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ABSTRACT
Surrogate-assisted meta-heuristic algorithms are promising
methods for solving computationally expensive optimization
problems. It is usually assumed that the computational ef-
fort required for building and using surrogates is much less
than that for calculating the fitness using the real fitness
function. Different surrogate models, such as polynomi-
als, kriging (also known as Gaussian process) and neural
networks, have been proposed to assist population based
meta-heuristics to solve computationally expensive problems
[4][3][2]. In many cases, surrogates are meant for approxi-
mating the global fitness profile during the optimization,
which however, may become infeasible, especially when the
input dimension of the objective function, i.e., the number of
decision variables, becomes high. Due to the limited number
of training samples, global surrogates will become inaccurate
and may introduce false optimums, which can mislead the
evolutionary search. By contrast, local surrogate models
aim to approximate a small region of the objective function,
which is relatively easier to achieve with a limited number of
training data. Although quite a large number of surrogate
assisted meta-heuristic algorithms have been proposed, most
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of them work only for relatively low dimensional optimiza-
tion problems. This might be attributed to the fact that it is
extremely challenging to train an accurate surrogate model
when the computational budget is limited for high dimen-
sional problems. As far as we know, the maximum dimen-
sion of optimization problems solved by surrogate-assisted
evolutionary algorithm is 50, which was reported in Liu et
al. [5]. The authors proposed a Gaussian process surrogate
model assisted differential evolution for medium-size compu-
tationally expensive optimization problems, in which prin-
cipal component analysis was used to reduce the dimension.

In this paper, we aim to develop a surrogate assisted evolu-
tionary algorithm for solving large scale optimization prob-
lems having up to 500 decision variables. To this end, we
adopted a recently proposed meta-heuristics, termed com-
petitive swarm optimizer (CSO) [1] that was developed for
large scale optimization. Since local surrogate models can
more reliably approximate the fitness values than global
ones, in this paper, we develop a new fitness inheritance
technique, which can be seen a specific local surrogate model,
to assist the CSO. Fitness inheritance was originally pro-
posed for genetic algorithms [6] and was extended to PSO
by Sun et al. [8], called FESPSO. In FESPSO, if the fitness
of a particle is known, the fitness of its closest neighbour
will be estimated according to the positional relationship
between the two particles. Later on, a similarity measure
was introduced into FESPSO in order to further reduce the
number of expensive fitness evaluations [7]. Compared with
computational model based surrogates, fitness estimation
techniques proposed in [8] and [7] have the following ad-
vantages. First, these fitness estimation strategies do not
require an external archive to save the historical informa-
tion. Second, they are computationally much more efficient
than most model based surrogate techniques. Finally, fit-
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ness estimate techniques are less sensitive to the number of
decision variables. For these reasons, this paper proposes a
fitness approximation assisted competitive swarm optimizer
(FAACSO) by extending the fitness estimation technique
proposed in FESPSO to the competitive swarm optimizer [1]
to speed up convergence in solving large scale expensive op-
timization problems with limited computational resources.
Different from the typical surrogate models, the fitness ap-
proximation strategy proposed in this paper is based on the
positional relationships between the individuals according
to the updating mechanism in CSO. Despite its simplicity
in algorithmic implementation, FAACSO has been shown to
perform well on large scale optimization problems, outper-
forming the original CSO and a PSO with a similar fitness
approximation strategy. We conducted experiments on 100-
D and 500-D problems. The overall goal is to see whether
the proposed FAACSO can obtain better solutions under a
limited number of fitness evaluations than the compared ap-
proaches. To the best of our knowledge, this is the first time
that a surrogate assisted meta-heuristic algorithm has been
tested on large scale optimization problems.
In addition, the following two observations can be made

from the obtained experimental results. First, as a local sur-
rogate model, fitness estimation strategy can help improve
the convergence speed, although it cannot help the search al-
gorithm escape from local optimums. Second, as the real ex-
pensive fitness evaluation is replaced by the cheap fitness ap-
proximation, in which the approximated values are supposed
to be close to the real fitness, the swarm has more chance
to obtain better solutions, as more iterations of search can
be afforded under the same number of fitness evaluations
using the real fitness function. It should be noted that we
assume that the computational cost for fitness estimation is
negligible in comparison with that of calculating the fitness
using the real fitness function.
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