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ABSTRACT

In this work the temporal and dynamic folding of proteins
was modeled with neural cellular automata, on the contrary
to the ample research performed on the prediction of the
final protein structure. Using the Rosetta environment and
its coarse-grained representation, starting from an unfolded
or partially folded chain, a connectionist model acts like a
cellular automaton to define the moves of the dihedral an-
gles of the protein chain. The process is repeated for all the
angles of the amino acids and through several time steps un-
til the protein is folded. The neural cellular automaton uses
as input information a partial view of the energy landscape,
obtained through the consequences in the energy changes
when an angle is moved. The neural model learns to decide
the best move in each angle in order to minimize the energy
of the final folded conformation. The neural cellular au-
tomata are automatically obtained by means of differential
evolution. Initial results with short proteins are presented
and discussed.
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1. INTRODUCTION

Protein folding is the dynamic physical process by which a
protein structure assumes its functional shape or conforma-
tion. Levinthal’s paradox [8] postulates that it is too time-
consuming for a protein to randomly sample all the feasible
confirmation regions for its native structure. However, pro-
teins in nature can still spontaneously fold into their native
structures (the whole process typically takes only millisec-
onds or even microseconds to finish). So, the folding path-
way of a protein is unclear, and a general assumption is that
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the lower a structure is in the energy landscape, the closer
the folding is to the native state of the protein [3].

An ample research was performed in the prediction of the
final folded conformation of a protein, even in the challeng-
ing ab initio modeling [18], although ignoring the dynamic
nature of the folding. There are few previous works in this
line. Krasnogor et al. [6] used cellular automata (CA) and
Lindenmayer systems to try to define the rules and dynam-
ics of the folding process, with a very limited success. They
used a one-dimensional cellular automaton with four states
that correspond to the possible moves in 2D lattices, and the
rules of the cellular automaton were obtained with a genetic
algorithm. In an extension of their work, the rules took into
consideration the specific amino acids the rules were being
applied to, thus connecting the CA modeling with a partic-
ular primary sequence. For example, for a short sequence of
20 amino acids, only 50% of the runs led to a set of rules
that allowed achieving the optimal configuration. For larger
sequences, the results were even poorer. Their work with
Lindenmayer systems was only focused on finding out sets
of rules that captured a given folded structure but, again,
without a connection between the rules and the nature of
the amino acids of the primary sequence.

In an alternative work by Calabretta et al. [1], the au-
thors tried to establish the tertiary structure modeling the
folding process through matrices of attraction forces of the
20 amino acids. The matrices of 20x20 components were
obtained with a genetic algorithm, where each component
represented the attraction or repulsion force between two
amino acids in a given distance (100 A). The model included
rotations of the side chains of amino acids around the back-
bone and the possibility that a local portion of the backbone
bended itself. The fitness function was measured taking into
account the discrepancies of the alpha-carbon bend and the
torsion angles between the real known structure and the ar-
tificial folded one. They used the methodology with a short
fragment of crambin (13 amino acids) that resulted in an
alpha-helix, as in the real protein.

More recently Danks et al. [2] presented a Lindenmayer
system model which used data-driven stochastic rewriting
rules to fold protein sequences by altering the secondary
structure state of individual amino acid residues. The state
of each residue was rewritten in parallel across the whole
protein. The change in a residue state depended on the
amino acid type of that residue and the amino acid types
and the current states of the neighboring residues on either
side. Seven secondary structure states were employed, based
on those used in the DSSP database of secondary structure



Figure 1: Neural-CA scheme for determining the
change in angles ¢ and 3. The inputs correspond
to the energy increases (with respect to the energy
with the current angle) when 4 perturbations are
applied in the angle the neural-CA is applied to (¢
in the example). The two additional inputs corre-
spond to energy increases when greedy moves are
considered after the largest angle perturbations.

assignments, as well as their probabilities. Typical back-
bone torsion angles were obtained for each amino acid type
in each of the seven states from the database and used to
reconstruct the 3D structure of a protein at each derivation
step. They showed results for four protein sequences from
each major structural class. Local structure preference can
be seen to emerge for some residues in a sequence. However,
as indicated by the authors, the resulting structures did not
converge to a preferred global compact conformation.

Our main goal is an attempt to model the temporal fold-
ing using CA-like systems, using evolutionary computing to
automatically obtain the CA models that act over the mul-
timodal energy landscape inherent to the protein folding
problem [18], extending our initial work with simple lattice
models like HP [13][14] to off-lattice models. The CA models
will determine the moves of the dihedral angles of the amino
acids through time. Such CA will be implemented with ar-
tificial neural networks (ANNs) that take input information
about the energy landscape. A simple connectionist model
was used to implement the CA-like systems, incorporating
the advantage of the ANN generalization capability. More-
over, simulated evolution was used to optimize the connec-
tionist models or neural cellular automata in order to obtain
a folded conformation that minimizes the energy of the final
folded protein. For the modeling the coarse-grained repre-
sentation of the Rosetta environment was employed [12].

2. METHODS

2.1 Rosetta coarse-grained representation and
protein conformational energy

The coarse-grained representation of Rosetta [12] was used.
This centroid mode considers the location of the main back-
bone atoms, whereas each side chain is represented by a
united pseudo-atom located at the side-chain center of mass.
Each protein conformation is represented with the three di-
hedral angles, ¢, ¥ and w, for each amino acid. The appli-
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cation of forward kinematics to this angular representation
obtains the spatial information of the protein conformation.

Rosetta uses a physics and knowledge-based energy func-
tion [7]. Knowledge-based potential [17] refers to the em-
pirical energy terms derived from the statistics of the solved
structures deposited in PDB [9]. The physics-based energy
function [5] contains terms associated with bond lengths,
angles, torsion angles, Van der Waals and electrostatic in-
teractions.

The Rosetta energy functions were used to calculate the
free energy of each protein conformation. The Rosetta en-
ergy score of a protein is a linear combination of weighted
terms that models molecular forces that act on and between
all atoms in that conformation. There are energy terms
such as solvation and electrostatics effects, repulsion, hydro-
gen bonding, and secondary structure scores such as strand
pairing and helix-strand packing. Steric overlap of backbone
atoms and side-chain centroids is penalized, but favorable
Van der Walls interactions are modeled only by rewarding
globally compact structures [11]. The Rosetta score func-
tion which takes into account all energy components, called
score3, corresponds to the full coarse-grained energy func-
tion and it is used in all the energy calculations necessary
for the folding process.

2.2 Neural cellular automata

A “neural cellular automaton” (neural-CA) is used for the
modeling of the folding, since an artificial neural network is
used to implement a scheme similar to a cellular automa-
ton. The neural-CA is applied sequentially to each of the
dihedral angles of the protein chain and in an iterative pro-
cess. The neural-CA provides the next move of the dihedral
angles ¢ and v of each amino acid, whereas the third dihe-
dral angle (w) is fixed (180°). The inputs of the neural-CA
are determined by the consequences of possible moves of the
¢ or ¥ angles to which the neural model is applied. The
same neural network is applied sequentially to both angles
of each amino acid of the protein sequence, being this pro-
cess repeated through different temporal iterations or steps
across the whole sequence of amino acids.

Inputs and output of the artificial neural network

The neural-CA is applied to the dihedral angles (¢ and )
of each amino acid to decide their next moves. The ANN
takes a decision based on a partial view of the energy land-
scape. This view is obtained considering perturbations in
the corresponding angle the ANN is applied to. A value
MAC (Mazimum Angle Change) was considered for the
changes (with respect to the current value) in an angle. The
ANN has only 1 output that provides the increase of the
angle to which the ANN is applied. The output of the ANN
is constrained also to the range [-MAC, M AC]. The fol-
lowing 6 inputs are used in the ANN:

1. The ANN is applied to a particular angle (¢ or %)
of amino acid 4 of the chain (Fig. 1). This angle is
perturbed in 4 quantities: MAC, MAC/2, —MAC/2
and —M AC'. For each perturbation it is calculated the
increase (positive or negative) of energy with respect to
the current angle. These 4 energy changes (AE1, AE2,

AE3 and AE4 in Fig. 1) are inputs to the neural-CA.

Since these inputs do not provide information about
how is the possible energy landscape once a change



in an angle is taken, it is considered a (very limited)
view of how would be the corresponding next energy
landscape. For the two largest perturbations (—MAC
and M AC) in an angle in amino acid i, a greedy strat-
egy several moves (N) forward is applied. That is,
the next angle changes, in the next angles down the
chain (¢ or v), are defined by those that provide the
minimum energy, considering as possible next moves
—MAC/2 and MAC/2 (the average angle increases
that the ANN can provide) in the next angles. Once
these posterior angle changes are applied, the increases
in energy (with respect to the energy of the current
conformation) are also provided as inputs to the neu-
ral network (AE Greedyl and AE Greedy? in Fig. 1).

Hence, for each of the two largest angle perturbations
(=MAC and MAC), the network receives as input
what would be the increase of energy if the neural net-
work decided a greedy strategy in the next N angles
(¢ and ) of the chain. For the last amino acids only
the possible moves in the final amino acids are taken
into account (e.g., for the angle ¢ of the last amino
acid these two inputs are 0).

This way, the ANN has a view of the energy landscape
in order to decide the most appropriate move in each situ-
ation, taking into account that the ANN can apply differ-
ent changes than the greedy ones when it is applied to the
next dihedral angles. Figure 1 shows a scheme of the feed-
forward ANN used, summarizing the input information the
ANN receives, using only a hidden layer. The output node
determines the move in the corresponding dihedral angle,
decoding its value to the range [-MAC,M AC]. The num-
ber of hidden nodes is selected between the number of inputs
(6) and outputs (1), trying to obtain a good generalization
capability and sufficient capacity to learn the association
patterns (inputs - appropriate angle change).

2.3 Differential Evolution and fitness function

Simulated evolution was used to optimize a given neural-
CA that provides the folding. Since the neural-CA is a feed-
forward artificial neural network, each individual of the pop-
ulation encodes a possible ANN that generates a folding. As
a standard and fixed transfer function (sigmoid) was used in
the neural network nodes, every ANN is represented as its
set of connection weights between the nodes of the layers.
Differential Evolution (DE) [10] was used as evolutionary
method, a population-based search method which needs a
reduced number of parameters to define its implementation
and which has proven efficiency in problems encoded with
real parameters [4].

Each encoded neural-CA of the population is applied to
a protein chain and we want that the iterative temporal
folding, defined by that neural-CA, reaches a given confor-
mation with a given and explicit fitness. The process begins
with the protein sequences unfolded: all the dihedral angles
¢ and ¢ are set to the same value (175°), whereas the dihe-
dral angle w is fixed (180°). Then, the neural-CA is applied
sequentially to each of the dihedral angles ¢ and 1 of each
amino acid of the chain (beginning with the angle ¢ of the
first amino acid until the angle 1 of the last amino acid),
where the neural-CA determines the next move of each an-
gle. This procedure is repeated a maximum number of steps
(neural-CA applied to all the angles ¢ and ¢) until a fi-
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nal conformation is reached, so the fitness of that individual
(encoded neural-CA) is given by the final energy (score3) re-
turned to the evolutionary method. At the end of each step
a simple control is taken: If the energy of the final protein
conformation is larger with respect to the energy of the final
conformation of the previous step, then the folding process
is ended, providing the final conformation (and fitness) of
the last step.

Note that the fitness definition can be different to the
definition of the energy used to calculate the energy increases
that are the inputs to the ANN, although they are the same
in the experiments presented here.

3. RESULTS

3.1 Experimental setup

For automatically obtaining a neural-CA that provides
the folding Differential Evolution was employed with a pop-
ulation size of 60 individuals. Standard values for the DE
parameters [10] were used: C'R = 0.9 (crossover probabil-
ity) and F' = 0.9 (differential weight), whereas the variant
DE/rand/1/bin was used to select the base vector to dis-
turb in the DE process (this provides the lowest selective
process). The number of generations was set to 100. DE
individuals code the ANN weights in the range [-1,1] and
are decoded multiplying the encoded value by a constant
MAX VALUE. The value MAX VALUE = 3 was used
since it allows to saturate the nodes using a standard sig-
moid function as transfer function of the ANN nodes.

For the neural-CA processing, a value N = 2 was used,
that is, in the next 2 dihedral angles ¢ or ¥ greedy moves
are applied in order to calculate the 2 additional energy in-
creases that are inputs to the ANN. The parameter M AC'
for the angle perturbations was set to 10°. Finally, the num-
ber of maximum steps was set to 20, that is, the neural-CA
is applied sequentially (over all the ¢ and 1 angles of all the
amino acids of the protein chain) 20 times at most.

For the initial experiments the PDB proteins 1j4m (14
amino acids) and 1d5q (27 amino acids) were used.

3.2 Results with proteins 1j4m and 1d5q

First, we evolved a neural-CA to define the folding of a
very short protein (1j4m, two sheets). Figure 2 shows snap-
shots of the conformations at the end of different temporal
steps in the folding process, using the best neural-CA at
the end of the DE process. These conformations are visu-
alized with Pymol. The final folded conformation has an
energy (score8) of 22,23 (the energy of the native structure
is 24,02), and the RMSD of the folded conformation is 2, 97.

Note that our main aim is not to obtain better values
of RMSD in the final folded conformation with respect to
other methods, but to experiment with the possibility of the
modeling of the folding working only with the information
of the energy landscape. Also, it must be taken into account
the inaccuracies in the Rosetta energy function, full of local
minima. For example, the results of Shmygelska and Levitt
[16] reveal “clear deficiencies in the low-resolution Rosetta
energy function in that the lowest energy structures are not
necessarily the most native-like”.

Figure 3 shows the energy evolution in the conformations
obtained through the folding process shown in Figure 2.
This figure specifies the energy of the conformation after
each angle move decided by the evolved neural-CA. Figure 3



initial unfolded conformation end of step 1

end of step 12

end of step 14 end of step 16 end of step 19 native and final folded structure

Figure 2: Snapshots of the folding at the end of different temporal steps with protein sequence 1j4m. The
last snapshot shows the native structure (green) and the final folded structure at the last step (blue).
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Figure 3: Evolution of energy (score3) during the
folding process. The z-axis corresponds with the
sequential moves of the ¢ and ¢ angles during the
temporal steps.

Figure 4: Final folded conformation for protein
1j4m (blue) and the corresponding native structure
(green) when the energy term associated with sec-
ondary structure elements is taken into account.

shows that the conformations progress towards lower energy
regions. However, it is clear that the best evolved neural-
CA does not follow a strategy with angle moves that always
decrease the energy. There are moves that can imply en-
ergy increases, but the next moves provide conformations
towards the regions with decreasing energies.

Another aspect to consider is that the secondary elements
are not obtained using the evolved neural-CA. The last snap-
shot of Figure 2 shows that the strands are not obtained
by the secondary structure assignment of the Rosetta en-
vironment (DSSP), so the strands are not visualized. In a
second experiment more information related with secondary
structure elements (SSEs) is added to the energy function,
in order to improve the formation of SSEs. We added to
the Rosetta energy function scored another term that pro-
vides a positive reinforcement (value —1) when the Rosetta
assigned SSE of each amino acid corresponds to the one of
the 3D native structure, and a negative reinforcement (value
+1) on the contrary. We used the SSEs elements of the na-
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Final folded conformation for protein
1j4m (blue) and the corresponding native structure
(green) when the energy term associated with sec-
ondary structure elements is taken into account and
when the folding process begins with a partially
folded conformation.

Figure 5:

tive structure, but a secondary structure predictor can be
used instead. This new term is averaged over all the amino
acids of the protein conformation. Figure 4 shows a snap-
shot of the final folded conformation using the best evolved
neural-CA incorporating the new energy term (used for the
ANN inputs and fitness). This inclusion clearly facilitates
the formation of the SSEs during the folding process. The
RMSD of the final folded conformation in Figure 4 is now
2,16.

Next, a partially folded conformation was used to begin
the folding process. The software TALOS+ (Torsion Angle
Likeliness Obtained from Shift and Sequence Similarity) [15]
was used to define an initial protein conformation. The pro-
gram establishes an empirical relation between C, N and H
chemical shifts and backbone torsion angles ¢ and 1. TA-
LOS+ uses a two-level feed-forward multilayer artificial neu-
ral network to predict the location in ¢ and ¢ space based on
a residue’s NMR chemical shifts and amino acid type, and
those of its adjacent residues. Beginning with the protein
conformation given by TALOS+ (score3 value = 94,95),
a neural-CA is evolved, using again both terms (scored and
SSEs correspondence) in the fitness function and energy cal-
culations. With the best evolved neural-CA, the final folded
conformation is shown in Figure 5. The RMSD value of this
folded conformation is 0,99 and its score3 value is 22, 61.

Using another protein (1d5q, 1 helix, 1 sheet), Figure 6
corresponds to the final folded conformation using the best
evolved neural-CA with the same setup of the previous Fig-
ure (using the additional term of the SSEs correspondence
and an initial folded conformation obtained from TALOS+).
The energy of the initial conformation is 85,69, whereas
the score3 value of the final folded conformation, after the
neural-CA folding, is 39,19 (the energy value of the native
structure is 14,52). The RMSD of the folded conformation
is 1,78. In this case, the energy of the native structure was
not improved, although a reasonable low value of RMSD was
obtained.



Figure 6: Final folded conformation for protein
1d5q (blue) and the corresponding native structure
(green) when the folding process begins with a par-
tially folded conformation.

4. CONCLUSIONS

An alternative strategy to define the folding process with
off-lattice models was presented. The alternative uses an
evolved ANN, which acts like a cellular automaton through
all the elements (angles) and through time to define the
appropriate moves so that the protein conformations fold
towards regions of low energy. Using short proteins, ini-
tial experiments with evolved neural-CA are reported, which
show that an evolved neural-CA can model the folding pro-
cess working only with the energy landscape information,
even with the limitations of the Rosetta low resolution en-
ergy function. The next work will be focused on the use of
only local information as input to the neural-CA (informa-
tion obtained only with the local vicinity of the angle to be
changed), so the neural-CA can act as a folding operator,
evolved with a protein or proteins but defining the folding
of other different proteins.

5. ACKNOWLEDGMENTS

This work was funded by the Ministry of Economy and
Competitiveness of Spain (project TIN2013-40981-R).

6. REFERENCES

[1] R. Calabretta, S. Nolfi, and D. Parisi. An artificial life
model for predicting the tertiary structure of unknown
proteins that emulates the folding process. Proc. Third
European Conference on Advances in Artificial Life -
LNCS, 929:862-875, 1995.
G. Danks, S. Stepney, and L. Caves. Protein folding
with stochastic L-systems. In Artificial Life XI: Proc..
of 11th Int. Conf. on the Simulation and Synthesis of
Living Systems (MIT Press), pages 150-157, 2008.
S. Duarte, D. Becerra, F. Nino, and Y. Pinzén. A
novel ab-initio genetic-based approach for protein
folding prediction. In Proceedings of the Genetic and
FEvolutionary Computation Conference - GECCO’07,
pages 393-400, 2007.

1312

[4] V. Feoktistov. Differential Evolution: In Search of
Solutions. Springer, NY, 2006.

A. Hagler and S. Lifson. Energy functions for peptides
and proteins, II: The amide hydrogen bond and
calculation of amide crystal properties. Journal of the
American Chemical Society, 96:5319-5327, 1974.

N. Krasnogor, G. Terrazas, D. Pelta, and G. Ochoa. A
critical view of the evolutionary design of
self-assembling systems. Proceedings of the 2005
Conference on Artificial Evolution, LNCS,
3871:179-188, 2002.

J. Lee, S. Wu, and Y. Zhang. Ab initio protein
structure prediction. In From Protein Structure to
Function with Bioinformatics, pages 3-25.
Springer-London, 2009.

C. Levinthal. Are there pathways for protein folding?
J. Chim. Phys., 65:44-45, 1968.

Protein Data Bank. http://www.wwpdb.org.

K. Price, R. Storn, and J. Lampinen. Differential
Evolution. A practical approach to global optimization.
Springer - Natural Comp. Series, 2005.

C. Rohl, C. Strauss, K. Misura, and D. Baker. Protein
structure prediction using Rosetta. Methods in
enzymology, 383:66—93, 2004.

Rosetta system. http://www.rosettacommons.org.

J. Santos, P. Villot, and M. Diéguez. Cellular
automata for modeling protein folding using the HP
model. In Proceedings IEEE Congress on Evolutionary
Computation - IEFE-CEC 20183, pages 1586 —1593,
2013.

J. Santos, P. Villot, and M. Diéguez. Emergent protein
folding modeled with evolved neural cellular automata
using the 3D HP model. Journal of Computational
Biology, 21(11):823-845, 2014.

Y. Shen, F. Delaglio, G. Cornilescu, and A. Bax.
TALOS+: a hybrid method for predicting protein
backbone torsion angles from NMR, chemical shifts. J
Biomol NMR, 44:213-223, 2009.

A. Shmygelska and M. Levitt. Generalized ensemble
methods for de novo structure prediction. PNAS,
106(5):1415-1420, 2009.

M. Sippl. Knowledge-based potentials for proteins.
Current Opinion in Structural Bio., 5:229 —235, 1995.
X. Zhao. Advances on protein folding simulations
based on the lattice HP models with natural
computing. Applied Soft Comp., 8:1029-1040, 2008.

(14]

(15]





