to a local optimum.

Usual approaches for DBS propose an interactive weight
exploration, that allows the surgeon to change the weights
and see possible alternative points. But even by chang-
ing the weights, points in concave Pareto fronts will not
be found. To show this, we computed the set of “optimal”
points obtained with WS by exploring automatically 20,000
possible weights combinations, thanks to a uniform Dirich-
let distribution of the weights. Then we filtered out the
sub-optimal points by computing its Pareto front FWS

1 .

3.2 Discretization Dominance-Based Method
The third method (denoted DISC) is an exhaustive ex-

ploration of a dense uniform discretization of 20,000 points
over the search space (Fig.1b). A Pareto front FDI

1 using the
three objectives is calculated according to the strict domi-
nance rule, and used as a ground truth for our experiments.

4. RESULTS AND CONCLUSION
Our retrospective study was performed on 3D brain mo-

dels reconstructed from 20 preoperative Magnetic Resonance
Images of 10 patients with Parkinson’s disease who under-
went bilateral DBS implant in the subthalamic nucleus. The
tests were done on an Intel Core i7 2.67 GHz.

We compared the surfaces covered by the fronts gener-
ated by the different methods over the search space. Fig.1c
illustrates in green the surfaces covered by FNS

1 and not
dominated by points of FWS

1 , and Fig.1d illustrates in red
the surfaces covered by FNS

1 and not dominated by points of
FDI

1 , for one of the 20 datasets. The average areas for these
surfaces are respectively 50 mm2 with a standard deviation
equal to 41 mm2 and 148 mm2 with a standard deviation
of 44 mm2, for an initial search space of 2,267 mm2 in aver-
age. Approximately 37% of the solutions found by NSGA-II
could not be found by WS exploration. We also observe
that with a similar number of samples, NSGA-II was always
able to find many solutions missed by DISC. In order to es-
timate the level of discretization that would be required to
obtain equivalent results with DISC we ran a search over

(a) NSGA-II: initial popu-
lation (green)

(b) DISC: initial discretiza-
tion (blue)

(c) Solutions found by
NSGA-II not dominated
by WS (green)

(d) Solutions found by
NSGA-II not dominated
by DISC (red)

Figure 1: Initial distributions and optimal areas found by
NSGA-II and not by others, over the surface of feasible entry
points (search space) on the left side of the skull

the number of samples. We found that to surpass NSGA-II,
DISC would need around 650,000 points, with an average
time required to compute the Pareto front of 8 hours 55
mins compared to around 3 min in average for NSGA-II.

This study highlighted that a Pareto-based multi-objective
evolutionary algorithm (NSGA-II) is superior to two other
approaches classically used in the framework of preopera-
tive planning of DBS electrodes in neurosurgery. NSGA-II
can find more optimal entry points than a weighted sum
(even with a wide exploration of the weights) and than an
exhaustive search over a discretization of the search space
comparable to the literature (approx. 1 point every mm).
Finally, we showed that for a result comparable to NSGA-II,
an exhaustive search would require a very dense discretiza-
tion of the search space and a very high computation time
that would not be compatible with clinical use.
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