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ABSTRACT
Understanding function regulation in proteins that switch
between different structural states at equilibrium requires
both finding the basins that correspond to such states and
computing the sequence of intermediate structures employed
(i.e., the path taken) in basin-to-basin switching. Recent
work suggests that evolutionary strategies can be used to
map protein energy landscapes effectively. Further work
has shown that the constructed maps can be additionally
equipped with connectivity information to help identify basin-
switching paths. Here we highlight a potential issue when
the problems of mapping and path finding are considered
separately. We conduct a simple, proof-of-principle study
that demonstrates the ability of an EA to allow extracting
better paths from an EA-built map when the EA is supplied
with the right information. The study is conducted on two
key, multi-state proteins of importance to human biology
and disease. The results presented here suggest that further
research efforts to guide an EA with path-based information
are warranted and feasible.
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1. INTRODUCTION
Studying protein energy landscapes is gaining renewed at-

tention in computational structural biology. Mapping en-
ergy landscapes is now seen key to understanding a wide
range of phenomena, including the structure-function rela-
tionship in protein molecules [4, 12, 3, 11]. Moreover, steady
algorithmic and hardware advances are increasingly making
it feasible to study landscapes of chains that are longer than
a few amino acids [6].
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Mapping protein energy landscapes is particularly impor-
tant on intrinsically-dynamic proteins that switch between
different stable and semi-stable structural states at equilib-
rium for function regulation. Recent work demonstrates the
effectiveness of evolutionary algorithms (EA) in mapping
the complex, multi-modal landscapes of such proteins with
practical computational budgets on modest computational
resources. In particular, work in [2, 1, 9, 10] presents steady
improvements to an underlying EA framework to move be-
yond the classic optimization setting, where the goal is to
locate the global minimum of a fitness/energy landscape, to
a mapping setting in which the goal is to construct a map of
a protein energy landscape that retains important energetic
features such as deep and broad basins corresponding to the
thermodynamically-stable and semi-stable structural states
of a protein.

The top panel of Figure 1 summarizes the methodolog-
ical contributions in recent published work. In particular,
the hall of fame mechanism is employed in [9] to serve as
a map that is dynamically updated to contain individuals
corresponding to non-redundant local minima in the land-
scape. These efforts have shown that the combination of
domain-specific insight and EAs with carefully defined ini-
tialization, variation, improvement, and selection operators
allows building maps that reproduce known basins of pro-
teins characterized extensively in wet laboratories (typically
due to central roles in human biology and disease), as well
as exposes novel interesting structural states not captured in
wet laboratories [1, 10]. The mapped landscapes provide an
opportunity to identify paths that demonstrate how a pro-
tein hops between successive structures to switch between
two known structural states. In [8], as summarized in the
bottom panel of Figure 1, a new method is proposed that
embeds individuals stored in the hall of fame into a nearest-
neighbor graph, and then uses the graph to identify low-cost
paths connecting two structures of interest.

This line of work has led to the following observation.
An EA designed to find the basins of an energy landscape
will apportion computational resources to exploitation of
lower-energy regions in expense of further exploration of
high-energy regions. While this is a rational decision to do
when the goal is to map the local minima in an energy land-
scape, this decision may impact the ability to find detailed
paths connecting two structures of interest. We illustrate
this observation on one particular protein, the superoxide
dismutase [Cu-Zn] (SOD1), which is a central protein with
mutations implicated in familial Amyotrophic lateral scle-
rosis (ALS). Due to its role in human disease and a clearly
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Figure 1: An EA can be used to construct a map
of a protein energy landscape via the hall of fame
mechanism. This can be considered as step 1 in an
approach that later employs the map to identify low-
cost paths between two structures of interest. In [8],
the hall of fame is embedded in a nearest-neighbor
graph that is explored for low-cost paths connecting
two given structures.

bimodal landscape, this protein has been employed as a test
case for various evolutionary strategies for exploration of
protein energy landscapes [2, 9].

Figure 2 shows the energy landscape of SOD1 (wildtype
– WT – form) projected on the top two principal compo-
nents (PCs); One of the evolutionary strategies central to
the ability to explore the high-dimensional protein energy
landscapes is the employment of Principal Component Anal-
ysis (PCA) on a set of known wet-laboratory structures of
a protein to define the underlying variable space (space of
PCs) for the EA. These known structures are also employed
to fill in the initial population.

The interested reader is referred to work in [2] for details
on the data collection and PCA procedure. Figure 2 essen-
tially shows the projection of individuals in the hall of fame
constructed by the EA onto the top two PCs; the projections
are color-coded according to the fitness, which is measured
via the Rosetta all-atom energy function score12 [5]. Two
basins can be clearly seen in the two-dimensional projec-
tion of the map. The majority of the known wet-laboratory
structures (drawn as black dots) fall in either of the basins;
a few, corresponding to variants (mutated versions) of the
protein, fall in between the basins, which means that these
structures, while stable for variants, are higher-energy for
the WT sequence.

Figure 2 shows that the majority of individuals in the map
fall on or near the basins. Fewer individuals populate the
high-energy region between the basins, as an EA designed
to find basins has to balance between exploration and ex-
ploitation in order to apportion the resources on promising,
low-energy regions of the variable space. Figure 2 shows
what happens when the map is then queried for a path con-
necting two structures, one in each of the visible basins. The
path shown is the lowest-cost path computed via Dijkstra’s
shortest-path algorithm, after embedding individuals in the
map in a nearest-neighbor graph. The graph is directed, and

edges of the graph are weighted, with weights recording only
energetic increases (0 REUs otherwise).

The edges of the path shown in Figure 2 can be as long as
2.72 Å; this means that the structures connected by an edge
in the path can be as far away as 2.72 Å, when the distance
between them is measured via least root-mean-squared de-
viation [7] over their CA atoms. This distance for an edge
is too high for a path to be considered realistic in terms of
thermal fluctuations of a protein at equilibrium. One can
refer to such a path as a low-resolution approximation of
the true structural excursion.

Connecting via an edge two structures that are not near in
the landscape is the equivalent of tunneling through a possi-
ble mountain; the latter, however, is not present in the map
due to the focus on exploitation of basins. As a consequence,
under sparse sampling of energetic barriers that connect two
distinct basins, reported paths may underestimate the true
cost.

In this paper, we investigate this issue further in a proof-
of-principle setting. Specifically, we pursue the hypothesis
that supplying the EA with information on the location of
regions of interest for connecting paths indeed improves sam-
pling of these regions and allows finding more detailed, finer-
resolution paths that are better approximations of the true
structural excursion. Specifically, here we supply this infor-
mation to the initialization operator and demonstrate that
indeed, more detailed and accurate paths are obtained. We
provide evaluation on two extreme test cases, SOD1, where
regions needed for connectivity are severely under-sampled,
and H-Ras (a protein of importance in human cancer), where
the EA provides better coverage of such regions. The results
presented here suggest future research on directing the EA
towards regions of interest for basin-basin excursions.

2. METHODS
We investigate the following setup. The EA proposed

in [9] is employed to construct a map of a protein’s energy
landscape. The EA runs for a fixed budget of fitness evalua-
tions (details can be found in [9]). When the EA terminates
(step 1 in Figure 1), the map is saved, and step 2 in Figure 1
starts; the map is recast as a nearest-neighbor graph; that
is, the individuals in it are connected to k nearest neigh-
bors. The Euclidean distance in variable space is used to
determine the distance between two neighbors. The graph
is directed, and edge weights record only energetic increases.
Dijkstra’s algorithm is then used over the graph to obtain
the lowest-cost path connecting two structures of interest.
Further low-cost paths can be obtained if the individuals
in the path are removed from the map, and Dijkstra is run
again. The process can be repeated until no paths can be ob-
tained anymore, effectively providing a set of low-cost paths
connecting two structures of interest with individuals in the
constructed map. Details on parameters and implementa-
tion of the various procedures are presented in [8].

As shown in Figure 2 for SOD1, the obtained path may
be forced to connect two structures that, while nearest-
neighbors in the variable space, are far apart in structure
space. So, the following setting (summarized in Figure 3) is
pursued here. The EA is run again, though with a much
smaller computational budget. In the first EA, the ini-
tial population consists of individuals corresponding to wet-
laboratory structures of a protein and individuals sampled at
random in the variable space. In the second/following EA,
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Figure 2: Visualization in 2D of the map and a lowest-Cost path computed for SOD1. PC1 and PC2 refer
to the top two PCs. The red-to-blue color code scheme follows high-to-red Rosetta score12 energy values
(measured in Rosetta Energy Units – REUs). Black dots show projections of wet-laboratory structures of
both SOD1 WT and variants. A lowest-cost path connecting two structures, one in each of the visible basins,
is also shown. The maximum edge length does not exceed 2.72Å. The cost of the path is in REUs.

the initial population contains only individuals correspond-
ing to wet-laboratory structures of a protein and individu-
als in the lowest-cost path found by the above methodology.
Note that the second EA adds individuals to the map. The
methodology summarized above on querying a map for a
lowest-cost path is repeated on the final map obtained after
the second EA terminates. Both the new map and low-cost
paths are compared to the old map and old low-cost paths
on each of the proteins studied here. Results follow.

3. RESULTS
The methodology described in Section 2 is applied to SOD1

and H-Ras. The (first) EA summarized in Section 2 is ap-
plied to each protein using a budget of 1, 000, 000 fitness
evaluations. This corresponds to roughly 13 days on 16
CPUs for SOD1 and 8 days on 16 CPUs for H-Ras (the CPUs
are employed in an embarrassing parallelization scheme to
improve (the fitness of) structures corresponding to indi-
viduals with the computationally-demanding Rosetta relax
protocol). The second EA is run for a more modest compu-
tational budget of 200, 000 fitness evaluations.

Results on SOD1 are related first. The map obtained
by the first EA and the lowest-cost path connecting two
specific structures residing in each of the discovered basins
are shown in Figure 2. It is worth noting that no more
paths are obtained if the individuals in the lowest-cost path

Initialization

EA

Hall of Fame

Hall of Fame

NN Graph

Path Search

Step 1

Step 2

Vertices of Paths 
are Used 
as Seeds 

Until Budget
Expired

Hall of 
Fame Kept 

Figure 3: Summary of the new approach investi-
gated here.
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Figure 4: Visualization in 2D of the map and low-cost paths computed for SOD1, using (score-based) color-
coded projections on the top two PCs. Projections of wet-laboratory structures are shown as black dots. The
top panel shows the map and paths after the first iteration. The bottom panel shows the new map after the
second iteration (path-guided EA), and the new low-cost paths obtained after querying the new map. The

maximum edge length does not exceed 2.17Å.

are removed from the map and Dijkstra is invoked again.
The map obtained after the second is shown in Figure 4.
Querying the map for low-cost paths until the input start
and goal structures are disconnected (after repeated removal
of individuals in the discovered paths from the map) results
in the paths shown in Figure 4.

Several observations can be made by comparing Figure 4
to Figure 2. First, the second has managed to add more
low-energy individuals to the map, both in the two main
basins and, more importantly, in intermediate regions. The
latter has allowed finding two paths as opposed to one path.
Both paths are finer; the maximum edge length is 2.17Å,
an improvement of about 0.6Å over the first run. The costs
have increased, confirming one of the possibilities raised that
connecting two structures far away in structure space may
underestimate the true energetic cost of a structural excur-
sion. In fact, the shorter edge lengths here allow the query
process to more faithfully follow the ruggedness of the energy
landscape. Taken altogether, this study on SOD1 suggests
that exploration in an EA can be influenced (via the initial
population mechanism) by information on which regions are
needed for connectivity to then allow more accurate model-
ing of structural excursions.

While the results on SOD1 show an extreme case of a
landscape with a prominent energetic barrier that is not suf-
ficiently sampled by an EA. The results on H-Ras are shown

in Figure 5. The top panel shows the results of running the
first EA and then querying for low-cost paths connecting in-
dividuals closest to two wet-laboratory structures represent-
ing the active/on and inactive/off structural states of H-Ras.

The maximum edge length in the paths is 0.115Å, showing
that the EA has achieved very good sampling of the struc-
ture space. The bottom panel in Figure 5 shows the new
map and the new low-cost paths obtained after following up
with the second, path-guided EA. The new paths obtained,
shown in the bottom panel, are not more detailed than the
older ones, though on average their energetic cost is lower.
This suggests that no further exploration can be obtained,
and the new individuals in the map improve slightly the
average energetic cost but not the resolution of the paths.

4. CONCLUSION
The work presented here expands upon a novel direction

of research on EAs designed for exploring protein energy
landscapes. While a body of recent work illustrates how
EAs can be used to efficiently map the complex energy land-
scapes of proteins, here we draw attention to an issue that
presents itself when the ultimate objective of the maps is
to use them to identify the structural paths taken by dy-
namic proteins during basin-to-basin switches. We present
a simple approach that guides the EA exploration not only
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Figure 5: Visualization in 2D of the map and low-cost paths computed for H-Ras WT, using (score-based)
color-coded projections on the top two PCs. The top panel shows the map and paths after the first iteration.
The bottom panel shows the new map after the second iteration (path-guided EA), and the new low-cost
paths obtained after querying the new map. The locations of projections of wet-laboratory structures of
H-Ras are indicated by annotations of whether the structures correspond to the WT or variants.
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towards regions likely to contain basins but also the regions
that connect basins. We provide a proof-of-principle demon-
stration of the ability of this approach to improve the quality
of the paths produced from EA-built maps of energy land-
scapes. The results presented here on the proteins, SOD1
and H-Ras, demonstrate the promise of the presented ap-
proach. In the preliminary investigation conducted in this
paper, the exploration in the EA is guided via an initial
population mechanism. Further research will consider other
avenues as well.
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