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ABSTRACT
elephant56 is an open source framework for the development
and execution of single and parallel Genetic Algorithms
(GAs). It provides high level functionalities that can be
reused by developers, who no longer need to worry about
complex internal structures. In particular, it offers the pos-
sibility of distributing the GAs computation over a Hadoop
MapReduce cluster of multiple computers. In this paper we
describe the design and the implementation details of the
framework that supports three different models for parallel
GAs, namely the global model, the grid model and the island
model. Moreover, we provide a complete example of use.

CCS Concepts
•Computing methodologies → Genetic algorithms;
Massively parallel algorithms; •Networks → Cloud com-
puting;

Keywords
Parallel Genetic Algorithms; Hadoop MapReduce; Cloud
Computing

1. INTRODUCTION
Genetic Algorithms (GAs) are a powerful technique used

in problems where the search for an optimal solution is ex-
pensive and we aim to find at least a near-optimal solution.
Although attractive and elegant in laboratory, GAs are usu-
ally executed as sequential programs and therefore scalability
issues may prevent their effective application to real-world
problems. Nevertheless, parallelisation is a suitable way to
improve the performance in terms of computational time
because GAs are ‘naturally parallelisable’ [7]. For instance,
their population based characteristics allow evaluating in a
parallel way the fitness of each individual (i.e., global parallel-
isation model). Parallelism can also be exploited to perform
genetic operators and thus to generate the next set of solu-
tions (i.e., island model). Furthermore, these two strategies
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can be combined, giving rise to a third form of parallelisa-
tion (i.e., grid model). All these algorithms are known in
literature as Parallel Genetic Algorithms (PGAs).

It is argued that a barrier to wider application of parallel
execution has been the high cost of parallel architectures and
infrastructures and their management. Cloud computing
can represent an affordable solution to address the above
issues because it breaks the barrier between employed re-
sources and costs: In few seconds it is possible to allocate
a cluster of the desired size without investing in expensive
local hardware and its management. At present, Hadoop
MapReduce is a solid and valid presence in the world of
cloud computing. MapReduce is a programming paradigm
whose origins lie in the old functional programming. It was
adapted by Google [1] as a system for building search in-
dexes, distributed computing and large scale databases and
later implemented in the Hadoop platform as part of the
Apache Software Foundation family. Hadoop was created
by Doug Cutting and has its origins in Apache Nuts, an
open source web search engine. In January 2008 it became a
top-level Apache project, attracting to itself a large active
community, including Yahoo!, Facebook and The New York
Times. In combination with the Hadoop Distributed File Sys-
tem (HDFS), Hadoop MapReduce can run on large clusters
of machines with some interesting features such as scalabil-
ity, reliability and fault-tolerance of computation processes
and storage. These characteristics are indispensable when
the aim is to deploy an application to a cloud environment.
Moreover, Hadoop MapReduce is well supported to work
not only on private clusters, but also on cloud platforms
(e.g., Amazon Elastic Compute Cloud) and thus is an ideal
candidate for high scalable parallelisation of GAs.

In this paper we present elephant561, an open source
framework2 supporting the development and execution of
parallel GAs. Our aim is to provide a framework to encourage
users to develop their own GAs, explicitly controlling the
data types and genetic operators involved, and executing
them on a distributed Hadoop cluster, without dealing with
the parallelisation part of GAs (i.e. dealing with Hadoop
MapReduce) thus allowing developers to focus on the GAs
definition only. The framework allows also the execution of
a sequential GA on a single commodity machine.

elephant56 is the extension of the proposal by Ferrucci

1The name ‘elephant56’ combines two ideas: ‘elephant’ like
the Hadoop mascot and ‘56’, which is the number of chro-
mosomes of the elephant.
2elephant56 is freely available at
https://github.com/pasqualesalza/elephant56
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et al. [5, 6], which in its first version provided support only
for the island model and the source code was not publicly
available. To the best of our knowledge, elephant56 is the first
publicly available framework based on Hadoop MapReduce.

The rest of the paper is organised as follows. Section 2
describes related work and Section 3 provides an overview of
the technologies and concepts involved. Section 4 presents
the algorithms we devised to implement the sequential and
parallel GAs. Next, in Section 5 we illustrate a complete ex-
ample of use of the framework by implementing the OneMax
problem. In Section 6, the architecture of the framework is
described whereas Section 7 contains some final remarks and
future work.

2. RELATED WORK
In this section we describe some of the relevant work that

inspired and guided our study, highlighting the difference
with them.

In the literature GAs have been parallelised with different
approaches, methods and technologies. Jin et al. [9] were the
first to use MapReduce paradigm to this aim. They imple-
mented their own version of MapReduce on .Net platform
and realised a parallel model which can be considered as
a hybrid of models described in Section 3.2: The mapper
nodes compute the fitness function and a selection chooses
the best individuals on the same machine; the single reducer
applies the selection on all the best local individuals received
from parallel nodes; the computation continues on the master
node where crossover and mutation operators are applied on
the global population.

The first work on Hadoop MapReduce is from Verma et
al. [11]. The implemented model is the grid model: The map-
pers execute the fitness evaluation and the unpaired reducers
execute the other genetic operators on the individuals they
randomly receive as input. This work is important mainly
because the authors studied the scalability factor on a large
cluster of Hadoop nodes finding a clear decrease in perform-
ance only when the number of requested nodes surpassed
the number of physical CPU available on the cluster. They
confirmed that GAs can scale on multiple nodes. Huang
and Lin [8] exploited Hadoop MapReduce on a private large
grid of slow machines to measure the performance in terms
of fitness value of the solutions at scaling the number of
nodes. They also exploited a real Amazon EC2 cluster of
faster machines in order to analyse the execution time factor.
They suggested the use of Hadoop MapReduce in GA par-
allelisation in presence of large populations and intensive
computation work for fitness evaluation.

Zheng et al. [12] compared the multi-core system with
the many-core system on GPUs in parallelising GAs. They
implemented both the global and island models, finding
that the island model was preferable in terms of quality and
execution time because it reduced the parallel communication.
Even though they found the system based on GPU is faster
than the many-core one, they observed that an architecture
with a fixed number of parallel participants, such as GPU
cores, might perform worse in terms of quality of solutions
than another with more parallel nodes. They explicitly
affirmed that a distributed architecture is worth for GAs
parallelisation.

Di Gironimo et al. [2] were the first to propose a parallel
GA for automatic generation of JUnit test suite based on
the global parallelisation model. A preliminary evaluation of

the proposed algorithm was carried out aiming to evaluate
the speedup with respect to the sequential execution. The
obtained results highlighted that using the parallel genetic
algorithm allowed for saving over the 50 % of time. The
algorithm was developed exploiting Hadoop MapReduce and
its performance were assessed on a standard cluster. Sub-
sequently, Di Martino et al. [3] proposed some solutions to
migrate GAs to the cloud, aiming at obtaining automatic
test data generation. This migration is motivated by the
need to achieve a greater efficiency and scalability of this
Search-Based technique for automated software testing, thus
possibly reinforcing its effectiveness thanks to the available
computational power of the cloud. The authors suggested
the use of the MapReduce paradigm, relieving programmers
from most of the low level issues in managing a distributed
computation. This is also motivated by the fact that MapRe-
duce is natively supported by several cloud infrastructures.
In particular, they suggested how to adapt the three paral-
lelisation models to MapReduce paradigm with the aim to
automatically generate test data and discussed issues and
concerns about them. They also implemented a solution
based on the global model taking advantages of the Google
App Engine framework. Preliminary results showed that,
unless for toy examples, the cloud can heavily outperform
the performances of a local server.

Pushed by the motivation of solving a problem of Symbolic
Regression by using Genetic Programming, Fazenda et al. [4]
were the first to consider the parallelisation of Evolution-
ary Algorithms (EAs) on Hadoop MapReduce platform in
a general purpose form of a library, in order to simplify the
developing effort for parallel EA implementations. With the
same aim, Ferrucci et al. [5, 6] implemented a framework for
PGAs development, deployment and execution on Hadoop
MapReduce platform, based on island model. They described
the design of the framework and how a developer could inter-
act in defining his/her own genetic operators or using some
provided samples included with the framework. They also
assessed the framework with a preliminary experiment on
the problem of Feature Subset Selection. In this work we
extended this framework by implementing also the global
and grid models and making it available to the community
as an open source project. Moreover, we improved the im-
plementation of the island model because the previous one
executed a job for each generation whereas we introduced
the concept of periods of generations in order to speedup the
PGA based on this model.

3. BACKGROUND
In this section we give some background about the involved

technologies and the concepts needed to follow the rest of
the paper.

3.1 Hadoop MapReduce
The MapReduce paradigm is based on two distinct func-

tions, namely ‘map’ and ‘reduce’, which are combined to-
gether in a divide-and-conquer way where the map function
is responsible to handle the parallelisation while the reduce
collects and merges the results.

A Hadoop cluster is allowed to accept MapReduce exe-
cutions (i.e., ‘jobs’) in a batch fashion. Usually, a job is
demanded from a master node which provides both the data
and configuration for the execution on the cluster. A job
is intended to process input data and produce output data
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exploiting a distributed file system (an open source imple-
mentation of Google File System), named ‘HDFS’. HDFS is
also used for intermediate data. A job is composed of the
following main phases:

Split: the input data is usually in the form of one or more
files stored in the HDFS. The splits of key/value pairs called
‘records’ are distributed to the mappers available on the
cluster. The function, where k1 and v1 indicate data types,
is described as:

input→ list (k1, v1)S

Map: this phase is distributed on different nodes. For each
input split, it produces a list of records:

(k1, v1)S → list (k2, v2)M

Partition: it is in charge of establishing to which reduce
node sending the map output records:

k2 → reduceri

Reduce: it processes the input for each group of records
with the same key and stores the output into the HDFS:

(k2, list (v2))M → list (k3, v3)R

A developer is expected to extend some specific Java classes
in order to define each job phase.

Hadoop is able to move data between nodes through se-
quences of write and read operations to/from the HDFS. The
default raw serialisation of objects is inefficient if compared
to ‘Avro’3. It is a modern data serialisation system from the
same creator of Hadoop, Doug Cutting. In addition to have
a flexible data representation, it is optimised to minimise the
disk space and communication through data compression.

3.2 Parallel Models for Genetic Algorithms
The following models have been proposed in literature [10]

to parallelise the execution of Genetic Algorithms:

• global model, also called master-slave model;

• grid model, also called cellular model or fine-grained
parallel model;

• island model, also called distributed model or coarse-
grained parallel model.

In the global model there are two roles: a ‘master’ node
and one or more ‘slave’ nodes. The former is responsible to
manage the population (i.e., apply genetic operators) and to
assign the individuals to the slave nodes. The latter are in
charge to evaluate the fitness for each individual. This model
does not require any changes to the sequential GA, since the
fitness computation for each individual is independent and
thus achievable in parallel.

The grid model applies the genetic operators only to por-
tions of the global population. This is obtained by assigning
each individual to a single node and by performing evolu-
tionary operations that involve also some neighbours of a
solution, according to a defined criterion of neighbourhood.
The effect is an improvement of the diversity during the
evolutions, further reducing the probability to converge into

3https://avro.apache.org

a local optimum, with the drawback of requiring higher net-
work traffic due to the frequent communications among the
nodes.

In the island model the initial population is split in sev-
eral groups, typically referred to as ‘islands’, and a GA is
executed independently on each of them and information
between islands are periodically exchanged by ‘migrating’
some individuals from one island to another. The main ad-
vantages of this model are that different sub-populations can
explore different parts of the search space and migrating
individuals between islands enhances diversity of the chro-
mosomes, thus reducing the probability to converge into a
local optimum.

4. ALGORITHMS
In the following we first explain the design of a Sequential

Genetic Algorithm (SGA) and then we illustrate how pro-
posal to map the MapReduce elements for each of three GA
parallel models.

4.1 Sequential Genetic Algorithm (SGA)
There are several possible versions of GA execution flows.

The parallel adaptations are built on the base of the follow-
ing SGA implementation which is composed of a sequence
of genetic operators repeated generation by generation, as
described in Algorithm 1.

Algorithm 1 Sequential Genetic Algorithm (SGA)

1: population ← Initialization(populationSize)
2: for i ← 1, n do
3: for individual ∈ population do
4: FitnessEvaluation(individual)

5: if elitism is active then
6: elitists ← Elitism(population)
7: population ← population − elitists

8: selectedCouples ← ParentsSelection(population)
9: for (parent1, parent2) ∈ selectedCouples do

10: (child1, child2) ← Crossover(parent1, parent2)
11: offspring ← offspring + child1 + child2

12: for individual ∈ offspring do
13: Mutation(individual)

14: if survival selection is active then
15: for individual ∈ offspring do
16: FitnessEvaluation(individual)

17: population ← SurvivalSelection(population, offspring)

18: if elitism is active then
19: population ← population + elitists

The execution flow starts with an initial population ini-
tialised with the Initialization function (1), which can
be a random function or a specific one based on other cri-
teria. Then, at each generation the first genetic operator
applied is the FitnessEvaluation (2-4) which evaluate and
assign a fitness value to each individuals letting them to be
comparable. The Elitism operator (5-7) is optional and it al-
lows to add some individuals directly to the next generation
(18-19). TheParentsSelection operator (8) selects the
couples of parents for the Crossover phase based on their
the fitness values. The mixing of parent couples produces the
offspring population (9-11) which is submitted to the Muta-
tion phase (12-13) in which the genes may be altered. The
SurvivalSelection, which is optional, applies a selection
between parents and offspring individuals (14-17) to select
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the individuals that will take part of the next generations.
The PGAs proposed in the following differ from SGA in
the way they parallelise the above operators and by adding
another new genetic operator in the case of the island model
(i.e., the migration).

4.2 PGA for the Global Model
The PGA that implements the global model on MapRe-

duce has the same behaviour of the sequential version, but
it resorts to parallelisation for the fitness evaluation. Fig-
ure 1 shows the workflow of the model. The master node,
also referred as Driver, initialises a random population and
writes it in the HDFS. During each generation, it spreads
the individuals to the slave nodes in the cluster when: (i) the
initial population is evaluated for the first time; (ii) the gen-
erated offspring needs to be evaluated in order to apply the
survival selection to both parents and children. This means
that a single job is needed at each generation. The Driver

also executes sequentially the other genetic operators on the
entire population that has been evaluated.

. . .

FITNESS EVALUATION

Generation 1

. . .

Generation 2

. . .

ELITISM
PARENTS SELECTION
CROSSOVER
MUTATION
SURVIVAL SELECTION

Mapper 1

Mapper n

Driver Driver

Figure 1: The workflow for the global model.

More in details, the slave nodes in the cluster perform
only the fitness evaluation operator. The mappers receive
the records in the form (individual,destination). The ‘des-
tination’ field is used only by the other models, so it will be
mentioned later. We deliberately disabled the reduce phase,
because there is no need of moving individuals between nodes.
After the map phase, the master reads back the individual
and continues with the other remaining genetic operators,
considering the whole current population.

4.3 PGA for the Grid Model
The PGA that implements the grid model applies the

genetic operators only to portions of the population called
‘neighbourhoods’. In the grid model these portions are chosen
randomly at each generation (Figure 2). The number of jobs
is the same as the number of generations.

. . .

. . .

FITNESS EVALUATION SHUFFLE

Generation 1

. . .

Generation 2

. . . . . .

ELITISM
PARENTS SELECTION
CROSSOVER
MUTATION
SURVIVAL SELECTION

Mapper 1

Mapper n

Reducer 1

Reducer n

Driver

Figure 2: The workflow for the grid model.

The Driver has the task of randomly generate a sequence of
neighbourhoods destinations for the individuals in the current
population. These destinations are stored into the record as

the value fields so the destinations are known a priori. We
exploited the parallelisation in two phases: (i) the mappers
initialise a random population during the first generation and
computes the fitness evaluation; (ii) the partitioner sends
the individuals to the correspondent neighbourhood (i.e., the
reducer). The reducers compute the other genetic operators
and write the individuals in the HDFS.

4.4 PGA for the Island Model
The PGA for the island model acts similarly to the one

for the grid model because it operates on portions of the
global population called ‘islands’. Each island executes whole
periods of generations on its assigned portions, independ-
ently from the other islands until a migration occurs (Figure
3). This means there is an established migration period,
which can be defined as the number of consecutive genera-
tions before a migration. Since it is possible to run groups
of subsequent generations (i.e., periods) independently, we
exploited a MapReduce job for each period.

. . .

. . .

FITNESS EVALUATION
ELITISM
PARENTS SELECTION
CROSSOVER
MUTATION
SURVIVAL SELECTION MIGRATION

Generations Period 1

. . .

Generations Period 2

. . . . . .

Mapper 1

Mapper n Reducer n

Driver

Reducer 1

Figure 3: The workflow for the island model.

In Hadoop, the numbers of mappers and reducers are
not strictly correlated, but we coupled them in order to
represent them as islands. We used the mappers to execute
the generation periods and at the end of the map phase a
function applies the migration criterion with which every
individuals will have a specific destination island: This is
the time in which the second part of the output records is
employed. Then the partitioner can establish where to send
individuals and the reducer is used only to write into the
HDFS the individuals received for its correspondent island.

5. USING ELEPHANT56
In this section we explain how to use elephant56 through

a running example based on the simple problem of ‘OneMax’
(also know as ‘BitCounting’), which consists in maximising
the number of 1 in a bit string. Even though some sample
implementations are provided with the framework already
(e.g., individuals and genetic operators), we are going to be
intentionally redundant here for explanatory purposes. To
the same aim, we are going to deliberately illustrate some
solutions that may be inefficient. Moreover, in order to
improve the code readability we do not strictly follow the
Java programming language and postpone some details to
Section 6 .

The OneMax problem can be formally described as find-
ing a string ~x = {x1, x2, . . . , xN}, with xi ∈ {0, 1}, that
maximises the following equation:

F (~x) =

N∑
i=1

xi (1)

To solve this problem with GAs, the individuals can be
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represented as bit strings and the above equation can be used
as fitness function. We also need to define the genetic operat-
ors. elephant56 allows the developer to define each of these
elements by extending the classes of the framework. Because
there exists an underlying distributed platform (i.e., Hadoop
MapReduce), many of the objects are encapsulated into some
wrapper objects which ease the serialisation process.

In elephant56, an individual can be defined by extending
the class Individual, which requires at least the implement-
ation of the following serialisation method:

1 public abstract class Individual implements Cloneable {
2 public abstract Object clone() throws

↪→ CloneNotSupportedException;
3 public abstract int hashCode();
4 }

For the OneMax example, a bit string chromosome can be
defined adapting a list of boolean elements:

1 public class BitStringIndividual extends Individual {
2 private List<Boolean> bits;
3
4 public BitStringIndividual(int size) {
5 bits = new ArrayList<>(size);
6 }
7
8 public void set(int index, boolean value) {
9 bits.set(index, value);
10 }
11
12 public boolean get(int index) {
13 return bits.get(index);
14 }
15
16 public int size() {
17 return bits.size();
18 }
19 · · ·
20 }

The second important element to define is the fitness value,
namely an object quantifying the result of the fitness function
evaluation. This is possible by extending the FitnessValue

class, which also requires to be comparable:

1 public abstract class FitnessValue implements
↪→ Comparable<FitnessValue>, Cloneable {

2 public abstract int compareTo(FitnessValue other);
3 public abstract Object clone() throws

↪→ CloneNotSupportedException;
4 public abstract int hashCode();
5 }

For the example, the fitness value is an integer since we
need to store for each solution how many bits are set to 1:

1 public class IntegerFitnessValue extends FitnessValue {
2 private int number;
3
4 public IntegerFitnessValue(int value) {
5 number = value;
6 }
7
8 public int get() {
9 return number;
10 }
11
12 @Override
13 public int compareTo(FitnessValue other) {
14 if (other == null)
15 return 1;
16 Integer otherInteger = ((IntegerFitnessValue) other

↪→ ).get();
17 Integer.compare(number, otherInteger);
18 }
19 · · ·
20 }

Both the Individual and FitnessValue objects are en-
capsulated into a wrapper class called IndividualWrapper.

Next, we need to implement the fitness function by extend-
ing the FitnessEvaluation class:

1 public class FitnessEvaluation<IndividualType extends
↪→ Individual, FitnessValueType extends
↪→ FitnessValue> extends GeneticOperator<
↪→ IndividualType, FitnessValueType> {

2 · · ·
3 public FitnessValueType evaluate(IndividualWrapper<

↪→ IndividualType, FitnessValueType> wrapper);
4 }

For OneMax, the fitness function (Equation 1) consists of
simply counting the number of bit set to 1 in the bit string:

1 public class OneMaxFitnessEvaluation extends
↪→ FitnessEvaluation<BitStringIndividual,
↪→ IntegerFitnessValue> {

2 · · ·
3 @Override
4 public IntegerFitnessValue evaluate(IndividualWrapper

↪→ <BitStringIndividual, IntegerFitnessValue>
↪→ wrapper) {

5 BitStringIndividual individual = wrapper.
↪→ getIndividual();

6 int count = 0;
7 for (int i = 0; i < individual.size(); i++)
8 if (individual.get(i))
9 count++;
10 return new IntegerFitnessValue(count);
11 }
12 }

At this point, we need to define the genetic operators
(i.e., crossover, mutation, selection). Given that standard
operators are already provided by the framework, in the
following we will describe in details only the definition of
those genetic operators that require a specific implementation
in order to manage the classes we have defined so far. The
procedure to define a genetic operator is similar to the one
used for the fitness function, thus we will omit the code for
the superclasses extended.

Before applying the genetic operators we need to create
an initial population, this can be done by randomly creates
the individuals as follows:

1 public class RandomBitStringInitialization extends
↪→ Initialization<BitStringIndividual,
↪→ IntegerFitnessValue> {

2 · · ·
3 private int individualSize;
4 private Random random;
5
6 public RandomBitStringInitilization(. . . , Properties

↪→ userProperties, . . . ) {
7 · · ·
8 individualSize = userProperties.getInt(

↪→ INDIVIDUAL_SIZE_PROPERTY);
9 random = new Random();
10 }
11
12 @Override
13 public IndividualWrapper<BitStringIndividual,

↪→ IntegerFitnessValue> generateNextIndividual(
↪→ int id) {

14 BitStringIndividual individual = new
↪→ BitStringIndividual(individualSize);

15
16 for (int i = 0; i < individualSize; i++)
17 individual.set(i, random.nextInt(2) == 1);
18
19 return new IndividualWrapper(individual);
20 }
21 }
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It is worth noting that some properties can be distributed
through the Properties object, which is filled on the master
node and available from the constructor methods of the
genetic operators when executed in parallel. In the example,
it has been used to read the size of the bit strings.

After the fitness evaluation has happened, elitism and
parents selection follow. We chose to define them by us-
ing the BestIndividualsElitism and RouletteWheelPar-

entsSelection classes, already provided by the framework.
Of course, the developer may choose to define other elitism
and/or parent selection strategies by extending the classes
Elitism and ParentsSelection, respectively.

The crossover operator needs a specific implementation
to manage bit string splits. A single point crossover can be
defined as follows:

1 public class BitStringSinglePointCrossover extends
↪→ Crossover<BitStringIndividual,
↪→ IntegerFitnessValue> {

2 · · ·
3 private Random random;
4
5 public BitStringSinglePointCrossover(. . . ) {
6 · · ·
7 random = new Random();
8 }
9
10 @Override
11 public List<IndividualWrapper<BitStringIndividual,

↪→ IntegerFitnessValue>> cross(IndividualWrapper<
↪→ BitStringIndividual, IntegerFitnessValue>
↪→ wrapper1, IndividualWrapper<
↪→ BitStringIndividual, IntegerFitnessValue>
↪→ wrapper2, . . . ) {

12 BitStringIndividual parent1 = wrapper1.
↪→ getIndividual();

13 BitStringIndividual parent2 = wrapper2.
↪→ getIndividual();

14
15 cutPoint = random.nextInt(parent1.size());
16
17 BitStringIndividual child1 = new

↪→ BitStringIndividual(parent1.size());
18 BitStringIndividual child2 = new

↪→ BitStringIndividual(parent1.size());
19
20 for (int i = 0; i < cutPoint; i++) {
21 child1.set(i, parent1.get(i));
22 child2.set(i, parent2.get(i));
23 }
24
25 for (int i = cutPoint; i < parent1.size(); i++) {
26 child1.set(i, parent2.get(i));
27 child2.set(i, parent1.get(i));
28 }
29
30 List<IndividualWrapper<BitStringIndividual,

↪→ IntegerFitnessValue>> children = new
↪→ ArrayList<>(2);

31
32 children.add(new IndividualWrapper<>(child1));
33 children.add(new IndividualWrapper<>(child2));
34
35 return children;
36 }
37 }

The function cross selects a random cut point and builds
two new children by mixing the chromosomes of the parents.

Thereafter, a random mutation function is implemented:

1 public class BitStringMutation extends Mutation<
↪→ BitStringIndividual, IntegerFitnessValue> {

2 · · ·
3 private Random random;
4
5 public BitStringMutation(. . . ) {
6 · · ·

7 mutationProbability = userProperties.getDouble(
↪→ MUTATION_PROBABILITY_PROPERTY);

8 random = new Random();
9 }
10
11 @Override
12 public IndividualWrapper<BitStringIndividual,

↪→ IntegerFitnessValue> mutate(IndividualWrapper<
↪→ BitStringIndividual, IntegerFitnessValue>
↪→ wrapper) {

13 BitStringIndividual individual = wrapper.
↪→ getIndividual();

14
15 for (int i = 0; i < individual.size(); i++)
16 if (random.nextDouble() <= mutationProbability)
17 individual.set(i, !individual.get(i));
18
19 return wrapper;
20 }
21 }

This mutation operator, as defined above, mutates each
gene according to a mutation probability that is distributed
as a property value.

The survival selection is the last operator to be applied
to produce the next offspring, in our example we used the
Roulette Wheel Selection already implemented by the Roul-

etteWheelSurvivalSelection class provided in the frame-
work. Of course, the developer may choose to define his/her
own survival selection strategy by extending the class Sur-

vivalSelection.
Finally, we need to register with the Driver all the classes

we defined as follows:

1 public class App {
2 public static void main(String[] args) {
3 · · ·
4 driver.setIndividualClass(BitStringIndividual.class

↪→ );
5 driver.setFitnessValueClass(IntegerFitnessValue.

↪→ class);
6
7 driver.setInitializationClass(

↪→ RandomBitStringInitialization.class);
8 driver.setInitializationPopulationSize(

↪→ POPULATION_SIZE);
9 userProperties.setInt(INDIVIDUAL_SIZE_PROPERTY,

↪→ INDIVIDUAL_SIZE);
10
11 driver.setElitismClass(BestIndividualsElitism.class

↪→ );
12 driver.activateElitism(true);
13 userProperties.setInt(NUMBER_OF_ELITISTS_PROPERTY,

↪→ NUMBER_OF_ELITISTS);
14
15 driver.setParentsSelectionClass(

↪→ RouletteWheelParentsSelection.class);
16
17 driver.setCrossoverClass(

↪→ BitStringSinglePointCrossover.class);
18
19 driver.setSurvivalSelectionClass(

↪→ RouletteWheelSurvivalSelection.class);
20 driver.activateSurvivalSelection(true);
21
22 driver.setUserProperties(userProperties);
23 · · ·
24 driver.run();
25 · · ·
26 }
27 }

The selection between sequential and parallel models is
possible by specifying one of the Driver class specialisations.

Assuming that a Hadoop MapReduce cluster is already
set up, we can pack the code in a single JAR file, including
the elephant56 dependency, and execute it with the standard
Hadoop launch method.
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6. ARCHITECTURE
In this section we describe the architecture of elephant56.

We conceptually divided it into two levels of abstraction:

1. the ‘core’ level, which manages the communication with
the underlying Hadoop MapReduce platform;

2. the ‘user’ level, which allows the developer to interface
with the framework.

Whereas the core level is immutable for the user, it is
through the user level that the developers can extend its
functionalities and develop their own GAs.

6.1 Core Level
The core level is responsible of dealing with the Hadoop

MapReduce platform. This is made by extending the MapRe-
duce classes provided with the Hadoop library. Figure 4
shows the structure of the core package, which contains five
subpackages, each responsible of a different functionality.

core

output

input generatorcommon reporter

Figure 4: The core package class diagram.

The class in charge of the whole execution flow is the
Driver class (Figure 5). It invokes the components included
into the other core packages and it is specialised into different
classes, which implement the models shown in Section 4.
The Driver class is the linking point between core and user

layers and the primary interface with the developer.

Driver

Sequential Distributed

Global Grid Island

core

Figure 5: The Driver class.

6.1.1 core.common
The core.common package contains two classes: the Indi-

vidualWrapper class, a wrapper class for both individual and
fitness value objects exploited by elephant56 to serialisation
purposes; the Properties class, which allows the distribution
of the properties defined by the developer among the different
nodes. The Properties class involves an XML serialisation
process for the distribution and some methods that ease the
storage of properties values.

6.1.2 core.input
The core.input package contains the implementations

for the Hadoop input operations. The NodesInputFormat

assigns a group of individuals (i.e., a MapReduce split) to a

specific node. As mentioned in Section 3, the serialisation
is made by using Avro, thus each split corresponds to a
single binary file stored into the HDFS. The information
about the split are stored using the PopulationInputSplit

class and read with the PopulationRecordReader class which
deserialises the Avro objects into Java objects for the slave
nodes.

6.1.3 core.output
The core.output allows serialising the Java objects pro-

duced during the generations and storing them into the
HDFS. This is done by using the classes NodesOutputFormat
and PopulationRecordWriter.

6.1.4 core.generator
The core.generator package (Figure 6) is composed of

the GenerationsPeriodExecutor class that implements the
SGA described in Section 4.1. The specialisation of this
class allows the distribution of GAs according to the different
parallel models (see Section 4).

core.generator

GenerationsPeriodExecutor

Global GridPrimary GridSecondary Island

IslandMapper

IslandReducer

GlobalMapper GridMapper GridReducer

SpecificNodePartitioner

Figure 6: The generator package class diagram.

The mapper class of Hadoop is exploited by overriding the
following methods:

1. setup(), which is invoked by Hadoop only at the be-
ginning of the map phase and reads the configuration
for the current generation together with the provided
user properties;

2. map(), which is invoked for each input MapReduce
record and stores all the input individuals into a data
structure;

3. cleanup(), which is invoked after each input record
has been read and starts the evolution process of the
individuals.

The global model involves the map phase only and the Gen-
erationsPeriodExecutor applies just the fitness evaluation
operator on the slave nodes. The other genetic operators are
applied by the master node when all the individuals have
been evaluated.

The grid model involves three phases as follows: (i) the
map, in which the fitness evaluation is performed; (ii) the par-
tition (by using the SpecificNodePartitioner class), which
assigns each individual to a random neighbourhood; (iii) the
reduce, which executes the remaining genetic operators on
the neighbours.

The island model also consists of three phases as follows:
(i) the map, in which a certain number of generations (i.e., mi-
gration period) are executed; (ii) the partition, which assigns
each individual to a specific node (i.e., island) established
with the migration genetic operator; (iii) the reduce, which
only stores the population of a given island into the HDFS.
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6.1.5 core.reporter
The package core.reporter (Figure 7) provides some util-

ities that can be used to produce a report containing some
statistics about the GA execution. The output consists of
some CSV (Comma Separated Values) files stored in the
HDFS.

core.reporter

Reporter

TimeIndividual

GenerationsBlockGeneticOperators MapReduce

Figure 7: The reporter package class diagram.

The Reporter class is specialised into two types: Indi-

vidual and Time. The former records the chromosome and
fitness value of each individual produced during each genera-
tion. This allows to keep track and analyse the population
evolution. The latter records the execution time (in milli-
seconds) of: (i) the genetic operators on each node; (ii) the
generations; (iii) the MapReduce phases.

All the CSV writing operations are nonblocking so the
report functionalities do not influence the computation time
of the GA.

6.2 User Level
The user package (Figure 8) contains all the base classes

the developer should extend in order to implement a specific
GA, as explained in Section 5.

user

sample.operators

operators samplecommon

sample.common

Figure 8: The user package class diagram.

In particular, the common package contains the Individual

and FitnessValue classes for the definition of the chromo-
some and fitness value, while the operators package contains
the classes for the definition of specific genetic operators.
Some sample default implementations are included into the
sample package, such as: sequences of primitive Java types,
number fitness values, the random initialisation of sequences,
a single point crossover, and the roulette wheel selection.

7. CONCLUSIONS AND FUTURE WORK
This paper described elephant56, a novel framework that

allows developers to implement their own GAs in a distrib-
uted way on a Hadoop MapReduce cluster of computers.

As future work we plan to empirically evaluate the frame-
work in order to assess its scalability with all the three models
(i.e., the global, grid and island model).

Furthermore, it is our intention to enrich the framework
with a full documentation for the usage of the framework
together with some example problem implementations.
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