
Adaptation of Surrogate Tasks for Bipedal Walk
Optimization

Patrick MacAlpine, Elad Liebman, Peter Stone
Department of Computer Science
The University of Texas at Austin

Austin, TX 78701, USA
{patmac, eladlieb, pstone}@cs.utexas.edu

ABSTRACT

In many learning and optimization tasks, the sample cost of
performing the task is prohibitively expensive or time con-
suming. Learning is instead often performed on a less expen-
sive task that is believed to be a reasonable approximation
or surrogate of the actual target task. This paper focuses on
the challenging open problem of performing learning on an
approximation of a true target task, while simultaneously
adapting the surrogate task used for learning to be a better
representation of the true target task. Our work is evalu-
ated in the RoboCup 3D simulation environment where we
attempt to learn configuration parameters for an omnidirec-
tional walk engine used by humanoid soccer playing robots.

1. INTRODUCTION
In this paper we propose ideas on how to use surrogate

tasks to optimize for a given task, while simultaneously
learning how to adapt the surrogate tasks as we traverse
different parts of the parameter space. We focus our investi-
gation on the RoboCup 3D simulation environment in which
autonomous simulated humanoid robots play soccer against
each other. Optimizing values for a set of 25 parameters
that control an omnidirectional walk engine has been one
of the key challenges in this domain [2]. Ideally, we would
want to evaluate sets of walk engine parameters directly on
soccer gameplay. However, that can take days to complete.
For this reason, in the past we have trained a robot how to
walk directly on a hand-designed obstacle course, comprised
of 11 different walking activities [3]. It has been empirically
shown that doing well on the hand-designed obstacle course
is correlated with gameplay success. Other approaches, such
as using an obstacle course consisting of walk trajectories
observed in real gameplay, have proven less successful.
While the hand-designed obstacle course has been an ef-

fective surrogate optimization task, is it possible that chang-
ing/adapting the surrogate task during learning results in a
better learning rate or final walk? In this paper we begin to
explore this question.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20 - 24, 2016, Denver, CO, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931712

2. WALK OPTIMIZATION TASKS
Below we describe our true optimization SoccerGameplay

task, and our surrogate optimization ObstacleCourse task.

2.1 SoccerGameplay Optimization Task
The SoccerGameplay task consists of playing a five minute

game of 4v4 soccer. A team is rewarded for both scoring
goals and also for moving the ball toward the opponent’s
goal. The reward function used for this task is

rewardSoccerGameplay = (goalsFor−goalsAgainst)∗ 1
2
FieldLength

+avgBallXPosition

where avgBallXPosition is the average position of the ball
from the midline in the X (forward/offensive/positive and
backward/defensive/negative) direction since the last goal
was scored or, if neither teams scores, the average position
of the ball from the beginning of the game.

When running the SoccerGameplay task we used a com-
mon fixed opponent: a baseline robot optimized with a
hand-designed ObstacleCourse optimization task [2].

2.2 ObstacleCourse Optimization Task
For the ObstacleCourse task1 the robot tries to navigate

to a variety of WAYPOINT target positions on the field. Each
target is active, one at a time for a fixed period of time,
which varies from one target to the next, and the robot is
rewarded based on its distance traveled toward the active
target. If the robot reaches an active target, the robot re-
ceives an extra reward based on extrapolating the distance
it could have traveled given the remaining time on the tar-
get. In addition to the WAYPOINT target positions, the robot
has STOP targets, where it is penalized for any distance it
travels. The robot is also given a penalty if it falls over.

In the following equations specifying the robot’s rewards
for targets, Fall is 5 if the robot fell and 0 otherwise, dtarget
is the distance traveled toward the target, and dmoved is the
total distance moved. Let ttotal be the full duration a target
is active and ttaken be the time taken to reach the target or
ttotal if the target is not reached.

rewardWAYPOINT=dtarget

ttotal
ttaken

−Fall; rewardSTOP=−dmoved−Fall

The duration of an ObstacleCourse task is fixed at 160
seconds. An ObstacleCourse task can be run faster than real-
time, however, and thus is completed in ∼30 seconds (an
order of magnitude faster than the SoccerGameplay task).

1ObstacleCourse optimization task video at
www.cs.utexas.edu/˜AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2011/html/walk.html

1275

3. ADAPTING SURROGATE WALK TASKS

Algorithm 1 Surrogate Adaptation Optimization Process

Input:
N \\True task sample frequency

1: gen := 1
2: P := initializePopulationCMAES()

3: B := initializeBasisTasks()
4: loop

5: if gen%N = 1 then

6: trueFits := []
7: surrFits := []
8: B′ := B ∪ generateNewBasisTasks(B)

9: for each p ∈ P do

10: trueFits := trueFits ∪ SoccerGameplay(p)
11: for each b ∈ B′ do
12: surrFits := surrFits ∪ ObstacleCourse(b, p)
13: B := rankBasisTasks(B′, trueFits, surrFits)
14: P := updatePopulationCMAES(trueFits)
15: else
16: surrFits := []
17: for each p ∈ P do

18: surrFits := surrFits ∪ ObstacleCourse(B, p)
19: P := updatePopulationCMAES(surrFits)
20: gen := gen + 1

Pseudocode for the process of adapting surrogate tasks
during optimization is shown in Algorithm 1. First, an ini-
tial set of walk parameter sets is generated by the CMA-ES
algorithm [1] (line 2), and a set of randomly generated Ob-

stacleCourse subtasks to be used as basis surrogate tasks for
optimization are created (line 3).
Every Nth generation of CMA-ES the set of basis Obsta-

cleCourse subtasks (B) is doubled in size by calling gener-

ateNewBasisTasks() to create B′ (line 8). The generate-

NewBasisTasks() function creates new ObstacleCourse sub-
tasks from current ones as described in Section 3.1. Each
parameter set in P is then evaluated on each of the Obstacle-

Course subtasks in B′ (line 12) as well as on the SoccerGame-

play task (line 10). Using these evaluations, the rankBasis-
Tasks() function ranks all basis ObstacleCourse subtasks on
how correlated they are with the SoccerGamepley task, and
then sets B to be the top half of ObstacleCourse subtasks in
B′ with the highest correlation (line 13). How rankBasis-

Tasks() computes correlations is described in Section 3.2.
Finally, CMA-ES updates the population of parameter sets
P for the next generation using the fitness evaluations of the
parameter sets from the SoccerGameplay task (line 14).
For all non-Nth generations of CMA-ES each parameter

set in P is evaluated on the ObstacleCourse task consisting of
all basis ObstacleCourse subtasks in B concatenated together
(line 18). These fitness evaluations are used by CMA-ES to
update the population for the next generation (line 19).

3.1 ObstacleCourse Task Generation
To generate new ObstacleCourse tasks from current ones

the generateNewBasisTasks() function uses crossover and
mutation operators. To generate a crossover, two different
existing ObstacleCourse subtasks are randomly chosen to be
combined. Next, a random subsequence from each of these
ObstacleCourse subtasks is selected, and the subsequences
are concatenated to produce a new ObstacleCourse subtask.
To create a mutation variant for a given ObstacleCourse

subtask each target in the ObstacleCourse subtask is with a
probability of 50% randomly mutated. Mutations consist of
one of four possible operations each with equal probability:
removal of the target, insertion of a new target next to the
existing target, toggling the target’s type (WAYPOINT or STOP,

and adding small random values to the target’s parameters.
To expand our set of basis functions by generating K new

ObstacleCourse subtasks, we create K/2 crossovers and K/2
mutations at random, and add them to the basis task set.
In our experimental setting, K = |B|. All generated Obsta-

cleCourse subtasks’ durations are fixed to be 1/|B| in length
by normalizing their targets’ durations to sum to this value.

3.2 ObstacleCourse Task Ranking
Given the fitness of walk engine parameter sets on both

the SoccerGameplay task and all basis ObstacleCourse sub-
tasks, the rankBasisTasks() function ranks each of the ba-
sis ObstacleCourse subtasks on how closely correlated their
fitness evaluations of walk parameter sets are to that of the
SoccerGameplay task. Spearman’s rank correlation, which
measures the ordinal difference between two ordered sets of
values, is used when ranking the ObstacleCourse subtasks.

4. RESULTS

Figure 1: Learning rate on the SoccerGameplay task over time.

We optimized walk engine parameters directly on the Soc-
cerGameplay task, on random fixed ObstacleCourse tasks,
and also ObstacleCourse tasks that were adapted during op-
timization. For the ObstacleCourse tasks we sampled the
SoccerGameplay task every fifth generation to guide learn-
ing, and when adapting ObstacleCourse tasks we used 10
basis ObstacleCourse subtasks.

Figure 1 shows learning curves over running time of the av-
erage fitnesses of CMA-ES populations on the SoccerGame-

play task when using CMA-ES with a population size of 150
across 300 generations of learning. Both of the Obstacle-

Course task curves were averaged across three separate op-
timization runs each. The results show that we are able to
improve walk engine parameters when learning with Obsta-

cleCourse surrogate optimization tasks much faster than di-
rectly using the SoccerGameplay task for optimization. Addi-
tionally, adapting the ObstacleCourse task during optimiza-
tion shows some improvement over using a random fixed
ObstacleCourse task, and achieves close to the same perfor-
mance as directly optimizing with the SoccerGameplay task.

5. REFERENCES
[1] N. Hansen. The CMA Evolution Strategy: A Tutorial, January

2009. http://www.lri.fr/˜hansen/cmatutorial.pdf.

[2] P. MacAlpine, S. Barrett, D. Urieli, V. Vu, and P. Stone. Design
and optimization of an omnidirectional humanoid walk: A
winning approach at the RoboCup 2011 3D simulation
competition. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence (AAAI), July 2012.

[3] P. MacAlpine, E. Liebman, and P. Stone. Simultaneous learning
and reshaping of an approximated optimization task. In AAMAS
Adaptive Learning Agents (ALA) Workshop, May 2013.

1276

