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ABSTRACT
In this paper the insertion of the crowding-distance tech-
nique in a multiobjective genetic algorithm with phenotypic
crowding is carried out for the protein structure prediction
(PSP) problem. The main goal is obtain a more diversified
and well distributed Pareto frontiers at the end of the opti-
mization process. Three classical force field potentials, three
hydrogen bond potentials and a hydrophobic compactation
term were combined in two configurations with different ob-
jectives for the fitness function. A set of 45 proteins was used
to evaluate the performance of the predictions. The results
were compared against the previous mono- and multiobjec-
tive approaches, and with QUARK and MEAMT, two con-
solidated free-modeling PSP methodologies. The strategy
proposed here was able to obtain improvements in the pre-
dicted models relative to the previous mono- and multiob-
jective approaches, proving to be quite promising in dealing
with the PSP problem.

CCS Concepts
•Applied computing→Molecular structural biology;
•Mathematics of computing→ Evolutionary algorithms;

Keywords
Protein Structure Prediction, Multiobjective Optimization,
Crowding-distance, Genetic Algorithm

1. INTRODUCTION
Proteins are macromolecules which exhibit a wide variety

of functions, operating in practically all biological processes.
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They are formed by 20 amino acids, combined into sequences
of several lengths. The protein structure prediction (PSP)
problem consists in predicting the native three-dimensional
conformation of the molecule (tertiary structure) from the
information stored in its primary structure (the amino acids
sequence) and it is often described as the most challenging
problem in computational biology [21]. The 3D structure
of a protein highlights crucial information about its func-
tion, and thus, a better understanding of its role in complex
biological systems can be inferred [2].

Computational methods for PSP are justified because the
experimental determination is costly and can take several
months [25]. Furthermore, large scale sequence determi-
nation, mainly from genome projects, results in a growing
number of proteins with unknown structure [35].

The efficiency of a PSP method depends (i) on a “free en-
ergy function” (the evaluation function), which models the
forces participating in the folding process and, ideally, ranks
the native structure as the global minimum [1, 25], and (ii)
on a efficient search strategy, which should be able to deal
with thousands of degrees of freedom in a multimodal energy
landscape with large regions of unfeasible conformations [23,
10, 29, 25]. As a result, the PSP problem has a high com-
putational cost and cannot be approached with exhaustive
searches, the most common approaches to the problem em-
ploying metaheuristics [34, 4].

Genetic algorithms (GAs), a particular kind of evolutive
algorithm [19], are a broadly applied metaheuristic in opt-
mization and search problems, such as the PSP. The GA
choice is justified because it (i) is a population based method
capable of simultaneously exploring multiple regions of the
search space, (ii) is capable of working efficiently with mul-
timodal problems and (iii) does not require a differentiable,
or even continuous, evaluation function [19, 21].

Those features make the GA well suited for application in
multiobjective (MO) optimization problems [5]. A mono-
objective GA can be easily modified to find an approxima-
tion of the Pareto set. A MO problem has a number of
evaluation functions where each one can represent a distinct
objective to be optimized. Some objectives can be conflict-
ing, and in that case there is no optimal solution, but rather
a set of “efficient” solutions, the Pareto-optimal set. This
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set is comprised of solutions where there is no possibility of
improving one objective without diminishing another. That
way, multiobjective genetic algorithms guide a population to
the Pareto-optimal set, ideally avoiding premature conver-
gence, that is, maintaining a diverse population of solutions
[13, 5].

Recently, three prominent methods to achieve greater di-
versity in the Pareto-set were proposed: the archive trun-
cation procedure of the Strength Pareto Evolutionary Algo-
rithm (SPEA2) [36], the crowding-distance technique of the
Non-dominated Sorting Genetic Algorithm (NSGA-II) [14],
and the grid-based density of the Adaptive Grid Algorithm
(AGA) [24]. These methods supplant the previous strategies
[15, 16, 26] which generally use fitness sharing, and had low
efficiency and high computational cost.

The PSP can be appropriately represented as a multiob-
jective optimization problem (MO) because frequently there
is a conflict scenario in the energy landscape between differ-
ent objectives in a single conformation [12, 18, 8, 22]. Fur-
thermore, by combining (in objectives) the different poten-
tials in varied ways the MO approach allows an interesting
(and novel) exploration of the distinct terms constituting
the energy function.

Another point is that the MO approach allows the use of
non force field additional terms (e.g. hydrogen bond poten-
tials, hydrophobic compactation [22]) in a more natural and
straightforward way by avoiding the use of weighting coeffi-
cients to couple them with classical force fields (FF ) [33, 9,
7], as is necessary for the mono-objective approach.

In the last few years, some strategies have been presented
for the study of PSP problems using MO approaches [12,
21, 6, 22].

In our recent work [22], a multiobjective steady-state ge-
netic algorithm with phenotypic crowding for free-modeling
PSP (i.e., prediction without the use of template structures)
was developed. This MO approach showed better prediction
results when compared to the mono-objective approach (SG)
[11]. The configuration with three objectives (MO3HB)
showed better exploration of the energy landscape and also
obtained significant improvements in the quality of the pre-
dicted models when compared to other well established free-
modelling methods, such as QUARK [34]. However, that
algorithm [22] had no explicit strategy for maintaining a di-
verse and well distributed Pareto frontier. Furthermore, it
utilized on one of its steps a single objective to choose be-
tween two solutions, which makes that approach dependent
on the knowledge of the researcher in choosing one objective
over the others and hinders further tests involving modifica-
tions on the energy potentials modelling the problem.

In this work a modification of our previous algorithm
is proposed aiming at increasing the diversity of the solu-
tions in the Pareto front and making the method indepen-
dent from the selection of an objective. For these purposes,
the Crowding-Distance technique (originally proposed in the
NSGA-II) [14] is employed.

The paper is organized as follows. Section 2 describes the
multiobjective genetic algorithms and the implementation
of crowding-distance during parental replacement. Section
3 shows the experiments carried out, the results obtained,
and pertinent discussions. Finally, conclusions are given in
section 4.

2. A MULTIOBJECTIVE STEADY-STATE
GA WITH PHENOTYPIC CROWDING
ENHANCED BY CROWDING-DISTANCE

Rocha et al. [22] developed a multiobjective steady-state
genetic algorithm with phenotypic crowding for PSP, which
was implemented in the GAPF (Genetic Algorithm for Pro-
tein Folding) program [11]. In the next sections the basic
operation of the MO algorithm is introduced and the mod-
ifications proposed here with the insertion of the crowding-
distance technique on the parental replacement procedure
are highlighted.

2.1 The Algorithm
The algorithm is briefly described in Algorithm 1, where

the maximum number of function evaluations is the stop cri-
terion (NEvalsMax) and the current iteration (current num-
ber of function evaluations) is denoted by t.

Algorithm 1 Basic operation of the MO genetic algorithm.

Begin
Generate initial population (sec. 2.4)
Evaluate the population (sec. 2.5)
for t = 0 until NEvalsMax do

Parental selection tournament (sec. 2.2)
Apply genetic operator on parents (sec. 2.6)
Evaluate offspring (sec. 2.5)
Parental replacement (Fig. 1) (sec. 2.3)

end for
End

The dominance and Pareto-front criteria were applied to
compare two candidate solutions involving multiple objec-
tives. Given two solutions x and y, it can be said that x
dominates y if the following two conditions are satisfied: (i)
x is at least equal to y in all objectives; (ii) x is better than
y at least in one objective.
D(x, y) is the measure of dominance between two solutions

x and y applied here. It returns 1 if x is not dominated by
y, and 0 if x is dominated by y [22].

The frontier value of a given solution x, FR(x), denotes
the number of individuals who do not dominate it, and is
calculated as follows [22]:

FR(x) =

n∑
y=1,y 6=x

D(x, y) (1)

where n is the population size. Thus, the higher the FR(x),
the better the frontier.

Two steps were modified in Rocha et al. [22] to make the
original mono-objective GA applicable in a multiobjective
optimization: the Parental Selection Tournament and the
Parental Replacement.

2.2 Parental Selection Tournament
In this tournament, n parents are randomly selected from

the current population, Pt. Let y1 and y2 be two possi-
ble progenitors. y1 wins y2 if: (i) D(y2, y1) = 0, or (ii)
FR(y1) > FR(y2). If conditions (i) and (ii) are not fulfilled
(no dominance between them) then one of the parents is
selected by a random draw.
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2.3 Parental Replacement with Phenotypic
Crowding enhanced with Crowding-Dis-
tance Technique

In PSP methodologies a structural proximity criterion in
the crowding procedure is an interesting strategy [11]. The
GAPF program uses the phenotypic crowding in the parental
replacement and it has been maintained in the MO ap-
proach. To verify the similarity between individuals the dis-
tance matrix error (DME) of the position of the α-carbons
of hydrophobic residues is used [22].

The phenotypic crowding strategy provides a good explo-
ration of the energy landscape by allowing the concurrent
identification of multiple minima and promoting the mainte-
nance of useful population diversity. These significantly im-
prove the chances of global minimum identification. When
a MO approach is employed, care must be taken about the
distribution and diversity of solutions in the Pareto-front
itself.

The previous approach [22] did not employ any strategy to
maintain diversity within the Pareto-front during parental
replacement, furthermore, in one of its steps, the criterion
used to select candidate solutions is based in a chosen objec-
tive, in that case the hydrogen bonding potential HB (Al-
gorithm 3). Here a modification to the phenotypic crowding
is introduced with the application of the crowding-distance
strategy [14] that has been successfully applied in MO opti-
mization problems resulting in diverse and well distributed
solution sets. Furthermore, it is no longer required to select
an objective as a criterion during the parental replacement
step.

The crowding-distance is a technique proposed by Deb
[14] and employed in NSGA-II (Non-dominated Sorting Ge-
netic Algorithm II). This strategy guarantees the diversity of
solutions with an estimated density of solutions in the neigh-
borhood of each population individual. That is achieved by
calculating the crowding-distance CD, that is, the sum of
the normalized distances between two adjacent solutions for
each individual, relative to all objectives. The least crowded
solution is the one with the highest crowding-distance value
(Algorithm 2).

Algorithm 2 Crowding-distance technique.

Begin
set T = population size
set M = number of objectives
for i = 0 until T do

set CD[i] = 0
end for
for m = 0 until M do

sort the population according to the m-th objective;
Fm[1] = Fm[T ] =∞
for i = 2 until T − 1 do
CD[i] = CD[i] + Fm(i+1)−Fm(i−1)

Fmax(m)−Fmin(m)

end for
end for
End

In algorithm 2, CD[i] is the crowding-distance value of the
i-th solution; Fm(i) is the value of the m-th objective for the
i-th solution; Fmax(m) and Fmin(m) are the maximum and
minimum values of the m-th objective, respectively. The
boundary points Fm(1) and Fm(T ), for each objective func-

tion, are initialized equal to infinity. Thus, they have the
maximum crowding-distance value and are always selected.

2.3.1 The Comparison Between The Algorithms
Let Y be the new offspring, and W the most similar (low-

est DME with respect to Y ) solution in the parental popula-
tion Pt. The algorithms 3 and 4 depict previous and current
versions of the parental replacement procedure.

In the previous algorithm, from Rocha et al. [22], when
there is no dominance between Y and W , and both have
the same FR(x) (Eq. 1) value, the HB potential is used to
choose the best solution, i.e., the one that will remain in
the population. Here, under such conditions the CD is the
metric used to choose between the two solutions. Figure 1
shows the complete parental replacement procedure using
both phenotypic crowding and crowding-distance.

Algorithm 3 Phenotypic Crowding with No Standard De-
cision (Based on the expert) [22]. Y replaces W if:

(i) D(W,Y ) = 0;
(ii) FR(Y ) > FR(W ), if there is no dominance between
them;
(iii) if FR(Y ) = FR(W ) = best front, W is kept and Y
replaces a random element in the P(t+1), if the previous
conditions are not fulfilled;
(iv) HB(Y ) < HB(W ), if the previous conditions are
not fulfilled.

Algorithm 4 Phenotypic Crowding with Crowding-
Distance (with Standard Decision). Y replaces W if:

(i) D(W,Y ) = 0;
(ii) FR(Y ) > FR(W ), if there is no dominance between
them;
(iii) CD(Y ) >= CD(W ), if the previous conditions are
not fulfilled.

2.4 Representation of Solutions and Initial
Population

The backbone dihedral angles φ, ψ and ω are able to de-
scribe the protein 3D organization. In the program, a chro-
mosome containing a triplet {φ, ψ, ω} for each residue in the
sequence represents a possible solution (3D conformation).

A coarse-grained representation [27, 17] is used to reduce
the computational cost required to evaluate the energy of
a particular conformation. In this representation, the side
chain atoms are replaced by a super-atom located at its geo-
metric center, while all polar backbone atoms are explicitly
included.

New candidate solutions are achieved by genetic operators
which change the dihedral angles φ and ψ. The peptide bond
angle ω does not change during the search, being kept in its
trans configuration (180 ◦).

The initial population is created from a fragment library
(set of angles φ, ψ and ω) using the information of the sec-
ondary structure prediction provided by PSIPRED program
[20, 30].

2.5 The Fitness Function
To evaluate each candidate solution, the following com-

ponents of the energy function, available in the GAPF pro-
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New offspring Y

D(Y,W) = 0

Y replaces W in P(t)

P(t+1)  is formedFR(W) > FR(Y)

CD(Y) >= CD(W)

Keeps W No

Yes

FR(Y) > FR(W)

Keeps W

Y replaces W in P(t)

No

No

No

Yes

Yes

Yes
D(W,Y) = 0

Yes

No

Search for the 
closest to Y (W)

using DME

Figure 1: Parental Replacement with Phenotypic Crowd-
ing enhanced with Crowding-Distance Technique. Pt is the
population in the tth evaluation function.

gram, were used:

1) Classical Force Field Terms (FF ): composed of three
potentials of GROMOS96 force field [33, 31] as follows:

FF = LJ + Coul +Dihed (2)

where, LJ , Coul andDihed represent Lennard-Jones, Coulomb
and Dihedral potentials, respectively.

2) Hydrogen Bonds Terms (HB): three potentials were
used to model the hydrogen bonds contribution [22, 28]:

HB = HBhx +HBst +HBatt st (3)

where, HBhx is the Hydrogen Bond Potential for α-helix,
HBst is the Hydrogen Bond Potential for β-sheet andHBatt st

is the Attractive Hydrogen Bond Potential for β-sheet. These

potentials require previous information about the secondary
structure arrangements of the target protein and PSIPRED
was used as a predictor.

3) Hydrophobic Compaction Term (Cpk): models the burial
of hydrophobic residues minimizing the distances between
the side-chain super-atoms of these residues.

More information about such potentials can be found in
Rocha et al. [22].

2.6 Genetic Operators
An adaptive scheme based on the quality of the generated

structure determines the probability of using each of the six
following operators [11]: (i) two crossovers (Two-point and
Multiple-point); (ii) three mutations (Incremental, Compen-
satory, Segments); (iii) fragments insertion [32].

3. RESULTS

3.1 Test Set and Parameters
To allow for fair comparisons, the same settings used in

the previous mono-objective (referred to here as SG) and
multiobjective (referred to here as MOHB) GAPF predic-
tion protocol were applied in this work.

The parameters for the genetic algorithm were: 30 in-
dependent runs per target sequence, maximum of 300,000
function evaluations, population size of 200 and parental se-
lection tournament with four candidates (n = 4).

A test set of forty five proteins with known and diverse 3D
structures, obtained from the Protein Data Bank [3] (PDB),
were used to evaluate the method’s performance (Table 1).

Table 1: The protein test set.

PDB Length Class PDB Length Class PDB Length Class
2rlg 18 α 2jzq 57 α 1f7m 46 β
1l2y 20 α 1bdd 60 α 1k36 46 β
1sol 20 α 1i2t 61 α 1msi 70 β
2xl1 24 α 1uzc 71 α 1qjo 80 β
1wqc 26 α 1xzy 90 α 1fna 91 β
1amb 28 α 1sxd 91 α 2kp0 33 αβ∗

1fsd 28 α 1k40 126 α 1crn 46 αβ
1psv 28 α 2evq 12 β 1e0g 48 αβ
1vii 36 α 1niz 16 β 2hbb 51 αβ
1erc 40 α 1e0n 27 β 2gb1 56 αβ
2p81 44 α 1g26 31 β 3fil 56 αβ
1f4i 45 α 1e0l 37 β 1dtk 57 αβ
1bbl 51 α 1i6c 39 β 1orc 71 αβ
1enh 54 α 2dmv 43 β 2rpv 75 αβ
1fyj 57 α 1ed7 45 β 1h5p 95 αβ

PDB: protein code in Protein Data Bank. Length: number
of amino acid residues. Classes of proteins: α: mainly-α; β:
mainly-β; ∗αβ: includes proteins of classes α/β and α+β.

The fitness function (described in section 2.5) was broken
down into different objectives, and two configurations were
evaluated using (Table 2): (i) two objectives (MO2CD); (ii)
three objectives (MO3CD).

The division was carried out in order to keep the poten-
tials of the classical force field together on the same objec-
tive, and separated from the other additional terms.
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Table 2: Distribution of the fitness function terms in objec-
tives.

Algorithm Objective 1 Objective 2 Objective 3
MO2 FF HB + Cpk —
MO3 FF HB Cpk
SG FF +HB + Cpk — —

SG (single-objective): mono-objective approach, is the
GAPF original version used as reference. MO2 and MO3:
multiobjective approaches developed with, respectively, two
and three objectives.

3.2 Predicted 3D-Conformations: Structural
Quality

To assess the quality of the predicted models a metric
of structural similarity called Root Mean Square Deviation
(RMSD) was applied. The lower the value of RMSD, the
closer the model is to the native structure. Models with
RMSD values lower than 4.0 Å are considered good, and
values larger than 6,0 Å show no structural similarity. Only
backbone atoms were used in the RMSD calculations com-
puted for all structures of the final population of each run
(Figure 2).

Table 3: Number of proteins with good predicted structures.

Class SG MO3HB MO2CD MO3CD

Mainly-α 11 12 15 15
Mainly-β 4 5 5 5
αβ 0 1 0 2
Total 15 18 20 22

SG (single-objective): mono-objective approach, is the
GAPF original version used as reference. MO3HB : multi-
objective approach of Rocha el al. [22] with three objectives.
MO2CD and MO3CD: multiobjective approaches developed
in this work with, respectively, two and three objectives. A

good predicted structure shows < 4.0 Å relative to the na-
tive reference structure.

Table 4: Number of targets per range of RMSD.

SG MO3HB MO2CD MO3CD

< 4.0 Å 15 18 20 22

< 5.0 Å 24 28 28 31

< 6.0 Å 32 34 33 36

SG (single-objective): mono-objective approach, is the
GAPF original version used as reference. MO3HB : multi-
objective approach of Rocha el al. [22] with three objectives.
MO2CD and MO3CD: multiobjective approaches developed
in this work with, respectively, two and three objectives. A

good predicted structure shows < 4.0 Å relative to the na-
tive reference structure, and a informative prediction shows

RMSD value < 6.0 Å.

The proposed algorithm (MOCD), using two or three ob-
jectives, was able to improve the quality of the predicted
models compared to the mono-objective SG and the previ-
ous best MO version (MO3HB) (Figure 3).

Using the MOCD during parental replacement, GAPF
generated good models (RMSD < 4.0 Å) and informative

models (RMSD < 6.0 Å) for a larger number of targets
than the SG and MO3HB algorithms (Tables 3 and 4).

Table 4 shows that the crowding-distance version with
three objectives, MO3CD, produced the best results increas-
ing the number of targets predicted with good models, com-
pared to MO3HB , from 40.0% of the targets (18 targets) to
48.9% (22 targets).

This result agrees with the proposed in Rocha et al. [22],
that the division of the fitness function in three objectives is
the best configuration for this approach to the PSP problem.

The results were compared against two other free-modeling
PSP methodologies: QUARK [34], which uses a replica-
exchange Monte Carlo simulation; and the MEAMT[6], which
is also a multiobjective genetic algorithm approach. The
best model sent by QUARK server was used in the com-
parisons. For MEAMT, the values refer to the best model
(selected with the lowest RMSD) of the round with the best
average RMSD, among the ten rounds performed. The al-
gorithms MO3CD produced better results than: QUARK in
57.50% (23 of 40) of the targets and than MEAMT in 80%
(28 of 35) of the test proteins in common (Table 5).

Table 5: Comparative analysis with other methods.

PDB MO3CDQUARKMEAMTPDB MO3CDQUARKMEAMT

2RLG 1.33 – 1.55 1NIZ 2.54 – 1.64

1L2Y 3.26 4.10 2.31 1E0N 3.51 6.34 –

1SOL 2.12 1.34 0.98 1G26 3.73 4.16 5.69

2XL1 2.88 0.34 1.12 1E0L 3.90 7.20 5.84

1WQC 1.94 1.74 4.08 1I6C 4.82 7.37 4.02

1AMB 4.47 7.77 4.82 2DMV 4.21 5.77 5.45

1FSD 2.16 2.33 – 1ED7 5.29 5.60 5.52

1PSV 2.22 4.21 – 1F7M 6.89 5.43 6.13

1VII 3.76 3.40 5.13 1K36 6.15 10.18 7.09

1ERC 4.34 8.53 5.75 1MSI 7.22 7.38 8.67

2P81 3.62 7.79 – 1QJO 8.13 13.43 11.84

1F4I 2.87 2.66 – 1FNA 7.76 2.97 10.93

1BBL 4.36 2.35 4.69 2KP0 3.85 6.50 5.26

1ENH 3.29 2.43 6.32 1CRN 4.97 5.28 6.00

1FYJ 2.54 2.00 6.30 1E0G 3.94 2.51 5.44

2JZQ 4.83 4.67 6.44 2HBB 4.91 1.42 6.66

1BDD 3.29 5.37 6.40 2GB1 5.72 14.17 8.19

1I2T 3.57 0.92 – 3FIL 4.79 – –

1UZC 5.43 5.62 7.91 1DTK 5.10 8.58 7.41

1XZY 3.60 2.94 – 1ORC 6.60 – 7.76

1SXD 6.82 3.80 – 2RPV 6.99 12.54 8.84

1K40 5.70 2.07 – 1H5P 6.88 7.59 9.67

2EVQ 2.10 – 0.76

PDB: Protein Data Bank code. The best prediction is high-
lighted in bold. The data for MEAMT were obtained from
[6] and for QUARK were obtained from the web server
(http://zhanglab.ccmb.med.umich.edu/QUARK/). Values

are RMSD (Å) of backbone atoms.

4. CONCLUSIONS
The insertion of the crowding-distance technique in the

GAPF multiobjective steady-state genetic algorithm pro-
posed in this work was able to produce improvements in
the predicted models relative to the previous mono-objective
and multiobjective approaches, and proved to be quite promis-
ing in dealing with the PSP problem. Furthermore, results
comparable to other well established free-modeling meth-
ods, such as QUARK, were achieved. The insertion of the
crowding-distance technique was also important to make the
strategy used in MO algorithm of GAPF independent of the
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(a)

(b)

(c)

Figure 2: Structural variations (measured with the RMSD) of the predicted models relative to the native reference structure
for following protein classes: (a) mainly-α, (b) mainly-β and (c) αβ.

expert choice’s, which is important when possible changes
and introductions of new objectives are considered.
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Moldes. PhD thesis, LNCC, Rio de Janeiro/ Brasil,
2015.

[29] C. A. Rohl, C. E. Strauss, K. M. Misura, and
D. Baker. Protein structure prediction using rosetta.
Methods in Enzymology, 383:66–93, 2004.

[30] K. B. Santos, R. Trevizani, F. L. Custodio, and L. E.
Dardenne. Profrager web server: Fragment libraries
generation for protein structure prediction. In
Proceedings of the International Conference on
Bioinformatics & Computational Biology
(BIOCOMP), page 38. The Steering Committee of
The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp),
2015.

[31] L. D. Schuler, X. Daura, and W. F. van Gunsteren.
An improved GROMOS96 force field for aliphatic
hydrocarbons in the condensed phase. Journal of
Computational Chemistry, 22(11):1205–1218, 2001.

[32] R. Trevizani. Desenvolvimento de Metodologias
de novo para predição de estruturas de protéınas.
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