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ABSTRACT
The Protein Folding Problem (PFP) is considered one of the most
important open challenges in Biology and Bioinformatics. This
paper describes the application of a parallel ecology-inspired al-
gorithm (pECO) to a hard problem related to the PFP: the protein
structure reconstruction from Contact Maps. The fitness function
proposed includes information not only about the free-energy of
the conformation, but also similarity measures commonly used in
classification systems. Experiments were done to evaluate the ade-
quacy of the proposed approach. Results show that the combination
of concurrent evolutionary approaches take advantage of both the
coevolution effect and the different search strategies. Furthermore,
it is observed that parallel processing was not only justified but also
essential for obtaining results in reasonable processing time.

CCS Concepts
•Theory of computation → Parallel algorithms; •Computing
methodologies → Parallel algorithms; •Applied computing →

Bioinformatics;

Keywords
Protein Folding, Parallel Computing, Computational Intelligence,
Contact Maps, 3D-AB Off-Lattice model

1. INTRODUCTION
Nowadays, one of the most important and challenging problems

in Molecular Biology and Bioinformatics is to obtain a better un-
derstanding of the protein folding process. In this process, under
physiological conditions, a protein folds into a specific three-di-
mensional structure, that determines their specific biological func-
tionality. It is known that ill-formed proteins can be completely
inactive or even harmful to the organism. This is the case of several
diseases, which origin is believed to be the result of the aggrega-
tion of such ill-formed proteins, for instance, Alzheimer’s disease
and some types of cancer. Once more extensive knowledge about
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the formation of the tertiary structure of proteins can be acquired,
important medical and biochemical advancements can take place,
including the design of new drugs with specific functionality [8,22].

The structure of proteins is usually represented by all their atoms
or by coarse-grained models, such as the AB off-lattice model [23].
However, an alternative and compact way is to represent those three-
dimensional structures using Contact Maps (CM), which are mini-
malistic two-dimensional representations [25] capable of reducing
the inherent complexity of computational simulations. Notwith-
standing, the use of CMs to study the protein folding have been
sparsely explored. In recent literature, methods have been devel-
oped for their prediction from sequence (for instance, [14, 21]). In
addition, [7] presents a novel parallel approach for the induction of
transition rules of two-dimensional Cellular Automata (2D-CA),
using Gene Expression Programming, applied to the Protein Con-
tact Maps prediction and folding pathway simulation. Furthermore,
very few research groups proposed heuristic approaches for protein
structure reconstruction from native CMs [9, 25].

A reconstruction procedure of the three-dimensional structure of
proteins is needed after the CM prediction, which has been proved
to be NP -hard [25]. Consequently, metaheuristic approaches seem
to be the most reasonable algorithmic choice for dealing with the
problem. The general objective of this work is the application
of a parallel heterogeneous ecological-inspired approach (called
pECO), formerly introduced in [6], to reconstruct the three-dimen-
sional structure of proteins from Contact Maps. Basically, the aim
is to find low energy conformations, using Contact Maps as guides.

This paper is organized as follows: Section 2 describes issues
related to the Protein Folding Problem; Section 3 describes the
ecological-inspired approach; Section 4 shows how the experiments
were done; Section 6 presents the results obtained and their analy-
sis; finally, in Section 7 some conclusions and future directions are
pointed out.

2. THE 3D-AB OFF-LATTICE MODEL OF
PROTEINS

The AB off-lattice model was introduced by [23] to represent
protein structures. In this model each residue is represented by a
single interaction site located at the Cα position. These sites are
linked by rigid unit-length bonds (b̂i) to form the protein structure.
The three-dimensional structure of a N -length protein is specified
by the N − 1 bond vectors b̂i, N − 2 bond angles τi and N − 3
torsional angles αi.

In this model, the 20 proteinogenic amino acids are classified
into two classes, according to their affinity to water (hydrophobic-
ity): ’A’ (hydrophobic) and ’B’ (hydrophilic or polar). This model
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does not describe the solvent molecules, but their effects, such as
the formation of a hydrophobic core, are taken into account through
interactions between residues, according to their hydrophobicity
(species-dependent global interactions). When a protein is folded
into its native conformation, the hydrophobic amino acids tend to
be packed inside the protein, in such a way to get protected from
the solvent by an aggregation of polar amino acids positioned out-
wards. Interactions between amino acids take place and the energy
of the conformation tends to decrease. The conformation tends to
converge to its native state, in accordance with the Anfinsen’s ther-
modynamic hypothesis [3].

The energy function of a folding is given by Equation 1, as pro-
posed by [11].

E(b̂i;σ) = EAngles + Etorsion +ELJ (1)

EAngles = −k1

N−2∑

i=1

b̂i · ˆbi+1 (2)

Etorsion = −k2

N−3∑

i=1

b̂i · ˆbi+2 (3)

ELJ =

N−2∑

i=1

N∑

j=i+2

4ε(σi, σj)(r
−12

ij − r−6

ij ) (4)

where
EAngles and Etorsion are the energies from bond angles and tor-
sional forces, respectively. The species-dependent global interac-
tions are given by the Lennard-Jones potencial (ELJ ). b̂i repre-
sents the ith bond that joins the (i − 1)th and the ith residues and
k1 = −1; k2 = +1/2 [11]. rij represents the distance between ith
and jth residues; σ = σ0, ..., σN form a binary string that represents
the protein sequence.
ε(σi, σj) is chosen to favor the formation of the hydrophobic core
(’A’ residues). Thus, ε(σi, σj) is 1 for AA interactions and 1/2
for BB/AB interactions. Finally, it is important to mention that the
model can be explored for different values of k1 and k2 as stated
by [11].

3. THE ECOLOGICAL-INSPIRED APPRO-
ACH

The ecologically-inspired algorithm, named ECO, represents a
perspective to apply optimization strategies cooperatively in an eco-
systemic context [20]. ECO is composed by populations of individ-
uals (Q) and each population evolves according to an optimization
strategy. Therefore, individuals of each population are modified
according to the mechanisms of intensification and diversification,
and the initial parameters, specific to each optimization strategy.
The ECO system can be modeled in two ways: homogeneous or
heterogeneous. A homogeneous model implies that all populations
evolve in accordance to the same optimization strategy, configured
with the same parameters. Any change in the strategies or parame-
ters in at least one population characterizes a heterogeneous model.

The ecological inspiration stems from the use of some ecological
concepts, such as: habitats, ecological relationships and ecological
successions [4] [17]. A habitat is the actual location in the envi-
ronment where an organism lives and consists of all the physical
and biological resources available. In this way, populations of in-
dividuals that are scattered in the search space and established in
the same region constitute an ecological habitat. The search sur-
face of a problem being optimized represents the environment and,
as well as in nature, populations can move around through all the

environment. The movement of populations can be observed by
changing the values of variables that affect function f(.). However,
each population may belong only to one habitat at a given moment
of time t. Therefore, by definition, the intersection between all
habitats NH at moment t is the empty set. The ecosystem can be
composed of several habitats that can also interact to each other, as
shown in the upper level of Figure 1.

With the definition of habitats, two categories of ecological re-
lationships can be defined. Intra-habitats relationships that occur
between populations inside each habitat, and inter-habitats relation-
ships that occur between habitats. An example of five intra-habitats
communication topologies is shown in the intermediate level of
Figure 1. Individuals belonging to a given habitat can migrate to
other habitats aiming at identifying promising areas for survival
and mating. The inter-habitats communication topologies is repre-
sented in the upper level of Figure 1. Intra-habitats relationships
are responsible for intensifying the search and inter-habitats rela-
tionships are responsible for diversifying the search.

It is important to highlight that the concept of interactions be-
tween populations is not new. An example is the well-know island
model GA [26] and other algorithms that apply the same concept
(e.g., PSO [18] and ACO [24]). However, the approach used in
ECO differs from the others by presenting a new level of abstrac-
tion for the topologies of communication. There are two differ-
ent topologies of communication, being the intra and inter-habitats
communications. The difference between these two topologies can
be visually observed an Figure 1. The formation of topologies is
done probabilistically and is influenced by the distribution of pop-
ulations on the surface of function f(.). It can also be observed
that the topologies are not static and do not follow a standard for-
mation like ring, star or fully connected as performed by the island
model. The topologies are dynamic, i.e., at every given moment t
the topologies can assume different patterns [19].

In this work, we use a parallel heterogeneous ecological-inspired
approach, called pECO [6], which is a parallel master-slave archi-
tecture that allows the application of the computational ecosystem
in a reasonable computing time. In this approach, the processing
load is divided into several processors (master and slaves), under
the coordination of a master processor. Each processor (master or
slave) is responsible for initializing the population, and performing

Figure 1: View of a computational ecosystem for optimization.
Lower level: problem-dependent search space that defines a hy-
persurface. Intermediate level: intra-habitats communication
topologies where each small circle represents a population. Up-
per level: five habitats connected through inter-habitats com-
munication topology [20].
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the evolutive period of a population independently. The master pro-
cessor is also responsible for defining the communication topolo-
gies between populations and habitats. Figure 2 shows the pECO
master-slave topology, where each species represents a population-
based approach, Si represents the i-th slave and n denotes the num-
ber of slaves.

Species1 Master – Process 0

Species2 Species3 Species4 Speciesn

S1 – Process 1 S2 – Process 2 S3 – Process 3 Sn – Process (n− 1)

Figure 2: pECO architecture

3.1 Encoding of Candidate Solutions and ini-
tial Populations

An important issue when using population-based evolutionary
approaches for a given problem is the encoding of the individual
that represent a possible solution to the problem. The way vari-
ables are encoded can have a strong influence not only in the size
of the search space, but also in the dynamics and efficiency of the
algorithm. In this work, the encoding of the individuals is defined
according to the set of relative bond rotation and torsion angles of
the amino acids. Considering the folding of a protein with N amino
acids, an individual has (2N − 5) variables, such that positions
P1 to PN−2 represent the bond rotation angles (τi), and PN−1 to
P2N−5 represent the torsion angles (αi), where τ and α ∈ [−π, π].
A given conformation of the protein is represented as a set of bond
rotation and torsion angles over a threedimensional space. To rep-
resent the position of the amino acids, their Cartesian coordinates
are defined by a vector (xi, yi, zi). This vector is obtained from
the relative bond rotation and torsion angles of an amino acid and
position of its predecessor. A folding begins in the origin of the
three-dimensional Cartesian coordinates, such that the first amino
acid is at (0, 0, 0). The position of the remaining amino acids is
computed following the bond rotation and torsion angles encoded
in the individual. Figure 3 shows an example of an individual that
represents the structure of a folded protein with 13 amino acids.

The initial populations (or swarms) are randomly generated by
using the Mersenne Twister random number generator [16], which
is known as one of the best generators for this purpose.

3.2 Fitness Function
A Contact Map (CM) is a matrix representation of the closeness

between all pairs of amino acids. The CM for a protein sequence
with N amino acids is a N × N binary symmetrical matrix (C),
which is defined as follows: each position of the matrix (ith,jth) is
1 if the amino acid pair (ith and jth amino acids) fulfills the con-
nectivity condition. Two amino acids are in contact when their Cα
atoms are closer than a threshold distance [25]. CMs are populated
primarily with non-contacts (or zeros). Therefore, similarity mea-
sures between two CMs based, for instance, on the Hamming dis-
tance or the Euclidean distance, do not work well because contacts

(true) and non-contacts (false) values carry the same weight. Thus,

Figure 3: Example of individual-conformation decoding

different measures could be proposed in order to give more impor-
tance to the presence of contacts in CMs. In this work, a novel
fitness function is proposed, that is better suited to this problem.
Equation 5 shows the fitness function, using the 3D-AB model.

fitness = E(b̂i;σ) ∗ SC ∗ SNC (5)

where: E(b̂i;σ) represents the energy equation of the model. The
energy is calculated using the coordinates of the amino acids that
compose the structure of the protein which, in turn, is encoded in
the individual. SC , SNC are based on the sensitivity and specificity
measures, respectively. SC and SNC are computed using the input
CM (of the target conformation) and the CM of the conformation
obtained from the individual. SC measures the similarity between
both CMs from the contact point of view (see Equation 6). On the
other hand, SNC measures the similarity between both CMs from
the non-contact point of view (see Equation 7).

SC =
TC

TC + FNC

(6) SNC =
TNC

FC + TNC

(7)

where:

• True contacts (TC): number of contacts generated by the
transition rule that, in fact, are contacts;

• True non-contacts (TNC ): number of non-contacts gener-
ated by the transition rule that, in fact, are non-contacts;

• False contacts (FC ): it counts the contacts generated by the
transition rule that, in fact, are non-contacts;

• False non-contacts (FNC ): it counts the non-contacts gen-
erated by the transition rule that, in fact, are contacts;

It is important to be aware that a given conformation under eval-
uation may have collisions between amino acids. Obviously, such
conformation is physically invalid, but, anyway, the corresponding
individual can carry some promising information and should not
be disposed by the search algorithm. Basically, this procedure has
five parts: conversion of angles into Cartesian coordinates, compu-
tation of the energy, conversion of the Cartesian coordinates to the
CM representation, computation of the metrics SC and SNC , and
computation of the fitness. It is important to recall that the conver-
sion of the Cartesian coordinates to the CM representation is done
according to the same threshold value of the input CM.

4. COMPUTATIONAL EXPERIMENTS
All experiments done in this work were run in a cluster of 25 net-

worked computers, running a minimal installation of Arch Linux
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and using MPICH2 (available in: http://www.mcs.anl.gov/research/-
projects/mpich2/), for the implementation of the message passing
interface. All algorithms were implemented in ANSI-C program-
ming language. Due to the stochastic nature of the algorithms com-
pared in this work, 10 independent runs were done with different
initial random seeds generated by the Mersenne Twister random
number generator [16].

4.1 Protein Sequences
Table 1 shows the list of real protein sequences that were used in

this work. These proteins were extracted from PDB files (available
in http://www.pdb.org). In this table, the first column and second
columns identify, respectively, the PDB code (with the size – N )
and the equivalent AB sequence.

In order to convert the protein sequences of the PDB into the AB
model alphabet (i.e.: ’A’ and ’B’ for hydrophobic and hydrophilic
residues, respectively) we need to use an amino acid conversion ta-
ble. In this work, we used the amino acid type classification shown
in [2].

Table 1: Equivalent AB sequences of the proteins
PDB code (Size) Equivalent AB sequence
2gb1 (N = 56) AB3A3BAB2ABAB4

B(AAB)2AB2A2(BBBA)3A(BA)2B(BBBA)2

BAB2

1pcy (N = 99) A(BAAAAABBA)2(BA)2AB2

A3B3A4B2A3B4(AAB)2AB(BA)2B4A2

2trx (N = 108) B3A(AB)2(BBBA)2(AB)2

A2(AAAB)2A5BA6B2A2B4(AB)2A2(BA)2

3fxn (N = 138) ABA2(BA)3B4A2(BAAA)2

(BBA)3(BABBA)2AB3A6BA

4.2 Contact Map Generation
The performance of the pECO approach was evaluated using

Contact Maps (CMs) which, in turn, were generated from 3D pro-
tein structures obtained by Molecular Dynamics (MD) simulations,
as proposed by [5]. Figure 4 presents the Contact Maps generation
procedure. It is important to recall that it depends on the CM ob-
tained by MD simulations.

The 3D structures were generated for the protein sequences pre-
sented in Section 4.1 by MD simulations with time-step: δt =
0.0001 and stop criterion: tmax = 300, leading to 3× 106 folding
states for each protein sequence.

From the structures obtained by MD simulations at equal inter-
vals of time between 0 and tmax, 100 CMs were generated for the
following threshold values: 6.65, 7, 8, 9, 10, 11 and 12Å. The first
value was obtained from the dimensionless value defined by [11].
They stated that two monomers i and j are taken to be in contact
if r2ij < 1.75. Considering that the unity dimensionless distance is
3.8Å, 1.75 is equal to 6.65Å. The other ones are typical threshold
values considered in the literature. A total of 700 CMs were gen-
erated for each protein sequence and, thus, 2800 CMs for the four
sequences. For instance, for the protein 2gb1, composed by 56
amino acids, each CM is a 56x56 matrix and represents a folding
state of the folding process.

5. STRUCTURE VALIDATION
In this work, we assess the quality of the structures obtained

by comparing them with the structures obtained by Molecular Dy-
namics simulations (see [5]). Basically, the procedure has three
steps, where the first two steps are fitting procedures and the last
one represents the quality assessment. In the two first steps, the
structures obtained are fitted to off-lattice structures (the so-called

“AB_like”), where all unit-length bonds are scaled to 3.8 Å, which
is the mean distance between two consecutive Cα atoms [15]. Next,
the similarity between the off-lattice structures obtained in steps 2
and 3 is measured using RMSD [15].

The RMSD evaluation depends on the superpositioning of the
protein structures. Since the RMSD is a rotation-dependent mea-
sure, an optimised RMSD is done using the Kabsch algorithm [12]
in order to obtain the lowest RMSD.

5.1 pECO – Control Parameters
The parameters used for the pECO algorithm are: number of

populations (Q) that will be co-evolved, the initial population size
(POP), number of cycles for ecological successions (ECO-STEP),
the size of the evolutive period (EVO-STEP) that represents the
number of function evaluations in each ECO-STEP, the minimum
threshold distance (ρ), and the tournament size (T-SIZE) used to
choose solutions to perform intra and inter-habitat communications.
The values for these parameters were defined empirically with: Q
= 40, POP = 50, ECO-STEP = 2,000, EVO-STEP = 100 , ρ = 0.5
and T-SIZE = 5. The heterogeneous model of the pECO approach,
combines all four algorithms (ABC-PSO-DE-jDE/BBO) in which
1/4 of the populations behaves according to one of these strategies.
In this work, the number of processors (m) is equal to the number
of populations (m = Q).

5.2 Parameters of the Algorithms
Default parameters recommended in the literature were used in

the algorithms employed. POP is a common parameter between all
algorithms and is adjusted as mentioned in Section 5.1. For ABC
algorithm, there is only one control parameter, limit = 100 [13]. For
PSO algorithm, besides POP, the parameters were set to standard
values (Standard PSO (SPSO-07): http://www.particleswarm.info/-
Programs.html) : inertia weight W = 0.721; cognitive and social
components ϕp = ϕg = 1.193, respectively. For DE algorithm,
the parameters are F = 0.9 (F controls the amplification of the
differential variation) and CR = 1.0 (crossover constant) with
DE/rand/1/bin approach. And for jDE/BBO the parameters used
are I = E = 1.0 (maximum possible immigration and emigration
rates), CR = 0.9, F = 0.5, and Smax =POP [10].

6. RESULTS AND ANALYSIS

6.1 Numerical Results
Table 2 presents the results obtained through pECO simulations,

using CMs of the 2gb1 (N = 56) sequence. The first column
shows the metrics of the best individuals. Next columns show their
values for each threshold value. It is important to recall that the
SC , SNC metrics and the RMSD are computed using the input CM
and the CM of the obtained conformation. Overall, from the SC

and RMSD values, better results are obtained for larger threshold
values, since the SC increases and the RMSD decreases when in-
creasing the threshold.

In addition, experiments were done using CMs of the 1pcy (N =
99), 2trx (N = 108) and 3fxn (N = 138) sequences obtained by
MD simulations (with threshold of 7Å). The obtained results are
shown in Table 3. As expected, from the SC , RMSD and process-
ing time values, the performance of the approach decreases with
the protein length since the search space complexity grows expo-
nentially.

6.2 Graphical Results
Figures 5(a), 5(b) and 5(c) show the best values of the metrics

SC , SNC and RMSD obtained for each CM of the 2gb1 sequence
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Figure 4: Contact Maps generation procedure

Table 2: Numerical results obtained using CMs with different threshold values – sequence 2gb1
Metric CM threshold [Å]

Avg(Min/Max) 6.65 7 8 9

Best fitness -88.68 (-120.59/-82.27) -84.47 (-114.80/-77.56) -83.51 (-108.90/-77.52) -83.87 (-106.16/-76.22)

TC 268.68 (138/296) 506.22 (296/562) 781.06 (396/856) 999.00 (456/1108)

FC 112.94 (68/242) 172 (102/292) 194.94 (116/352) 191.70 (124/346)

TNC 2600.8 (2562/2742) 2206.3 (2120/2554) 1813.88 (1694/2378) 1561.38 (1436/2320)

FNC 153.58 (14/180) 251.48 (10/310) 346.62 (10/422) 383.92 (14/482)

SC 0.64 (0.59/0.907) 0.67 (0.60/0.967) 0.697 (0.64/0.975) 0.73 (0.66/0.976)

SNC 0.96 (0.91/0.975) 0.93 (0.89/0.96) 0.90 (0.86/0.94) 0.89 (0.84/0.94)

Energy -144.74 (-152.86/-128.79) -135.52 (-146.08/-124.15) -132.78 (-143.76/-123.53) -129.65 (-137.65/-115.72)

Kabsch RMSD [Å] 7.24 (5.22/11.96) 6.15 (3.31/11.91) 5.82 (3.41/11.04) 5.508 (3.12/7.43)

Avg tp(s) 304 295.49 330.996 330.66

Metric CM threshold [Å]

Avg(Min/Max) 10 11 12

Best fitness -82.33 (-104.48/-74.09) -80.59 (-103.29/-70.60) -79.93 (-102.86/-64.15)

TC 1210.34 (554/1310) 1506.16 (670/1634) 1734.00 (776/1918)

FC 185.88 (106/306) 151.06 (82/328) 115.62 (66/380)

TNC 1325.48 (1172/2260) 1010.18 (860/2130) 791.66 (664/1980)

FNC 414.30 (16/552) 468.60 (8/622) 494.72 (6/712)

SC 0.75 (0.67/0.97) 0.76 (0.70/0.99) 0.78 (0.69/0.99)

SNC 0.88 (0.80/0.94) 0.87 (0.80/0.93) 0.87 (0.80/0.92)

Energy -125.46 (-137.60/-116.01) -120.98 (-130.76/-109.92) -117.13 (-128.19/-105.53)

Kabsch RMSD [Å] 5.61 (3.41/7.31) 5.55 (3.64/7.27) 5.75 (4.14/7.18)

Avg tp(s) 324.70 340.39 294.70

Table 3: Numerical results obtained using CMs with threshold = 7Å– sequences 1pcy, 2trx and 3fxn
Metric Sequence

Avg(Min/Max) 1pcy 2trx 3fxn

Best fitness -114.72 ± 19.26 (-221.59/-90.79) -99.72 ± 22.34 (-240.53/-67.75) -81.55 ± 20.64 (-207.33/-56.72)

TC 765.78 ± 43.95 (450/840) 741.64 ± 41.41 (556/828) 824.4 ± 52.82 (592/948)

FC 377.84 ± 69.68 (230/692) 351.50 ± 100.35 (138/690) 248.5 ± 84.59 (94/752)

TNC 7919.02 ± 155.93 (7709/8629) 9651.2 ± 178.71 (9382/10374) 16628.88 ± 231.40 (16346/17588)

FNC 738.36 ± 144.13 (30/852) 919.66 ± 170.84 (44/1094) 1342.22 ± 243.04 (148/1564)

SC 0.52 ± 0.08 (0.46/0.94) 0.45 ± 0.08 (0.38/0.93) 0.39 ± 0.07 (0.32/0.8)

SNC 0.95 ± 0.008 (0.93/0.97) 0.96 ± 0.01 (0.94/0.98) 0.98 ± 0.005 (0.96/0.99)

Energy -232.13 ± 12.47 (-259.61/-195.51) -226.66 ± 21.44 (-276.83/-179.11) -211.72 ± 20.79 (-270.26/-168.96)

Kabsch RMSD [Å] 10.22 ± 2.19 (6.92/23.51) 12.56 ± 2.96 (8.39/27.44) 20.16 ± 4.27 (12.14/32.39)

Avg tp(s) 496.01 551.08 771.41
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with different threshold values (for the sake of simplification, in
these plots, only the results for three different threshold values are
shown). Figure 5(a) shows that higher values of SC are obtained
using CMs with higher threshold values. Basically, it indicates that
the approach obtained better structures using CMs with more con-

tacts. On the other hand, Figure 5(b) shows that better values of
SNC are obtained for CMs with lower threshold. In Figure 5(c),
lower RMSD values were obtained for higher threshold values.
This indicates that the contacts of the structures obtained are more
important than the non-contacts in the process of structure recon-
struction. Overall, better results are obtained for CMs with higher
threshold values.

Figures 6(a) and 6(b) show an example of the convergence plot
for the CMs of the sequence 2gb1 (N = 56) and 3fxn (N = 138),
respectively. In these figures each label indicates the identification
of the species and its algorithm. The x-axis shows the number
of Ecological successions and the y-axis represents the best-ever
fitness value. Analyzing these plots it is observed that for the 56
amino-acids-long sequence the convergence is not accentuated in
the direction of a stagnation point during the ecological succes-
sions. Thus, best solutions may be achieved increasing the number
of ecological successions. For the 138 amino-acids-long sequences
the convergence seems to be slow and attracted to a local mini-
mum basin. It is observable that small improvements are achieved
from half of the ecological successions forwards. These conver-
gence plots indicate that, in order to improve the results, strategies
for maintaining diversity inside populations are required as well
as a method to detect and escape from the attraction basin regions
of local minima. Also, these figures show some labels indicating
which algorithm achieved the best solution at each ecological suc-
cession. Once a different algorithm updates the best solution, a
new label is added. For example, for the 56 amino acids-long se-
quence a population with the PSO algorithm achieved the best so-
lution until around succession 20, where the 17th species found
the best solution. From successions 21 to around 49 a population
with the jDE/BBO algorithm (the 6th species) achieved the best
solution; from successions 319 to 345 a population with the ABC
algorithm (the 14th species) achieved the best solution, and from
successions 370 to 2,000 different populations with the jDE/BBO
algorithm achieved the best solution. Analysing these labels, it
is possible to notice the coevolution between the different search
strategies (ABC/PSO/DE/jDE-BBO) because they alternate in find-
ing the best solutions. Possibly this is due to the peculiarity of each
method in searching the space of solutions.

Figures 6 (c) shows an example of the evolution of the number
of habitats for each ecological succession step for the CMs of the
sequence 2gb1 (N = 56). It is observed that, at the beginning of
the optimization process, with the populations widely dispersed in
the search space, there is a large number of habitats. As the op-
timization process moves through the ecological successions, the
populations tend to move through the search space converging to
specific regions. As shown in this figure, the number of habitats
decreases with the ecological succession cycles, indicating that the
populations tend to converge to points close to each other. Over-
all, due to the high complexity of the problem, the populations are
dispersed through the search space during all successions. This in-
dicates that more ecological successions the pECO approach could
lead to even better results.

A brief analysis of the load balancing of the pECO was done,
based on the performance measures speedup, efficiency and serial

fraction [1], that are a direct consequence of the balance between
the processing load and the communication load between master
and slaves processors. The “Versus panmixia” approach is used to

evaluate the parallel implementation, using the sequential version
of the algorithm as a reference. A sublinear speedup (sm < m,
where m = Q = 40) behavior could be clearly identified. Recall
that a speedup higher than one suggests that the parallelization of
the algorithm decreases the overall computational cost. Ideally, the
speedup should be linear, but this is not possible in practice, since
processors are not used only for processing, but also for other tasks
such as for message-passing communication between them. It is
also possible to observe that the speedup increases with the pro-
tein size. For instance, the speedups achieved were 11.98, 17.36,
23.84 and 27.87 for the 56, 99, 108 and 138 amino acid-long se-
quences. This is due to the relatively high time needed to transmit
data between processes for small proteins, when compared with
the processing load. Therefore, it is necessary to establish a load
balance between the processing and communication loads between
processes. Better speedups can be achieved for larger proteins.

The efficiency achieved were 0.3, 0.43, 0.59 and 0.69 for the 56,
99, 108 and 138 amino acid-long sequences. These values suggest
that the processors are not fully used all the time. In fact, speedup
and efficiency are a direct consequence of the balance between the
processing load of the slaves and the communication load between
master and slaves.

The serial fraction obtained are 0.06, 0.033, 0.017 and 0.011 for
the 56, 99, 108 and 138 amino acid-long sequences. It indicates that
the granularity of the parallel approach decreases when increasing
the protein length. Thus, the approach is more efficient for larger
protein sequences.

7. CONCLUSION
The reconstruction of protein structures from CMs is still an

unsolved problem, which has been proved to be NP -hard. In
this work, the performance of a parallel ecologically-inspired opti-
mization algorithm (pECO) was analysed, under the task of recon-
structing the structure of proteins from CMs, featuring the 3D-AB
off-lattice model. Four population-based algorithms (ABC, PSO,
DE, and jDE/BBO) were employed in an ecological heterogeneous
model. It is possible to conclude that, in this problem case, these
strategies are quite complementary, even during few successions.
The convergence plots indicate that ABC and PSO algorithms are
best suited for global search (initial ecological successions), whilst
the DE and jDE/BBO algorithms are best suited for local search
(final ecological successions). The results obtained suggest that a
smooth convergence is achieved throughout the pECO simulations,
avoiding the stagnation of the search. Overall, from the SC and
RMSD values, it is observed that better results (i.e. conformations
with lower RMSD values) are obtained for CMs with larger thresh-
old values, since the SC increases and the RMSD decreases when
increasing the threshold. Due to the high complexity of the prob-
lem, populations were dispersed in the search space during ecolog-
ical successions. This indicates that even better results would be
found by increasing the number of successions or through the diver-
sification of evolutive behaviors of the computational ecosystem,
by inserting other algorithms. For instance, local-search strategies
could be used to improve the quality of the obtained solutions.

An important drawback is regarding the processing time for the
simulations. It is clear that there is an increase of processing time
as the length of the protein grows in all approaches presented in this
work. This fact, by itself, strongly suggests that parallel processing
is essential to allow us to obtain results in a reasonable process-
ing time. Future research will address highly parallel approaches
for dealing with the problem, such as the use of GPGPU (General
Purpose Graphics Processing Units).
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Another drawback is regarding the high number of user-defined
parameters. It is important to recall that there is no specific proce-
dure for adjusting running parameters of Evolutionary Algorithms
for a given problem and that it represents one of the grand chal-
lenges of the Evolutionary Computation (EC) field. A strategy fre-
quently used in the literature is setting a range for all important
parameters of the algorithm and testing all possible combinations.
Although self-adjustment of parameters tends to be more efficient
than trial-and-error design and factorial experiments, this was not
the focus of the present work. Although not optimal for any in-
stances, the parameters used in the approaches presented in this
work could be an initial reference to other researchers and they will
be an important issue for future works.

In a broader sense, it is believed that the computational approach
proposed in this work is promising for the research areas related to
Evolutionary Computation and the Protein Folding Problem.
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Figure 5: Best values of the metrics SC (a), SNC (b) and RMSD
(c) for CMs with different threshold values
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Figure 6: Plots for the pECO convergence.
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