
A Graph-based QoS-Aware Method for Web Service
Composition with Branching

Alexandre Sawczuk da Silva
Victoria University of

Wellington
PO Box 600

Wellington 6140, New Zealand
sawczualex@ecs.vuw.ac.nz

Hui Ma
Victoria University of

Wellington
PO Box 600

Wellington 6140, New Zealand
hui.ma@ecs.vuw.ac.nz

Mengjie Zhang
Victoria University of

Wellington
PO Box 600

Wellington 6140, New Zealand
mengjie.zhang@ecs.vuw.ac.nz

ABSTRACT
The concept of Service-Oriented Architecture, where indi-
vidual services can be combined to accomplish more com-
plex tasks, provides a flexible and reusable approach to ap-
plication development. Their composition can be performed
manually, however doing so may prove to be challenging if
many service alternatives with differing qualities are avail-
able. Evolutionary Computation (EC) techniques have been
employed successfully to tackle this problem, especially Ge-
netic Programming (GP), since it is capable of encoding con-
ditional constraints on the composition’s execution paths.
While compositions can naturally be represented as Directed
Acyclic Graphs (DAGs), GP needs to encode candidates as
trees, which may pose conversion difficulties. To address
that, this work proposes a Quality of Service (QoS)-aware
EC composition approach that represents solutions directly
as DAGs. This approach extends a previously proposed
DAG representation by allowing it to also encode conditional
constructs, thus producing solutions with multiple possible
execution paths. The tree-based and graph-based composi-
tion approaches are compared, showing significant gains in
execution time when using graphs.

CCS Concepts
•Information systems → Web services; •Computing
methodologies → Bio-inspired approaches;

Keywords
Web service composition; evolutionary computing; condi-
tional branching; quality of service

1. INTRODUCTION
In Service-Oriented Architecture (SOA), software systems

should be organised into independent functionality modules
known as Web services, which are accessible over a network
and employed in conjunction to fulfil the overall system’s

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2909044

objectives. SOA encourages the idea of Web service com-
position, where existing services are reused to create new
applications. Thus, the ability to perform Web service com-
positions in a fully automated manner has become an impor-
tant area of research in the field of service computing. In ad-
dition to creating correct solutions, composition approaches
should also be Quality of Service (QoS)-aware, meaning that
they take non-functional aspects into account when select-
ing services to include in the solution. Recently, a genetic
programming (GP) composition approach was proposed [1],
but the tree representation used in this work may lead to
situations in which the same service appears multiple times
throughout a candidate tree, making it difficult to ensure the
functional correctness of the composition solution. If solu-
tions are represented as Directed Acyclic Graphs (DAGs),
on the other hand, it becomes much easier to verify the cor-
rectness of the connections between component services in
the composition. Thus, the objective of this work is to pro-
pose a QoS-aware graph-based Evolutionary Computation
Web service composition solution that is capable of encod-
ing conditional constructs. This is done by extending the
approach proposed in [2] to account for the possible condi-
tional paths in a composition.

2. PROPOSED APPROACH
The approach proposed in this work allows for the rep-

resentation of composite services with multiple execution
branches, depending on conditional constraints specified in
the composition request. A candidate is represented as a
DAG, with each Web service encoded as a node, and edges
flowing from the input (start) towards the output (end)
nodes. The algorithm used in this approach is very simi-
lar to the one employed by the usual genetic programming
(GP), with two key differences: the population is initialised
using a graph-building algorithm that ensures solutions are
correct workflows, and custom genetic operators on graphs
are defined.

2.1 Graph building algorithm
A graph building algorithm is employed for the initiali-

sation of candidates, creating compositions that reach the
overall desired outputs based on the provided inputs. These
compositions encode conditional constraints, and thus have
branches that lead to different outcomes. The algorithm
takes a composition request, and a list of relevant candidate
services from the service repository. Given these inputs, the
algorithm proceeds to connect nodes to the graph, one at a

131



time, until a complete solution is found. As explained ear-
lier, the resulting composition will have several independent
branches, thus the algorithm recursively handles each part
of the composition. The algorithm used for construction cre-
ates graphs from the start node to the end nodes in order to
prevent cycles from forming, but this may lead to dangling
nodes, which are nodes that do not have any outgoing edges
despite not being end nodes. These are redundant parts
of the solution, and thus they must be removed once the
graph is built. Finally, the creation of the new candidate is
finished.

2.2 Mutation and Crossover
The general idea behind the mutation procedure is to

modify a part of the original graph, but maintain the rest
of the graph unchanged. In order to do so, a node n is ini-
tially selected as the mutation point, provided that it is not
an end or a condition node. If this node is the start node,
an entirely new candidate graph is constructed; otherwise,
all nodes whose input satisfaction depends upon node n are
removed from the graph, and so are any subsequent splits of
that branch. The construction of this partially-built graph
is then finished by invoking the initial graph building algo-
rithm. In the case of crossover, the general idea is to reuse
connection patterns from two existing candidates in order to
create a new child candidate that combines elements from
these two parents. In order to do so, the original connec-
tions of the parents are abstracted into a map structure.
After having assembled this map, the initial graph building
procedure is invoked to create a child candidate. The dif-
ference is that the addition of services to the composition
is done by querying the map to determine which services
could be reached from the current node according to the
connection patterns in the original parents.

2.3 Fitness function
To evaluate each candidate we employ the fitness function

in [1], which measures the overall quality of a solution. This
function performs a weighted sum of each Quality of Service
(QoS) attribute of a given candidate:

fitnessi = w1Ai + w2Ri + w3(1− Ti) + w4(1− Ci) (1)

where
∑4

k=1 wk = 1

This function produces values in the range [0,1], where a
fitness of 1 means the best quality. It considers a compo-
sition’s availability (A), reliability (R), time (T ), and cost
(C), normalising each of these attributes. T and C are off-
set by 1 in the formula, so that higher scores correspond to
better qualities for these attributes as well. Our approach
attempts to find the composition with the highest possible
fitness score.

3. EXPERIMENTS
Experiments were conducted to compare the performance

of our approach to that of another composition technique
that uses a GP tree representation [1]. The datasets em-
ployed in this comparison were based on those proposed in
[1]. 30 independent runs were conducted for each approach,
with a population size of 500 during 51 generations. The

crossover probability was set to 0.8, and mutation and re-
production probabilities were set to 0.1 each. No elitism was

used, and tournament selection with a tournament size of 2
was employed. Finally, all fitness function weights were set
to 0.25. As expected, the execution times of our graph-based
approach are significantly lower than those of the tree-based
approach for all datasets. With regards to the quality of
solutions, results show that the fitness of the tree-based so-
lutions is slightly higher for the majority of datasets. Despite
this, the graph-based approach produces solutions that are
significantly better for datasets 2 and 6.

Graph-based Tree-based

Set (size) Avg. time
(s)

Avg.
fitness

Avg. time
(s)

Avg.
fitness

1(1738) 11.2±
1.5 ↓ 0.76±0.02 235.2±

52.8
0.85±
0.01 ↑

2(6138) 35.0±
3.3 ↓

0.67±
0.01 ↑

609.3±
112.7 0.65±0.00

3(6644) 19.0±
1.0 ↓ 0.72±0.01 2264.5±

296.2
0.74±
0.02 ↑

4(11451) 49.1±
1.6 ↓ 0.56±0.01 900.6±

138.2
0.77±
0.08 ↑

5(11990) 34.9±
1.3 ↓ 0.81±0.02 2680.7±

217.8
0.83±
0.01 ↑

6(24178) 140.7±
21.8 ↓

0.77±
0.02 ↑

19772.2±
2142.7 0.76±0.02

7(45243) 345.4±
55.5 ↓ 0.79±0.02 24467.1±

5482.4
0.90±
0.03 ↑

8(89309) 522.1±
94.5 ↓ 0.82±0.00

51850.3±
5768.2 0.82±0.04

Table 1: Comparison results.

4. CONCLUSIONS
This work has discussed an Evolutionary Computing ap-

proach to Web service composition with conditional con-
straints that represents solution candidates as Directed Acy-
clic Graphs, as opposed to the previously explored tree-
based representation. The graph-based approach was com-
pared to an existing tree-based composition method, with re-
sults showing that the graph-based approach executes signif-
icantly faster than the tree-based approach for all datasets,
even reaching a difference of two orders of magnitude for
the largest dataset. The resulting solution qualities for both
approaches, on the other hand, were found to be generally
slightly higher when using the tree-based approach. Future
work in this area should explore alternative designs for the
genetic operators used in the evolution process, likely result-
ing in improved fitness levels for the solutions produced.

5. REFERENCES
[1] A. S. da Silva, H. Ma, and M. Zhang. A GP approach

to QoS-aware Web service composition including
conditional constraints. In IEEE Congress on
Evolutionary Computation (CEC), pages 2113–2120.
IEEE, 2015.

[2] A. Sawczuk da Silva, H. Ma, and M. Zhang. Graphevol:
A graph evolution technique for Web service
composition. In Database and Expert Systems
Applications (DEXA), volume 9262 of LNCS, pages
134–142. 2015.

132




