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ABSTRACT
Surrogate fitness functions are a popular technique for speed-
ing up metaheuristics, replacing calls to a costly fitness func-
tion with calls to a cheap model. However, surrogates also
represent an explicit model of the fitness function, which can
be exploited beyond approximating solution fitness. This
paper proposes that mining surrogate fitness models can
yield useful additional information on the problem to the
decision maker, adding value to the optimisation process.
An existing fitness model based on Markov networks is pre-
sented and applied to the optimisation of glazing on a build-
ing façade. Analysis of the model reveals how its parameters
point towards the global optima of the problem after only
part of the optimisation run, and reveals useful properties
like the relative sensitivities of the problem variables.

Keywords
metaheuristics; surrogates; fitness approximation; decision
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1. INTRODUCTION
Surrogate fitness functions [8, 18, 19] are a useful tool for

improving the efficiency of metaheuristic search. They have
gained popularity in recent years, primarily as a means of
achieving speed up: a computationally cheap surrogate can
take the place of a costly fitness function such as a long-
running simulation or a human-in-the-loop evaluation (e.g.
[7, 8, 19,21,30]).

Surrogates are typically constructed by training a model
either prior to, or in parallel with, the optimization run. A
little-used additional benefit of a surrogate is that it rep-
resents an explicit model of the problem. Given that the
initial motivation for using the surrogate was to improve
the speed of the search, this model is effectively obtained
“for free”; at least in terms of additional CPU time required.
This explicit model can subsequently be mined (similar in
principle to Regression Analysis [12]) to enrich the feedback
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on the problem that is provided to the end user, and support
enhanced decision making. It can be seen as one of several
tools that enable a philosophy of value-added optimisation:
rather than simply offering an optimal solution or solutions
to the decision maker, offering deeper insights to the decision
maker. These insights can include the sensitivity of objec-
tives to the decision variables, possible interactions between
decision variables, or more qualitative feedback on the opti-
mal regions of the search space. Alternative approaches to
achieving value-added optimisation include systematic anal-
ysis of the relationships between variables and objectives [6]
and using solutions arising from the search process to seed
classic sensitivity analysis [34].

Mining of models in metaheuristics has already been demon-
strated in the context of Estimation of Distribution Algo-
rithms (EDAs) [15, 20, 23]. EDAs construct a probabilis-
tic model that reflects the distribution of highly fit solu-
tions in the population, and sample this distribution to yield
new solutions that have a high probability of having high
fitness values. Some existing work has shown how useful
information can be extracted from such probabilistic mod-
els [16,17,26,27]. It has been observed [25] that in some real-
world problems, the information extracted from the EDA
evolution could be as important as the optimisation results.

Naturally, how useful this information will be is highly
problem-dependent. It also depends on the nature of the
surrogate model: black box approaches like artificial neural
networks may prove harder to mine than transparent meth-
ods like functions evolved by genetic programming [24].

This paper revisits the Markov network Fitness Model
(MFM), a probabilistic model of fitness for bit string en-
coded problems originally developed as part of the EDA,
DEUM [28, 29]. Subsequently, the MFM was demonstrated
as a more general model of fitness functions expressed in
terms of their Walsh functions [5]: this was exploited as a
surrogate fitness function [3, 7]. The relationship between
the parameters of the MFM and the global optima for a
given problem can be exploited to yield useful information
about the fitness function. This can be provided alongside
the global optima found during the search, adding value to
the optimisation process for the decision maker.

We begin in Section 2 by making the necessary definitions
and by summarising the MFM. In Section 3, we note how
the model has been mined in the context of other applica-
tions. In Sections 4 and 5 we describe a civil engineering
optimisation problem and some previously published opti-
misation results. In Section 6 we then present some new
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results that demonstrate the mining of the MFM for this
problem to support decision making. Finally, in Section 7
we draw some conclusions.

2. MARKOV NETWORK FITNESS MODEL
We begin with a recap of the Markov Network Fitness

Model. Let Ω = {0, 1}n be the search space (that is, bit
string encoded solutions). f(x) ⇒ R is the fitness func-
tion and X = (X1, . . . , Xn) is the variable vector. Xi = xi
denotes that variable Xi has value xi, and x = x1 . . . xn
denotes a joint configuration of X.

A neighbourhood structure µ is a relation on the variables
{X1, . . . , Xn}. For eachXi, µ(Xi) is a subset of {X1, . . . , Xn},
called the neighbourhood of Xi, satisfying:

{
Xi 6∈ µ(Xi) ∀i
Xi ∈ µ(Xj)⇔ Xj ∈ µ(Xi) ∀i, j

(1)

The neighbourhood structures model the linkage between
variables.

A joint probability distribution on X is denoted p(X).
Similarly, p(x) denotes the probability p(X = x) and p(xi)
denotes the probability p(Xi = xi).

A Markov Random Field (MRF) [22] consists of a set of
random variables X, a neighbourhood structure µ, and a
joint probability distribution p(X). A defining property of
an MRF is that the distribution of a particular variable de-
pends only on its neighbours.

Potential functions VK(x) for each clique K (set of mu-
tually neighbouring variables) given a configuration x are
defined as follows:

For K = ∅ V∅(x) ≡ 1 ∀ x (2)

For K = {Xi} Vi(x) =

{
1 xi = 1

−1 xi = 0
(3)

For K ⊆ {X1, . . . , Xn}, |K| > 2, VK(x) =
∏

Xi∈K

Vi(x)

(4)
We define an energy function as a weighted sum of clique

potentials:

U(x) =
∑
K

αKVK(x) (5)

The Hammersley-Clifford Theorem (see [1]) states that
the probability distribution of a MRF factorises as a Gibbs
distribution:

p(X) =
e−U(X)/T

Z
(6)

Here, T is a temperature coefficient and Z is the nor-
malising constant (never explicitly computed in practice)

Z =
∑

y∈Ω e
−U(y)/T . For this paper, T is constant, with a

value of 1. The probability distribution is completely de-
termined by the neighbourhood structure and its associated
clique potential parameters αK . The set of clique potential
parameters Ψ will now be referred to as the parameters of
the MRF.

Given a MRF, we can construct a graph G from the neigh-
bourhood structure. The nodes of G correspond to the vari-
ables in the setX. We add an edge toG between two nodes if
and only if the corresponding variables are neighbours. The
neighbourhood structure can either be inferred from data or
supplied using domain-specific knowledge: in the problems
we will study it is supplied based on existing knowledge of
the problem.

We define a Markov network model of a set of solutions
to be a pair (G,Ψ) where G is a linkage structure and Ψ
is the parameter set of the associated MRF learned from
the solutions. The key idea of the MFM is identifying the
Gibbs distribution of the Markov network with the mass
distribution of fitness estimated from the population:

p(x) =
e−U(x)/T

Z
=

f(x)∑
y∈Ω f(y)

(7)

Sampling this distribution will generate high fitness in-
dividuals with high probability. This distribution can be
estimated by identifying corresponding terms for each solu-
tion in the expressions forming the right-hand equality in
(7). This gives, for each solution x = x1, . . . , xn, a negative
log relationship between the fitness function and the MRF:

−lnf(x) = U(x) =
∑
K

αKVK(x) (8)

The clique potential functions correspond to the well-known
Walsh Transform [2] which has been widely used in the anal-
ysis of fitness functions in binary spaces [2,13,14]. These are
a set of rectangular waveforms taking the values +1 and -1
which can represent any bit string encoded fitness function
(similar to the use of Fourier transforms for representing
analogue waveforms). With a large enough population of
solutions and their fitnesses, (8) yields a system of equa-
tions in the parameters. The parameters can be estimated
by solving this using a least-squares approximation. (It has
been observed [31] that this stage can be seen as a linear
regression problem).

With the parameters specified, (8) becomes a model of
the fitness function in terms of the parameters. We call
this the Markov Fitness Model (MFM) of f , and we can use
this model to predict the fitness f(x) for solutions. Fur-
ther background to the MFM can be found in [5]. Several
publications, including [29], describe how this is used in the
DEUM EDA.

3. MINING THE MFM
We now consider how the MFM may be further exploited.

[4, 5] also explored in more detail how the α values of G
can be mined to yield insights into the original fitness func-
tion and, in particular, the region around the global optima.
In short, the process is as follows. Equation (8) specifies a
negative log relationship between energy and fitness in the
MFM. This means that minimising energy is equivalent to
maximising fitness. For a univariate term, Vi(x) (i.e. cor-
responding to a single xi), if αi > 0, setting xi = 0 will
minimise energy and thus maximise fitness. Conversely, if
αi < 0, setting xi = 1 will maximise fitness. For terms with
two variables Vi,j(x), then having αi,j > 0 requires that xi
!= xj to minimise energy and thus maximise fitness. Having
αi,j < 0 requires that xi == xj to maximise fitness. So, the
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Figure 1: Pairwise coefficients for checkerboard

signs of the αK point towards the values taken by variables
in the globally optimal solutions. The magnitude indicates
the sensitivity of f(x) to the values taken by each clique.

Two examples explored in [4, 5] were the toy benchmark
problem Checkerboard, and a biocontrol problem. We now
replicate part of those results for illustration. With Checker-
board, the goal is to maximise the number of cells with
oppositely-valued neighbours when the bit string is laid out
in a grid. The structure used for the MFM was the set
of all univariate terms (i.e. one for each variable xi), and
pairwise terms corresponding to the lattice structure of the
checkerboard (i.e. one for each neighbouring pair xi,xj).
The univariate terms were all around zero, implying that
each cell could either be 0 or 1 in the optima. The pairwise
coefficients given from the MFM trained on solutions for
the 25-bit variant of this problem are given in Figure 1. All
the coefficients are positive, implying that neighbouring cells
should take opposite values. In addition, the coefficients for
several of the pairs have a magnitude twice that of the oth-
ers: subsequent analysis revealed that these correspond to
the pairs of cells in the centre of the checkerboard.

The bio-control problem has the objective of minimising
the growth of insect larvae on mushrooms by choosing the
optimal times to spray the crop with nematode worms. So-
lutions are encoded as bit strings: 50 bits representing times
at which the bio-control spray is applied or not applied.
The MFM structure in this case comprised univariate terms,
and pairwise terms representing a chain, i.e. Vi,i+1(x) for
1 < i < n− 1. The univariate coefficients (each correspond-
ing to one bit) for the MFM applied to this problem are
given in Figure 2. Most are positive, indicating that no
spray should be applied at that point. However, a few are
negative, indicating points when the spray should be ap-
plied. These coincide with growth points in the life cycle
of the pest insect larvae being targeted (represented by the
blue dotted line).

For both of these problems, the MFM coefficients have a
clear relationship with the underlying problem, giving point-
ers towards the optimal solutions. Indication is also given
of the sensitivity of the objective to particular variables or
variable interactions. Furthermore, for both problems, the
MFM was generated using only a few hundred randomly

Figure 2: Univariate coefficients for the biocontrol
problem and larval lifecycle

Figure 3: Fully glazed building façade

generated solutions. Further analysis, results and explana-
tion for these problems is given in [4, 5].

4. CASE STUDY: CELLULAR WINDOWS
The problem forming the focus of our case study has pre-

viously been presented in [9, 32, 33]. We seek to optimise
the size, shape and position of windows placed on a building
façade; the goal is a design which minimises energy use and
capital construction cost.

The building in this study is based on an atrium of a
commercial building located in Chicago, USA. The atrium
is 15m wide, 15m long and 8.1m high with only the south-
ern façade exposed to the external environment. The other
three sides of the atrium are connected to interior spaces
that are controlled to have the same thermal conditions as
the atrium. The roof, internal partition walls and the ex-
ternal façade have a light-weight construction; the floor is
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constructed from uninsulated concrete; and the window cells
have a double-glazed construction. The external wall is di-
vided into 120 cells which may be glazed, in a grid 15 wide
and 8 high. Figure 3 shows the fully glazed building.

4.1 Objectives

4.1.1 Energy
The first objective is to minimise the energy use of the

building. This is the unweighted sum total of the energy
used by heating, cooling and lighting systems over a specified
period in a particular set of environmental circumstances.
This is relatively complex as the energy consumption for
the systems varies with the glazing in different ways [33].
Electric lighting demand is reduced by incoming sunlight. In
contrast, at different times of day and in different months,
solar gain can increase cooling energy demand and decrease
heating energy demand. Furthermore, heat losses through
the glass at night have the opposite effect.

These figures are computed by the EnergyPlus building
simulation package [10] and the process is explained in more
detail in [32]. We have chosen EnergyPlus as it is a freely
available simulation in common use among the building de-
sign community. EnergyPlus can be run to simulate the
building’s performance over an entire year, using a publicly
available weather data set for the location. For this problem,
a single run of the simulation takes around 1-2 minutes on a
a reasonably fast (Intel i7) CPU, giving the original motiva-
tion for the use of surrogates to speed up the optimisation.

4.1.2 Cost
The second objective is the minimisation of the construc-

tion cost for the building given the specified window con-
figuration. This is a straightforward linear function of the
number of windows nw and does not involve the simulation
software. The total cost c is defined in equation (9).

cw = 112(120− nw) + 350nw (9)

4.2 Variables and Encoding
The problem naturally lends itself to a binary representa-

tion. The wall is divided into 120 cells in a 15 x 8 grid. Each
cell may be glazed or unglazed. This translates into a 120
variable bit string, where a bit is true for a glazed cell and
false for an unglazed one. Previous papers [9, 32, 33] have
considered several constraints and adding shades to the win-
dows: for simplicity we omit these from the current work.

5. OPTIMISATION RESULTS
Previous publications [9, 33] have presented comparisons

and analysis of results from several multi-objective evolu-
tionary algorithms applied to this problem. The focus of
the present paper is on mining a surrogate model of the
problem, rather than on the optimisation process, so for con-
venience we replicate the best set of results from [33]. The
attainment curve in Figure 4 represents the Pareto-optimal
solutions from the combined final populations of 32 repeat
runs of NSGA-II [11]. The specific choice of algorithm is
unimportant for this work and could be substituted by an-
other that makes use of fitness to drive the search; however
NSGA-II was found to perform well for this problem in a
previous study [9]. The algorithm used binary tournament

Figure 4: Best attainment curve from multi-
objective optimisation run.

Figure 5: Minimal, median and maximal cost solu-
tions from the best attainment curve. White cells
are unglazed, blue cells are glazed.

selection; 100% crossover rate using uniform crossover; sin-
gle bit-flip mutation for each new solution; population size
30 and a stopping criterion of 5000 unique evaluations.

The minimal, median and maximal cost solutions in this
approximated Pareto front are illustrated in Figure 5, mi-
nus the shading overhangs that were present in the original
paper. There is a substantial range of capital costs in the
solutions, reflecting the extra expense of glazing over that
of unglazed wall. The range of energy consumptions for the
solutions is more modest, but is still around 6% of the max-
imal energy consumption, representing considerable savings
in emissions and energy costs over the life of the building.

The approximated Pareto-optimal trade-off and the spe-
cific designs in each solution are already of great value to a
decision maker. However, there are some limits to this. For
example, it would appear that as a result of the algorithm’s
randomness, it has missed the lowest cost solution (that is,
zero glazing). It has also produced slightly odd shapes of
glass on the higher-cost solutions. It would be helpful for the
decision maker to know what the impact might be of mak-
ing small aesthetic changes to the Pareto-optimal solutions.
Essentially, we would like to add value to the optimisation
process, by providing further information on the problem.
In [33], two approaches were taken to adding value.

Firstly, the analysis considered the full Pareto-optimal set,
and presented heat maps (Figure 6) showing the frequency
that each cell was glazed within the approximated Pareto-
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Figure 6: Frequency that each cell was glazed within
the approximated Pareto optimal set.

Figure 7: Local sensitivities around the minimal cost
solution. Arrows indicate the direction of change in
energy consumption caused by mutating that bit in
the solution and the shading shows the magnitude
of the change.

optimal solutions. This shows the glazed cells that are com-
mon to all or most of the optimal solutions (it is unlikely that
these can be changed without impacting on optimality). It
was also cheap to compute as it is a simple summation of
values within the existing approximated Pareto-optimal so-
lutions. However, it is unable to show how the individual
cells impact on the objectives separately.

Secondly, the analysis considered local sensitivity. For se-
lected solutions, each cell was flipped from glazed to unglazed
(or vice-versa), and the change in energy use determined.
This is illustrated in Figure 7. The local sensitivities help to
identify cells that were glazed or unglazed as a result of noise
coming from using a stochastic algorithm, and those which
could be changed without impacting negatively on the ob-
jectives. However, the approach has the disadvantage that it
requires further runs of the building performance simulation.

Both pieces of analysis were useful in their own right, but
could be supplemented with further information.

6. MINING THE SURROGATE
We will now consider how the surrogate can be mined

to add value to the optimisation results, beyond that pro-
vided in the analysis replicated in the previous section. We
consider both objectives to allow for benchmarking of the
approach. Note that, in practice for this problem, the sur-
rogate would likely only be used for the energy objective as
the cost objective is very fast to compute.

For these experiments, the surrogate model of fitness was
constructed in parallel with the optimisation run. This al-
lows for direct comparisons between the additional informa-
tion provided by the surrogate and that arising from the

original optimisation. Work to consider the speed up pro-
vided by using this surrogate in place of some building per-
formance simulations is ongoing. In the present work, so-
lutions evaluated as part of the NSGA-II run were used as
training data for the MFM. This means that currently, so-
lutions are only passed from the algorithm to the surrogate,
but nothing is returned in the other direction.

The structure for the MFM (the neighbourhoods for each
xi) was fixed. Two sets of experiments were performed using
different structures for the MFM.

6.1 Lattice structure
Initially, a lattice structure was adopted for the MFM.

This was based on the intuition that applying glazing to
one cell would impact on whether glazing should be applied
to cells next to it. While this is only true for the energy ob-
jective, the lattice structure was also considered for cost to
allow for comparison. Included in the MFM were all 120 uni-
variate VK (that is, one term for each of the glazed/unglazed
cells). Also included were the 240 pairwise VK representing
neighbouring cells on the façade. This means that there are
361 parameters in the model (including the constant term),
and according to [5], a training population of around 1.1x
this value should be used to obtain a good model.

Thus, the fittest (that is, lowest energy or cost) 400 of the
first 1000 solutions visited by NSGA-II in each run were used
as the training data for a least squares fit to estimate the αK

in the MFM (as per equation (8)). Two MFMs were formed
for each repeat run of NSGA-II: one for the energy objective
and one for the cost objective. These models have a strong
predictive capability: this was demonstrated by using each
model to predict the objective values for 400 randomly gen-
erated solutions. The r2 values comparing the predicted
objective values with the true objective values coming from
the simulation were 0.982 for energy and 0.997 for cost.

The mean and standard deviation for each coefficient αK

in the MFM was then calculated over all the energy MFMs
and over all the cost MFMs. These values are plotted in
Figures 8 and 9. The jump in the value at α number 120 co-
incides with the change from univariate αKs to the pairwise
αKs. It is immediately apparent that for both energy and
cost objectives, the pairwise αK values are all near zero.
This means that they have little to no influence on either
objective: it would seem that only the univariate αK have
any influence on the objectives (having non-zero values in
the MFMs for both objectives) and our intuition on the ap-
propriate structure was incorrect.

6.2 Univariate structure
A second set of experiments repeated the process in the

first, using a univariate structure for both MFMs. That is,
only the 120 αKs for each of the variables were included
in the model. The model was trained on the fittest 140 of
the 400 solutions arising from the first few generations of
the optimisation run. r2 for the models on 400 randomly
generated solutions was 0.993 for energy and 0.998 for cost.

Figures 10 and 11 give the mean αKs for the energy and
cost MFMs respectively. The mean values for these coef-
ficients have also been rendered in Figures 12 and 13 as a
grid so where the coefficient’s location corresponds to the
cell that it represents on the façade. In the latter two fig-
ures, the cells have been coloured to show each coefficient’s
value relative to those of the others: high values being blue,
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Figure 8: The mean coefficient (αK) values for the
energy MFMs. 1-120 are the univariate αK , and 121-
360 are the pairwise αK between neighbouring cells
on the façade. Error bars represent one standard
deviation.

Figure 9: The mean coefficient (αK) values for the
cost MFMs. 1-120 are the univariate αK , and 121-
360 are the pairwise αK between neighbouring cells
on the façade. Error bars represent one standard
deviation.

through white to low values being red. Recall (from the end
of Section 3) that a positive coefficient αi suggests that the
global optimum should have xi == 0, and a negative αi

suggests that the global optimum should have xi == 1. In
this case, all the αk in the model are positive.

For the cost objective, the magnitudes of the αk are highly
similar, indicating that optimal solutions should be unglazed
and that the individual cells make equal contributions to the
cost (i.e. the objective is equally sensitive to all cells). This
matches with the problem definition, whereby an equal cost
is associated with each cell in the façade.

For the energy objective, there is a clear (though small)
bias towards the lower and outer edges of the façade. This
can also be seen in the higher values to the right of Fig-

Figure 10: The mean coefficient (αK) values for the
energy MFMs. 1-120 are the univariate αK , starting
with that corresponding to the top-left cell on the
façade, and working along each row to the bottom
right. Error bars represent one standard deviation.

Figure 11: The mean coefficient (αK) values for the
cost MFMs. 1-120 are the univariate αK , starting
with that corresponding to the top-left cell on the
façade, and working along each row to the bottom
right. Error bars represent one standard deviation.

ure 12. This suggests that cells in those regions should not
be glazed, and any glazing that is present should be con-
centrated in the upper centre (biased slightly to the right
/ East). This matches the patterns seen in the analysis of
the Pareto-optimal front (Figure 6 and the local sensitiv-
ity analysis (Figure 7). However, there are some benefits of
mining this information from the surrogate model in addi-
tion to (or in place of) the other analyses. The bias towards
the centre is identified specifically as driven by the energy
objective not the cost objective (in contrast to simple anal-
ysis of the variables in the Pareto-optimal solutions, where
trends could be driven by either objective). The analysis
is not simply rooted in the final population from the sim-
ulation, but models representing solutions spanning several
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Figure 12: Mean coefficient values for the energy
MFM, arranged to match the locations of cells on
the façade. Blue cells have high values, white
medium, and red have low values.

Figure 13: Mean coefficient values for the cost
MFM.

generations. No additional evaluations are required as the
model was constructed from solutions already evaluated dur-
ing the optimisation (in contrast to the local sensitivity anal-
ysis). It is also concordant with the real-world problem: in
practice we would expect that any glazing should be central
and high up the façade to allow the maximum penetration
of daylight into the atrium with less glazed area, balancing
heat gain, heat losses, and lighting needs (although it is less
clear specifically how much glass there should be or precisely
where it should be placed, thus motivating the use of optimi-
sation). A slight bias to the right (East) also catches more
of the early morning sunlight.

It is important to note that this information in the model
has come from 400 evaluations that were performed anyway
as part of the search process. The MFM is a surrogate for
the fitness function, and can be used to reduce the further
number of simulations required. Consequently, the quali-
tative information that the MFM provides about the rela-
tionship between the problem variables and the objectives
comes with little to no extra cost in terms of CPU time.

7. CONCLUSION
Value-added optimisation is a philosophy of presenting a

decision maker with more than just optimal solutions for a
problem. This can be an indication of the optimality of the
solutions, relationships between problem variables, sensitiv-
ity of the objectives to the variables or simply greater insight
into the underlying problem. This can have several benefits:

• Knowing the sensitive variables, the decision maker
can adjust the returned solutions to reflect factors not
considered by the optimisation (e.g. aesthetics), aware
of the likely impact on optimality. For example, the
optimal solutions for the glazing problem have quite
odd window shapes: these could be reshaped for more
visual appeal within the region suggested by the model.
• The model may indicate where a metaheuristic has not

fully converged on the global optimum.
• If the returned solutions match the conclusions drawn

from the model, the decision maker can have added
confidence in the optimality of the results.

• If the results are counter-intuitive, they may suggest
where potential problems are located in the model used
to calculate the objectives.
• The model may point towards the globally optimal

solutions long before the algorithm has converged on
those solutions. For example, with the glazing prob-
lem, analysis of the model suggested the overall glazing
shape based on observations from the first 1000 solu-
tions of a 5000 solution run. With long-running fitness
evaluations, this could allow for early analysis of what
the optima are likely to look like, which is particularly
helpful if they indicate flaws in the model that might
necessitate a restart.

This paper has applied a surrogate, the Markov network
fitness model (MFM), to the problem of placing glazing on
a building façade. We have presented some analysis of the
model coefficients for this problem, showing how mining the
MFM can be used to add value to the results of the opti-
misation run. As this model is constructed as part of the
optimisation run, the additional information that it contains
can be provided for little - if any - additional computational
cost. This mirrors earlier work [4, 5] on several benchmark
functions showing how the MFM coefficients point towards
the global optima for different fitness functions.

Obviously, in order to generalise this to a much wider
range of problems, considerably more work needs done to
establish a framework for analysis of the coefficients in a
systematic way. It would also be interesting to consider how
the MFM, or other surrogate models, could be applied to
problems with encodings other than bit strings, and mined
in the same way. What this work has done is set out the
possibility that surrogate models can be used to supplement
the optimisation process, enriching the information available
to the decision maker.
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